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THE MOMENTS OF THE 3SLS ESTIMATES OF THE STRUCTURAL COEFFICIENTS

OF A SIMULTANEOUS EQUATION MODEL*

by

J. D. Sargan

1. Introduction

This article is concerned with the maximal finite moment exponent
for the 3SLS estimates of a set of structural coefficients. This is de-
fined for any estimator B as the supremum of r such that E(!B|r) < e,
The strategy in this paper is to establish an upper bound on the maximal
exponent through Theorem 1; then to establish a lower bound through Theorem
2, The paper considers the general case where there are general linear
regstrictions which may connect the coefficients of different equations in
the model. For thig general case the results of the paper may not be enough
to exactly specify the maximal exponent. However in the important specilal
case where the restrictions are separable, in the senge that each constraint
involves only the coefficients of a single equation of the model, it is
established that the maximal exponent for the coefficients of any equation
is the same as that for the corresponding 2SLS estimates. That is, the
maximal exponent 1s equal to the number of overidentifying restrictions,
or to the difference between the number of restrictions on the equation
minus the number of endogenocus variables in the model. All these results
are derived in the case where the 2SLS estimates of the structural equa-

tion error variance matrix have been modified so that the ratio of the

*The research described in this paper was undertaken from grants from the
National Scilence Foundation and from the Ford Foundation.



largest to the smallest latent root is bounded. The last section considers
the case where this change is not made to the conventional definition of

the estimators.

2, The Model and an Upper Bound Theorem

The general linear model will be written in the form
AX' = BY' + C2' =U',

where Y and U are nxT matrices of stochastic variables, and Z is

an mxT matrix of non-stochastic exogenous variables. B 1is a square non-
singular matrix of coefficients, A = (B:C) and X = (Y:Z), and

E(U) = 0 . Writing ué for a row of U, u is independent of u_ ,

s # t , with an absolutely continuous joint distribution for the element

of u, independent of t , with finite variance matrix Qu . Writing

A' = (@15 855 835 <oy an) , we write (vec A') = (ai, aé, aé, cees a;) ,

as an n(mtn) vector. We then assume a general set of restrictions of

the form
) % vec A =9 ,

where ¥ is rxn(mtm) of rank r .

The 3SLS estimates can be regarded as minimizing
tr(YARA') = (vec A)' (Y@ R)vec A

subject to the constraints (1), where R = (X'Z)(Z'Z)-I(Z'X)/T . ¥ would
normally be taken to be the inverse of ﬁu , where ﬁu is the 28LS esti-

mate of nu . However this is a difficult choice of ¥ , and it is much



easier to deal with the case where Y is non-stochastic, or has the ratio
of its largest and smallest latent roots bounded. Such a matrix might be
derived from ﬁ;l by reducing any latent root which was greater than a
fixed rather large multiple u of the smallest latent root. If the ratio
of largest to smallest latent root of the population Ou 1g in fact smaller
than this u then the possibility that the bound would have to be applied
to any sample ﬁu would tend to zero with T , and the resulting estimates
would be asymptotically equivalent to the usual estimates using VY = 651 .
Given Y we can state the general estimator by parameterizing the
constraints, Since & 1is of full rank we can find a permutation matrix
M such that &7 = (Ql :@2) , and @1 is square non-singular. Writing
(' vec A)' = (ac') : ') so that ¢1a0 + @20 = ¢0 . Then
a = 8,18, - 8 a,a .

Thus
=1 -1
% %% 48,
vec A =11 =1 + 11 a,
a 0 I

and we write this as vec A = ko + Kx . This is only one cut of many ways
of parameterizing the constraints, but it is one that is easily programmed
for computer and it is possible to speed up computing by using the spe-
cialized form of the K matrix and kO vector.

We now minimize

ko (Y ® R)k, + Zk(') (¥ ® R)Kx + a' (K' (¥ ® R)K)x



unconstrainedly with respect to a, where @ is an N vector,

Nen{(nm)-r . Thus & = -(x' (W@R)K)-IK'(\Y@) R)ko , and

N

vec A = ko + K& . The model is identified if p lHim(K'"(Y® R)K) 1s posi-
T

tive definite and the asymptotic error variance matrix can be estimated

as K(K'(‘l’@R)K)-I(K'(Yﬁu‘P@R)K)(K'(W@R)K)-ll{' . This takes the con-

ventional form K(K'(Y@R)K)-lK' ;, 1f plim V¥ = Q‘:l

T=4co

Note that the parameterization method gives exactly the same esti-
mates as would be obtained by a Lagrange multiplier approach, but saves
on both computer time and storage space.

In order to set an upper bound to the maximal finite moment exponent
we consider an arbitrary constant linear function of the elements of

(& - ) of the form

h'(@ - @) = h'(K’ (‘¥®R)K)_1K'(‘4’® x'2)(2'2) Vyvec(u'z)/T .

-1/2

We can express this as a function of P = (Y'Z)(2'Z) //T , and

- l/2
v

x'y - (Y'Z)(Z'Z)-l(Z'Y))Q;llle » 1in so far as ¥ depends on
this and P . Writing p = vec P , and defining w as a vector whose
elements are the upper triangle of the symmetric matrix W , we can think
of h'(X - @) as a function of p and w .

Considering the integral defining the kth absolute moment of
h'(& - @) , the singular points of the integrand are points where -
det (K'(Y@R)K) = 0 . We write W (p,w) = det(K'(Y® R)K) , and refer to

the set of points in (p,w) space where #(p,w) = 0 as the zero set.

The next theorem depends upon the idea that if the integral defining the



moment diverges in the neighborhood of some point of the zero set, then
the moment will not exist.

In general the zero-set is made up of one or more differential mani-
folds [2]. For each such manifold we can define one or more patches on which
we can parametrize the points of the manifold in the form p = p*(9) s
w = w*(Q) , where *(p*(@), w*(M)) = 0 for all points A lying in some
open set in A space. In our particular case it turns out that the dif-
ferential manifolds are cylinders in the sense that effectively only the
p vector is constrained by *(p,w) =0, so that the differential manifold
1s parameterized in the form p = p*(ﬂ) y W arbitrary. For the next
theorem it is only necessary to consider such a parameterization in some
neighborhood of a point (po, wO) = (p*(ao), wo) in (p,w) space, where

(po, wo) belongs to the zero set.

Theorem 1. If for some point (po, wo) in the zero set there exisgtg a
clogsed neighborhood of radius & , n(po, Y %) such that:

(A} Y¥(p,w) 1is continuous on the neighborhood and ?(po, W is

0’
positive definite,

(B) XK'(Y®R)X is of rank N-1 at (po, wo) , and & 1is suffi-
ciently small that this is the minimal rank attained at any
point of the neighborhocod. 1If ﬂo is the unique vector such
that K'W@R)Kﬂo =0 at (po, wo) then h"ﬂ_o #0,

(C) There exists a differential manifold contained in the zero-set,
which can be parameterized in the form p = p*(el) sy W= 82 s
such that %(p*(el), ﬁz) = 0 for all points (91, Gz) lying

in some open set in 8 space including the point (90, wo)



and for all (8,, 8,) such that (p*(el), A)) lies in
n(po, Wo? £} , where Py = p*(ao) . For points in the neigh-
borhood p*(Gl) has continuous second derivatives and the
first derivative matrix is of rank q , where q 1is the
dimension of 81 s

(D) The probability density of the stochastic variables exists and
is continuousg at (po, wo} s

(E) The vector z, defined below is non-zero,

then E(Ih'(& - a)|k} is unbounded if k >mn-q .

Proof. A sufficient condition that det(K'(¥&R)K) = 0 is that for some

%
non-zero vector 8

-1/2

2) (I® (2'2) (Z'%))8* =0 .

Since (2) does not involve w , but only p, 1if we can parameterize
part of the zero set from (2) in the form p = p*(ﬂl) s, then such points
are in the zero set for all w . The points of the zero set which do not
belong to such differential cylinders will be those where det ¥ =0 .
From assumption (A) we can choose A& go small that such points do not occur
in the neighborhood, and so all points of the zero set can be assumed to
satisfy (2) for some g% , Normalizing #* so0 that its largest element
is one, we will later consider the possibility of solving (2) for P as
a function of the remaining elements of 8% , which will then make up the
the vector 0, referred to in assumption (C).

1
From assumption (B) N-1 of the latent roots of K'(Y® R)X are



non-zero throughout n(po, Vg 8) and from continuity and compactness we
can bound them below by a pesitive constant. Write K'(Y®R)X = LDL'
where D is a diagonal matrix of non-negative latent roots and L 1is the
corresponding matrix of latent vectors. Now write d2 for the smallest
latent root and n* for the corresponding latent vector, and write D*

for D' with its largest element d 2 replaced by zero. Also define
z = T-llz(‘i’1/2® @'2) Y% @ %)) , so that
Th' (G- Q) = h‘m'%*(x%?@ (x'Z)(z'z)’ll)vec(u'z)
3) = h"LD*L'K' (Y ® (X'2)(2'2) yvec (u'2)
+ @2 (V2 ® @2y M vec (u'z)y /a2
We have defined =z so that

(%) z'z = ™' ¥ @R)TF' - d?

Now writing the local parameterization for p as p = p*(Bl) s
we define 8*(9) as the value of Bl minimizing |p - p*(ﬂl)H2 . It
is not difficult to show that for |[p - pyl| < 8 and A sufficiently

small 9*(p) is uniquely determined as a function of p with continuous

first derivatives using assumption (C). Define p+(p) P*(* (p)) s then
§+(P) is well defined with continuous first derivatives in the neighbor-

hood. The first order conditions for a minimum are

: *
5) @ -p ) L0
1

where the derivatives are taken at &*(p) . From (C) ap*/ael is of rank



q , and so we can define the idempotent matrix

oo 2w \T
Q8 =1 <ael><3q1 391> 'a'% .

By suitable choice of limear restrictions on the elements of H(ﬂl) we

can uniquely define it from the factorization

(6) H(BH(®))' = Q(R)) and H(3)'H() = I .

Now define z*(p) = H(Q*(p))'(p - p+(p)) ; and note that we have
that Q(B*(p))(p - p+(p)) =p - p+(p) from the definition of Q(Hl) and‘
equation (5). Thus p - p+(p) = H(H*(p))z*(p) s using (6).

Consider now the change of variables from p to (ql, z*) defined

by the equation
(7) p =0 (9 + H(A))2* .

It is clear that 9*(p) = 91 satisfies the equation (7), and from the
uniqueness of the definition of Q*(p) given that A ig gufficiently
small, it follows that (7) defines a one to one mapping with continuous

first derivatives. Then

;E;=H.

z

The Jacobian of the transformation tends to



7‘\p*/391
det
H

as z¥ =0 , and Bp*/“ql and H are mutually orthogonal and each of

full rank at p = Po * So for sufficiently small A the Jacobian is bounded
below in the neighborhood. Consider now the integral of the kth moment

on a set ® defined by ]|9I - 90|| Se s llw - w0|[ <€

sz < z2'*(p)z*(p) < e§ - € 5 €, and e, are chosen so that the set lies
within the neighborhood n(po, ¥y Ay . Let fm be the minitmum of the

possibility density and Jm be the minimum of the Jacobian on ®w . Then

the integral of the moment satisfies
1>3f " [h' G- a)|*dn dz*av .
- mm 1

Now
®) z(p,w) = z(®" () + HODZ", W) = 2(p¥(8)), W) + Cz/MIH(B))2* .

Az/Ap 1is computed at a point in p space between p*(Ql) and p*(n1)+-H(91)z* .
Note that from (&) z(p*(ﬁl), w) = 0 since d2 ig then the smallest latent

root of a singular matrix and is so equal to zero. So z(p,w) = (Az/ap)H(Ql)z* .

1/2

Also vec(U'Z) = vec(A(X'Z)) = T vec (BPM + CM) where M = Z'Z/T .

If YO is the value of ¥ at (po, wo) s Zp is the value of Az/3p

1/2

at the game point and d0 = vec(BP0 + CM"") , where vec P, = Py » Wwe

0

can define
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v(p,w) = clzh'(é-a)/(z*':r.*)l/2 - (h'ﬂo)z*'H'(HO)z;’(?éH@I)do/(z*'z*)Uz
- g% * V% /2., dytyp! ' -1
= d7/(z* %) T[h' (LD*L)K' (Y ® (X'2)(2'2Z)  /T)vec(u'2)]

+ 2% @ 2 ham o) (9)) Oz/p) ' (M2 @ 1) (vee (85 + /2
' ] L} 2
- ("M )H (eo)zp(v})/ ® D) .

Now d2 =z'z = z*'(H'(91)(Hzlap)'(azlﬁp)ﬁ(el))z* < AM(z*'z*) where AM

is an upper bound on the largest latent root of H'(8)(3z/Ap)'(Az/Ap)H(A)

1/2

in the neighborhood. Since the vector z*/(z*'z*) is bounded it follows

from continuity that Iv(p,w)[ is bounded above by a quantity v, which

0
tends to zero with A ., Define

z. = (h'N HH'(® )z'(\vl/2®1)d then

0 0 0’4o 0°

- k0
dzlh'(a-a)|> 2%z,

x1,%y1/2
(z”"z""‘)ll2 - (z""z”‘)ll2 =) ’

-v if [(z*'z0)| >v

0, 0(

>0 s otherwise.

By taking A sgufficiently small we ensure that vg < (zézo) . Thus

1 1
sn(n+l) - =k
2 k 1/2 k 2
I> Jmfmkle‘l‘gz /A.le(z*'zol(z*'z*) 7 V) (z*'z*) © dz*

where the range of integration is restricted to points where

(z”"z“')]'/2 s and k. 1ig the constant of integration obtained

*
|z zol Z'VO 1

because we have integrated out both Gl and w over appropriate hyper-

-+
spheres. Now first rotate the =z* axes by introducing z = L¥z* , where
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L*¥ 1is an orthogonal matrix whose first row is 26/(2620 1/2 s and then

+ .
transform the 2z  variables by the usual polar coordinates transformation

' 1/2 i-1
of the form R* = (z+ z+) R z: = R* 1 sin 7, cos Y. s
P 3
+ *nm-q-l ’
i=1, ..., nm-gq-1, A R jzl sin 7j « Then
1 € 7 1
sn(mtl) 3 0 =
a2 k *nm=-q-k-1 _x 1, \2 _ k nm-q-~2
I> Jmfml—;lela:2 k2/7~.M [' R dr*2 T [(zozo) cos 7, vo] sin 7y d-yl

L 0

where k2 is the constant of integration obtained by integrating with respect
= -]~ | ] 1/2 -
to 7 » i =2, «os, nm=-q~1l , and 7o is defined by (zozo) Cos ¥ = Vg -

Clearly this tends to ® as ¢, *0 1f om-q-k <0, or if k > nm-q .

End of Proof. Note that the assumption that Y(p,w) 1is locally positive

definite is required to ensure that the local parameterization is as stated.
It may also play an important part in our subsequent discussions of assump-
tion (E). (E) also requires that (h'ﬂo) is non zero, and this is an
important requirement for the choice of (po, wo) . Indeed the use of the
theorem requires now that we discuss in detail whether it is possible to
find a point (po, wo) where all the assumptions (A) to (E) are satisfied.

The conditions (A) to (D) are reasonabfy general, but (E) is rather complex.

1/2
0

elements of the vector H'(QO)Z;(Yé/Z() I)d0 can be regarded as functions

In addition teo (h'ﬂo) # 0 , we require H'(BO)Z;(Y ® I)d0 # 0 . The

of 90 ,

a differential manifold, It is only if this manifold containg all the points

and the equation of the elements of this vector to zero define

of the zero-set at which h'ﬂo # 0 that we will find it impossible to
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satisfy condition (E}. However further discussion requires detailed con-

sideration of the parameterization of the zero-set.

3. The 3SLS Parameterization of the Zero-Set

Since z(p*(el), w) = 0 for all B, » differentiating at 8, we

0
have zp(ap*/ael) =0, 8o that zp has rank less than or equal to nm-q .

Now write
) = 1202 @ 22y V2@ ny)x
PRV, PR 3
(8)
@@ a0+ 2@ e 0 v’k
2@k + 2@y, ,

where the last equation defines K, and K, . Note that E'E = K'(Y@R)X,
and taking A to be the smallest root of E'E we differentiate

(E'E - AXI)™ = 0 . The result is
(EE)-— ™+ (E'E - u)mwa
3P 3p :

Note that since L was defined as an orthogonal matrix T 'W =1, g0

that T'(3W/dp) = 0 . Thus

B_)\ = :n*l B!E'EZ T\*
Ap ¥p !

and

% _ 1
%—=-(E'E-)\I) é—%;uﬂ*,
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provided A 1is a single root, and (E'E ~ AI) is the usual generalized

inverse. If A =0 go that ET° =0, then 3/ =0 and

aj: = '(E'E)-E' m

ap dp 7
where ﬂo is treated as a constant when differentiating. This formulation
has the advantage that B(Eﬂo)lap can be thought of as a square matrix.

Then
(9) d2/3p = B(ET*)/3p = (I - E(E'E)E")A(EN,)/% .

The first factor is an idempotent matrix of rank mm-N+1 , orthogonal

to the matrix E . Now considering the equations

(10) E@M, =0,

for arbitrary ﬂo » clearly a sufficient condition that p belongs to
the zero set 1s that the equations are satisfied for some ﬂo ; aund there
are ag many equations as there are elements of the p wvector. Thus it

may be possible to solve the equations for p wuniquely. Since the equations
are linear in p , there may be no, one, or an infinity of solutions.

When there is a unique solution there will be a neighborhood of this “0

in which there is a parameterization of the zero-set with p a function

of ﬂo + Since thig function is zero order homogeneous, it is possible to
make one element of ﬂo equal to one, and to regard the remaining elements

of ﬂo as forming an N-1 wvector of parameters 91 « All points at which

guch a parameterization is valid form an (N-1) dimensional manifold which
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will be called the full rank manifold. Indeed using the form of equation
(8) we can obvicusly transform these equations to the form

(11) ?1/2r‘1§ + vl/zrz =0

where vec Tl = Klﬂo and vec Tz = K2ﬂ0 . A necegsary and sufficient con-
dition that P ig uniquely determined by (8) is that Y 1is non-singular
and Fl is non-gingular. Only vectors ﬂO which give a non-singular
Fl uniquely determine a point of the full rank manifold.

For such points differentiating E(p)M* = 0 we find that

AEN,)
(( O )E ey =0,

Ap BB

where E*(p) congists of the (N-1) columns of E(p) which correspond
to the elements of © . In accordance with condition (B) of the theorem
we asggume (po, wo) to be chosen so that E*(p) 1is of rank N-1 ,
Then defining H' so that HH*' =1 - E@®'E)E', and H*'H* =1,

and defining ¥* = H*'(B(Eﬂo)/ap)ﬂ', we have

3EN) ., 3ET)

gy @t = = yks*
z, = (I - EE'B)E') —% 1 5 ety
s, 2ET) 3ENY\
and R A A
= ot 2r rvl 2 et

60 1190

A(EN.) * .
since el Bpo (:%%—:) =H*E¥ =0,
1
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Thus & is non-singular 1if Fl is non-gingular. Consider now the con-
dition that H'(B(Eﬂo)/ap)'H*H*'[Yélz(:)I}do # 0 , which is required for

(E) of Theorem 1. This latter vector equals @*'H*'(Yélzt:)I)do » so that

from the non-gingularity of &* , the condition is equivalent to

1/2 1/2
H*'(?Ol ® I)vec(BP0-+ CM / ) #0 ., Now since H* ig the annihilator of

E* this is equivalent to saying that there exists no vector ﬂ+ such that

(?(1)/2® L)vec(BP, + cml/z) + E*" =0,

Now by adding an extra element to ﬂ+ » Wwhich i3 zero, in the positiom,
which was previously standardized as one, we can write E*ﬂ+ = E(po)ﬁ .

(M has all its elements the game as ﬂ+ except for the extra zero.)

Then writing E(po) = (‘Pélz ® P('))K1 + (?(1)/2® I)l(2 we have. that

~

there should be no M such that

l/2) + (I® ?6)1{15 + 1(2?1' =0 .

(12) vec (BP, + CM
Now it is not impossible given that (12) are fairly complex conditions that
there are values of P0 such that P0 is a point of the zero=-set and so
satisfies (10), and such that a vector ﬁ can be found which satisfies
(12), but it seems unlikely that this would be true for all points of the
full-rank manifold. This is, however, a weak argument, and we can bolster

it a little by considering points in the neighborhood of a point which

Po
satigfies both (10) and (12). We wisgh to establish that a further get of
equations must hold at this point if there is not to be at least one point

in the neighborhood at which (10) is satisfied but not (12),
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The argument can be formulated as follows. Write equations (12)
as a vector of equations of the form g(p, ﬁ) =0, and equation (10) as
the vector of equations g*(p, 91) = 0, where Bl are the non-standardized

elements of T* , Then we assume that P=Pp 91 = 90 sy M= ﬁb » Bsatisfy

both sets of equations. Consider the differential equations of the form
(3g/dp)dp + (3g/3M)dM = 0

(3g*/3p)dp + (ag*/ael)del =0,

Assuming that Py is a point of the full rank manifold, we have that
3*/3p is non-singular so that if for any dBl s> we have the first equa-

tion satisfied we can eliminate dp to obtain
* P
-[3g/3p (3*/2p) ™ (3¢*/38))1d8, + (/3M)df = 0 .

Writing G* = -(ag/ap)(ag*/ap)'l(ag*/ael) ; it follows by considering a
change in Bl only one of whose elements is non-zero, that we must have
that every column of G* 1is a linear combination of the columns of ag/aﬁ ,
or in other words that the matrix (G*: Bglﬁﬁ) is of rank less than or

equal to N-1 , This is equivalent to requiring that the matrix

( 0 : 3g/3p :ag/a'ﬁ'>
38*/391 : 3¥/3}p : O

is of rank < N~1l+nm . However specifically in this case we have that

%/30 = 2*/20, = E* , and %*/% =T, @I, and 2g/3p = (8 + F1)®z ,
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L

fad . + -
where vec(Tl) = Klﬂ » 8o that writing G = -Rg/3p(3*/3p) L.

ot _1 . +
= -(B + Tl)Fl ® I, we require that (G E* :E*) 1is of rank N-1 . This

is equivalent to
(13) GTE* = g*A

for some (N-1) x (N-1) matrix A , and this requires that E* 1is some
{(N-1) x (N-1) 1linear combination of the N-1 Jlatent vectors of d+ .
Indeed in this case writing ¢ = -(B + Fi)ril we require that
G ® I)E* = E*A , and writing the latent vectors of (G as u

sy Wwe must

have

where E+ is a square (N-~1)x (N-1) matrix, and each Di has m rows
but may have any number of columns provided the total number of columns
is N-1 ., Thisg set of conditions is quite formidable, and makes it clear
that it will be usually possible to discover some point of the zero-set

which has a non-zero z, in the neighborhood of any point for which =z, =0 .

0
However not every point of the zero-set ig a point of the full rank
manifold, and it is necessary to consider other points of the zerc-set.

Such points are characterized by det Tl =0 . 1If for some vector T*
Fl is of rank n* < n , then as M tends to this value the corresponding
p satisfying E(p)N* = 0 tends to infinity unless Ty :T,) is of rank

n* for this M . fThus if p remains finite as T tends to its limit
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there must exist an (n-n*)xn full rank matrix B such that arl =0,
BTZ = 0 so that the n equations (10) are equivalent to only n* equa-
tions. It then follows that m(n-n*) elements of p can be chogen
arbitrarily, in finding a point of the zero~set for this value of 7% 5
and the zero-set contains an affine linear subspace. The condition that
(Tl: Fz) is of rank n* can be represented in the form that (n-n*)(m+n-n*)
submatrices of dimension (*+1)x (n*+1) should be singular: each con-
dition equates a polynomial of degree (m*+1) in N* to zero. Thus if
(n-n*)(m+n-n*) < N=1 there may be a set of points in T* space forming
a differential cone of dimension N - (n-n*)(m+n-n*) in T gpace.
Since the m(n-n*) elements of P0 can be chosen arbitrarily, the re-
sulting differential manifold in p space has in general dimension
N - (n-»n*)2 -1 . It follows that the full rank manifold usually provides
a lesser upper bound than this restricted rank manifold.

However if the K matrix has a special form this may not be true.

This certainly happens in the following special case.

Suppose that, for some constant matrices Gi s

(14) K,G, = 6, ® G4)G,

(15) KyGq (G2®Im)GS .

G1 is Nle, G2 is nx N, of rank NZ’ G3 is an3 of rank N3,

G4 is (NZNB)}ch , GS is (sz))ch . Then if T = qu* ;s where some

element of 8% is standardized to be one, then E(p)™ =0 ig equivalent to

(16) (6, ® B'G3)6, % + (G, ® I )65 = 0 .
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Since G2 is of rank N, this is equivalent to

(17) (1N2®§'c3)c49* + G =0,

Provided m(N, - N3) <N -1, it follows that this may determine

a differential manifold in p space of dimension (n - Nz)m + Nl -1,

If this is greater than N-1 , a suitable choice of Py on this manifold
would put an upper bound on the maximal exponent sz - Nl + 1 . Thisg
example is sufficient to show that the determination of the maximal exponent
depends in a rather complex way upon the exact formulation of the model.

A much more important gpecial form of model arises when the con-

straints are separable in the sense that each constraint refers only to the

coefficients of a single equation, so that the constraints can be written

(18) $.a, = ¢Oi >y 1=1, iy n,

Note that for identification we must have that #. . # 0, all i,

01

For each i we have a set of «r constraints containing only the

i

coefficients of the ith equation. We write the corregponding K matrix

in the form

k3
K] 0 ... 0O
0 * .. 0
K = 2
0 0 ... K
n

where K. 1is (n-!m)x(n+m-ri) .
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Partitioning ™ in the same way we have

(19) (B! :Mllz)KIﬂ: =0, i=1, ..., n,
" K1 .
i = = f
Writing Ki M_1/2K s Ei P Kil + K12 » and we have (19)
i
in the form
(20) (P Kil + Kiz)'ﬂ,i =0,

Note that if (20) is satisfied for some ﬂi which is non-zero, we
can put ﬂ; =0 for j# i . Thus in this case the zero-set, given by
w(po, wo) =0, congists of the union of all P which satisfy (20) for
some 1 .,
There is a very speclal case where for some i and i K11 = Kjlc* ’
K12 = szc* , for some matrix c* » Wwhere the set defined by (20) for the
ith equation is contained in the set for the jth equation. This makes
it difficult to apply Theorem 1 to the ith equation, as will become apparent.
However this is a very special case and it will not be discussed further.

We assume then that it is always possible to find a point of the

Po
zero~-set belonging to the ith equation, and so satisfying (20) for 1 ,
which does not belong to any other equation, so that ﬂo has a subvector
niO # 0, but “30 =0 for all j # i . Suppose that we consider in
Theorem 1 a vector h which has all its elements zero except those corres-
ponding to parameters of the jth equation. Then h'ﬂo =0 unless j ; i,
and it follows that Py can only be uged to discuss the moments of the

parameters of the ith equation.
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Kl
il
Now writing Kii = . s where Kil is the first row of Kyp
K
i
and reordering if necessary the columns of P so that KO = Kilnio #£0

(ﬂio is the subvector of ﬂo corresponding to equation i ), and writing

51
P = + | we have
P

]
B= (R, - P SUSTIGN I

P can thus be represented as depending on the m{(n-1) elements

*

of B , and of the N -1 elements of ﬂ: (vhere one element of T

is standardized to be one). We then have as 3p*/P0 at p = Pg

* K ypi!
, Ei/%o MKy K@
Ap*/3B =

La-1)m

where EI is the m::(Ni-l) ocbtained by taking the (Ni- 1) columns

of (ﬁ'Kil + KiZ) which correspond to non-gtandardized elements of ﬂ: .

Thus H(®) being orthogonal to 3p*/38 can be written
Sl
H(®) = & (K, TH®H,

where k*Z = 'k K n:) . and H

! * = 1 = .
1 %5181 gsatisfies HiEi 0 and H,H I

i i1 n-Ni-l

It ig convenient now to reorder the equations of the model so that we are

1/2

congidering the first equation, and then to change the definition of @0/ .
1/2

?0

Up to now we have been assuming that is symmetric, but it is now



convenient to assume Yélz 1s upper triangular so that now we have

1/2,1,1/2
(@0 ) QO = §0 .

Then since

[ )

EY = (5(1)/2®1)

L R R LR RN NI NN NN

0 0 L ] L ] L] En
Hi o ... 0
0 ' ... o
B = 2 2@
0 0 ... H
n

]
where HiE? =0, and H: E. = 0, r=2, ,.., n . Alsgo Eﬂo

Ey Mo
Ey = ¥ : ’

where &11 is the one-one element of @élz go that

(MoK ® I

3(En0)/3p = wll .
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and
0y
N o
= )
(B(Eﬂo)/ap)H ullx . ]
0
Finally,
I
3(ETN.) 0
0
Q* H*l ap H = (‘lftr*ll)'c* . ,
0
where " is the one-one element of @61/2
1
0
= K-‘:'( .
i\

since ﬂ"wll =1, Thus

1/2 1/2

' ¥y x 1)) = K*(H], 0, 0, ..., O)vec(BR, + CM

(20)
- kRt r 1/2
=K HI(POb1 + M

)

Cl) .

Now from its definition K* > |K0| , and we assumed that we chose
to order the endogenous variables so that |K0| is non-zerc, which ensures

that K* 1s also non-zero.
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Thus (20) is zero, if and only if

1/2 et
2 ! =
(21) Pob, + M ey Elﬂl

+
for some vector ﬂl .

Now define ﬂl to be a vector of dimension N1 such that it ig the

+
same as ﬂl except for an extra zero in place of the gtandardized element
%
of ﬂl .

Then (21) can be written in the form

(22) pib. + /2

- f ™t
oP1 ¢y (POK + [(12)"'?1 .

11

We must now consider whether for every P0 satisfying

(23) (BoKqp + Kyp)Myg = 0

L

there exists an M. such that

for some M 1

g ?

: 12, _ o, ~
Pobl + M c1 (POK11 + Klz)ﬂl .

We will show that if we start with a PO such that both (22) and (23) are

satisfied for suitable “10 and 7 it is always possible to find a

1 2

Pg cloge to this P0 s such that not both (22) and (23) are satisfied.

For suppose on the contrary that for some P0 (22) and (23) are

satisfied, and for all Al and corresponding AP it is possible

10/ 0’
to find Aﬁl satisfying (22). Then we must have that, if
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1 *® —
(24) 8R4 (x EXATY = 0

11Me) * 1

for all possible matrices APO , and vectors Aﬂi s, where Aﬂ; has ele-

ments corresponding only to the variable elements of ﬂf s then

Vo o m L Fawt
(25) APO(Kllﬂ1 bl) + Elﬁﬂl =0

for some Aﬁ+ .

(24) 1s equivalent to HiAPé(Kllﬂlo) =0, and (25) to
tapt . =
B8P (KM - by) =0

We require tco discuss under what circumstances we can choose APO so that

] L] 1 —
(nloxll x Hl)vec APO =0

and

Mipt L nt '
(MK{; = b)) x H] vec AP, £0 .

Given that the column of H, are linearly independent it is clear

1

that these last two sets of equations can be satisfied if

W _ 1ot
MKl - P # MoKy,

for some gcalar X . Suppose on the contrary that

1/2 ~ ot . S _
Then M cy Klz('f}l - lﬂlo) Po(b1 Kll('ﬂ1 Kﬂlo)) = 0 from (22) and

(23).
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These equations can then be combined in the form a, = K?(ﬁl - AN

1 10) '

But then

= O =
$1a) = S KF(T - M) =0

since GIKT =0, from the conditions that the K; yield a valid parameteri-

zation of the constraints.

But this contradicts the condition (18) that Glal = 901 #0, as
a condition for identification of the first equation.
Pt o [ o
So we conclude that anll b, cannot be proportional to “10K11 ’

so that there is a point in the neighborhood of P, at which either (22)

0
or (23) 1is not satisfied. Thus a suitable point in the zero set for the

applications of Theorem 1 can always be found.

4. A lower Bound for the Maximal Exponent

The next theorem establishes sufficient conditions for the existence
of moments of a given order. To simplify the discussion use is made of
inequalities on the function whose moment 1is required., From the definition

of the 3SLS estimator as the constrained minimum of tr(YARA') we have
(26) tr (YARA') < tr(YARA')
where we temporarily use A to mean the true value of A . Thus
tr (Y(A-A)R(A-A)') < -2 tr(YAR(A-A)') ,
so that using the Cauchy inequality

(27) tr(Y(A-A)R(A-A)') < & tr(YARA') .



27

Now we continue to assume that if ¥ is rescaled so that its largest
latent root is one, then the smallest root of the rescaled matrix, which
will be denoted by u , 1s bounded above zero. (In the last section we

only made this assumption for some neighborhood of Pp > ¥ .) Then

tr ((A-A)R(A-A)') < & tr(ARA")/u ,
or

(G-0) " (K' (T ® R)K)(O~x) < & tr(ARA')/u .
Now let Am be the smallest root of K'(I®R)X, so that
T(&-0) ' (Q-1) < 4T tr (ARA')/A u .
Note that T tr(ARA') = tr((AX'z)(2'2)  (Z'KA")) = er((U'2)(z'2) 1 (z'v)) = 0(1)
ag T = » , However as a further simplification we have that
A S det (K'(I1® R)K)/[tr(l{'(:[®R)1<)]'“'l ’

since K'(I x R)XK is an nxn non-negative definite matrix. Thus we can

write
(28) T(G-q)' (G-a) < B(p)/**(p) ,

where #%(p) = det (R' (L& R)K) and @(p) = 4T tr(ARA")[tr (K'(I® R)K)]nﬁllu. .
Note that both @(p) and #*(p) are polynomials in p .

Suppose we now wish to consider the (%k)th moment of T(&-a)'(&-a) .
We can obviously consider the same moment of @(p)/¥*(p) , knowing that
if the latter exlsts then so does the former. Considering then the latter

moment, we can generalize as follows:
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Suppose:

*

A*. J/T(p - E(p)) 1is a stochastic vector with finite absolute moments

up to exponent N, > Nk , which are uniformly bounded as T = ® , and
that the digtribution of p is absolutely continuous with density f(p) .

B*. @(p) is a polynomial of degree 2N and of O(l) as T — o,
in the sense that if it is expressed in the form @(p) = ﬂd(/T(p - E(p)))
all the coefficients of 0d are bounded ag T = & ,

Now define 1; = F|¢(p)|1/2k

f(p)dp , and note that the conditions

on the moments of £(p) ensure that I; is bounded as T — ® , and define
1/2k

£(p) = |#(p)] / f(p)/I¥ . Then f*(p) 1is a probability density with

moments up to exponent NO - Nk uniformly bounded as T = = . We consgider

1/2 kf*(p)dp + Clearly if such a moment is

moments of the form I|¢*(p)|-
finite and bounded as T — « then the (%k)th moment of T(&-a}'(&-a)
has the same properties. The next theorem conslders sufficient conditions
for the existence of moments of 1/4%(p) . Note as an important special

case that if f(p) has uniformly bounded moments of ./T(p - E(p)) of all

orders then so has f£*(p) .

Lemma. If 1 - F(g*) = P(lg] > g%) < c/g*r , all g*¥> 80 and some ¢ >0
independently of T then E(fg|s) existg and 1is bounded for all T ,

if s<r.
The proof is by integration by parts.

Definition. A non-negative definite function #*(p) of a qxl vector p
will be said to be inverse moment regular on a closed connected set with

non-empty interior (¥ , 1if it can be written in the form
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k

* 0 ri
2 ; = 7 F
(29) @) = 7A@, e)] R,
i=1
ki ,
where either R, =1, or R, = ¥ F/  (p), provided that r .k, > 1 in
i i ju ij ii
+ ko
the latter case, and that k = 7 ki < q , where we define ki =0 1if
j=0
Ri =1, For all p ¢ 7 we require hi(p) >b >0, for some b, and
that the function Eij y i=1, ..., ki s 1=1, ..., k0 s have continuous

first derivatives such that AF/3p is strictly of rank Kt everywhere
in OF . x
0

r
Note that (29) is equivalent to #*(p)/b > |gio| iRi .
i=1

Theorem 2. If (A+) the set d+ defined by ¥*(p) < é+ >0 1is non-empty
and such that #*(p) 1is inverse moment regular throughout at s (B+) P

is a stochastic vector such that for any set of elements 3 forming a vector
of order q* < k+ , 1f p* is the complement vector‘of q-q* element,

then the conditional density f(;/p*) is bounded for all p in Q+ :

1/2k

then E(|¥(p)|" y<e if k<2 T(/r)) .

1

Proof. We make use of the lemma and so consider the probability

0 < é+ . We Initially partition the set s* de-
*

fined by #*(p) < #0 into Zk subsets, where k* 1is the number of terms

P(Y* (p) < #y) for 0 < ¥

in (29) for which R1 £#£1 . Suppose these terms number i =1, ..., K.
For each such i distinguish between the points of 8* for which Ri <1,
and those for which R, >1, forevery 1=1, ..., k* . Thus in each

subset of §* , there is a certain set of integers 1 g_k* , such that
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Ri <1 for all p in the subset. 1In each subset we divide up the »p

vector into (;, p*) such that F has a number of elements equal to ko

pPlus the sum of the ki for the set of i such that Ri <1 . In each

subset we transform the variables of integration from P to the set of

variables made up of p* , "0 L=1, «es, k5, and i=1, ..., k, ,

4
ij '’ i

for 1 such that Ri <1 . This set of £ will be denoted by F* 1later,

We now congider the imposition of a lower bound on the Jacobian of the trang-
formation,
q + +
Suppose Ds s 8=1, ..., Ck+ » denotes the k xk  submatrices

of A®/Ap arranged in some order. Define (A?(p))z = max (smallest latent
8

root of D;Ds) . By the assumption that AF/3p ig strictly of rank Kt ,
we mean that A*(p) is non-zero everywhere on (¥ » and by continuity
if * 1is compact we can then find XO >0, such that A\*(p) > KO .

In fact if O 4is unbounded, then we reinterpret "strict" above to mean

k*(p) Z-AU >0 for some AD . For each p dencte the g 1in the defini-

tion of A*(p) by sa(p) . We now partition each subset defined above into

a finite set of not more than C§+ subgsets such that each of these sub-

subsets has the smallest root of Ds* > hn for some particular s* , Denote

Dox = D* and partition D: = D¥ , and partition D* 1into

+
D s, Wwhere D+ are the rows of D which corregpond the particular
D++

]
Fij listed above for this original subset. Then D+ I)+ is a principal

minor of D*'p* ; 80 that its smallest latent root is greater than A* > AO .
* ~ +' + n*
Thus if n™ 1is the number of elements in p det(D D ) > Ny Then

1
det(D+ D+) = ”‘J:Z ; where J: is the determinant of some n*xn* submatrix
8
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+
of D , and the summation is over all such submatrices. If JM = maleﬁl s

then

+
2 n*, Kk 2
Jy2 Ny /€ 2B,

where the last equation defines B . This shows that indeed we can parti-
tion our original subsets into not more than C:* subsets such that for

gome particular choice of (p, p*) the Jacobian [i| > B, where this is

the Jacobian of the transformation from p to (p*, **) , and the F*

is the set of Fij originally used to define the original subset of which

this 1s a gub-gubset. Denote the sub-subsets by "y and then we have
(30) PO (P) < ¥) =TT f—(P—LSL’d— dF (p*)
L mLzﬁ(p)EAD

where F(p*) 1s the c.d.f. for p* , and d** 1is the differential element

of the set of Fij denoted by F* earlier, i.e. that listed in the first

1/r
paragraph of the proof. But if #(p) < ¥, , |?io| 5_(WOIbRi) 1 , 80

that assuming £(p|p*) < f* , and 1/J < 1/B, we have by integrating

with respect to EiO , 1=1, ..., ko that P(¥*(p) < %

™1 /r k0 -1/r

ic"l‘s'[' mR
L mL i=]1

0’

idE+

5_(f*/B)($0/b) i dF(p*) , where C* 1is a constant

of integration, and d!+ ig the differential element of those Fij in

F* for which j > 0 , Note that for those 1 for which Ri >1 in mw

we can replace R1 by one in the above inequality. For the R

L s
{ such that
Ri <1l 1in wL , Wwe can integrate w.r.t. Fij uging a polar coordinate
transformation, so as to have R1 as the radius of the hypersphere. As

a result we obtain
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v1/r k,~-1-1/r

PO*(p) < 4g) < CH(E*/BY(8p/b)  te P ome Pt
t

*
i} iRi dRidF(p ) .

This last integral obviously converges provided ki - llri >0,

Then application of the lemma gives the required result,

End of Proof. This proof is not adequate to show that the moment is uni-
n*/2

formly bounded as T —* ® , sgince in general f(;lp*) is O(T )
Thus we need gtronger assumptions.

Uniform bounding will be discussed only in the case where the errors
are normally distributed since any formally more general assumptions do not
have much intuitive content. When p 1is normally distributed it is con-
venient to redefine p so that ./T(p-;5 ~ N(0,I) . In the 3SLS case we

1/25 ; and then define p = vec P . Our previous *(p)

define P = (1
v
can be easily expressed as a function of these new variables.

We then have the following modification of Theorem 2.

Corollary. If in place of (B+) we assume JT(p'-E) ~ N(0,I) , and
¥*(p) > 0, then the moments for k < 2 ?(1/ri) are uniformly bounded

i
ag T — = ,

Proof. Choose ¢ < ¥*(p) . Then define Bg = inf”p--;H2 : W (p) < e .

Then in this case writing =z = JT(p-;) , and partitioning 2z in the same

way that p = (E, P*) inte =z = (zl, zz) s We can write

Ny

*
- m
EGIP*)FGY) = (1/2m° exp(-3 (2'z))ap* = @m) 2 TP exp(- & (2'2))dz,

éb—‘
NJ:-—!

%

where u" 1s the number of elements in 3', d22 is the differential

element corresponding to Zy .
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Substituting this in (30), we note that

1 -2 1 1,2 . 1 +
z'z =3 Tlig-p||" + E(z'z) z 5 T60 4+ E(zézz) , 1f ¥ ¢p) < e .

Thus from (30) we have

2
P(tlr*(p)gﬂ!o) < (2m) ST e /B_r d** exp - l{-(zézz)dzz .
L mL:w(p)Eﬁo

£ _1.,2
T%O

Now for any n* < k+ s we can find b0 s such that T e 4 < b

NAP—‘

O b

if T>T for some T

0 Thus

0 .

1
— 1nm
P (p) < ¥) < @m) 2 by/B T I a7 exp - 7(z3z,)dz, ,
< 222042,
L msz(p)sﬁo

and the preceding proof can now be repeated but the resulting bound is

independent of T .

5. Two Examples of the Use of the Theorem

The first model considered Is a simple example where the maximal

finite moment is that indicated by Theorem 1. The model can be written

ylt + Qﬁy2t + Q.z = u

271t 1t

BD¥ie t Yot HZpp T Upp o

In this case n=m =N =2, so that if the zero set congists of
only the full rank manifold we have q = N-1 = 1 and the maximal exponent

should be less than or equal to 3. We can use Theorem 2 to show that
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maximal exponent is three. Assuming for simplicity that M = I , it is

not difficult to obtain that

and that
1+ pg + pz p3 + p2
K'(I®R)X = 2 2
Py ¥ Py Lre*+p
. P P
where P = 1 2 .
Py P,

2 2 2
Thus #*(p) = Pl(l +py t PA) + Pz(l + pg) + (1 - p2p3)2 . It ig clear

that the zero set consists of points satisfying Py =P, = o, PPy = 1,

which 1s a one dimensional full-rank manifold, Taking ElO =P s
_ 2 2 _ _ 2 - _
MELHFP3 TRy S Py N =lhpy, Fyy =Ryl M1,

r, = 2, i=1, 2, 3, we can apply Theorem 2. Taking é+ = % ’ o

can be divided up so that in Cq /§|p2| >1, and in f; /?lpz] <1.
In Ot we take p = (pl, Py; pa) and then J = {pzl > 1//2 ., 1In Q;

i~ _ * l 1
we take P = (p;, Py, P,) and then J = |p3| . Simce ¥ < -, |?30f <5
so that |p3| 2_%1|p2| >1//2 . Thug in any case J > 1//2 , and Theorem 2

shows that E(#*(p) /2K

) 1is finite 1if k < 3 ., Thus from the previously
discugsed inequality the 3SLS estimates have maximal exponent 3.
The next application 1s considerably more complex and is designed

to 1llustrate the special case of Section 3. The model can be written



A+t o)y + @+ o)y, + o2

(ali-Oh)ylt + (aéi-oz-l)yzt + a2z

We then have

So that
1
0
K =
1 1
0
and
1
0
0
K2 0
0
0

assuming that M = I , If we take

+ (Cz2+cc3)z2t +. (a3 - 3)z3t

+ (a2+a3)22t + (O‘A"' 2)z3t

u

= u

1t

2t

35
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0 1
“17 1 0
i 0
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we find that the conditions (14) and (15) are satisfied with

1
1 2 0>
G, = » G= EJ G=I’ G= 1 1 .
2 ) 3 ) 1 4 4 5

=2, N, =1,

Here m =3 , Nl

the maximal exponent of 2 .

we have that

o)

Then det(E'E)

2

Now writing

Pyl Py
P, Pgt 1
pl+p4 p2+p5+l
0

0

operations on E' to obtain
+ 3 +1
LS & P3T3
* —
(31) ¥"(p) = 4 P, P5+'1 Pg
1 —
7 1 Ppte,t3

so that thig gives an upper bound on

P3 P Py Py

P P, Py +1 P
Pyt P+l 0 1 0

0 p1+p4+1 p2+p5 p3+p6+1

can be somewhat simplified by carrying out elementary row

+4M 44y (0,4 p )% + y o+ )
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where T = pypc = (B + )b+ 1), My = B by + 5) - B (py + B
n, = (py *+ %)(Ps + 1) - pp, . If any one of p; + % » Py Pyt % s

Py s Pg +1, Pg is non-zero, then it is possible to express this in

terms of two of ﬂl s ﬂz s ﬂ3 . The zero set consists of two manifolds

of different dimensions. The first of these, already mentioned, is the inter-
section of ﬁl = ﬂz = ﬂ3 = 0 . This is of dimension 4 as can be geen from

parameterization.

The second manifold of dimension 3 is the full rank manifold given by

Py ¥ Pg =0

Py +pg #1=0

1 1

Pyt 3 P, P3 + 3

p4 pS + 1 p6 =0,
1 1

"3 1 Pyt Pt 3

Using the first two equations, the last equation is easily shown to

be equivalent to

either Py + P, +1=20

or (p; + PP, =Py tpPyt1l.

Thus the full rank manifold consists of two separate manifolds one of which
is a linear subspace. In order to apply Theorem 2 it is necessary to con-
sider gets d+ which separately cover all three manifolds. A complete
digcussion would be very long, and in thig section only O+ covering the
first manifold will be discussed, and some arguments will be very much

summarized.
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The manifold ﬂl » ﬂz = ﬂ3 = 0 is a cone with vertex the point
(-1/2, 0, -1/2, 0, =1, 0) . 1In order to discuss the integral of the p.d.£f
over a set d+ covering this cone, it 1s necessary first to subtract a
neighborhood of the vertex, and discuss separately the integral over this
neighborhood. This can be done using a polar coordinate transformatien.
Omitting this section of the discussion congider now the integral over the
set Q+ excluding the neighborhood. It now follows that we can partition
d+ into subsets such that on each subset one out of (pl + 1/2, Pys Pq + 1/2,
P,s Ps + 1, p6) is non-zero throughout the subset. Congider for example
the subset such that Py is non=-zero throughout. Then take ElO = ﬂl R

= - = -2 F
520 ﬂ3 , and note that PZ“Z (p1 + 1/2).10 + (py + 1/2).20 .
However it is clear that if we define bl =p, + Ps » and

b +pg 1 , we have the inequality

2 = P3

() 2 405 + b2 (N + M)

We therefore consider taking kl = kz =1, !11 =b, , 321 =b, ,
-and the conditions of Theorem 2 are satisfied if AF/Ap 1is of rank &

throughout the subset. Now

1
0 P ~(pgt1l) 0 ~(py+3 Py
e 0 1 0 0 1 0
e L
p5+-1 --p4 0 p2 plﬁ-z 0
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and by elementary operations it is possible to see that this is of rank

4 1f

Py + pg + 1 # 0 and P, # 0 . We therefore split our subset into

two sub-sets. In the first we take |p2 +pg + 1| > e throughout the

set, and use the above set of Fij . In the second subset having chosen

eb<

-
20

1, we can assume that |b1| >1- ¢ , and so use 510 - “1 ,
n

2 2 2
3 kl = k2 = (0 , and make use of 4(b1 + bz) > 401 - eb) .

Thus we need merely check that A7/3p 1is of rank 2, which is

satisfied if P, #0 .

Similar arguments apply to the subsets defined such that P3 + %

140, Py # 0 . Now consider a subset defined so that Py, Pyt

1, Py are all close to zero throughout the subset, but either

% or p, is bounded away from zero. It will be found that we can
FlO = ﬂz s on = ﬂs R kl =0, kZ =0, and the AF/Ap matrix

be of rank 2 throughout the subset,

This example illustrates the difficulty of using the Theorem 2 to

discuss even a small model and makes it clear that a more general result

of the type of Theorem 2 is badly needed to classify models into more

general classes with respect to the existence of the moments of their 3SLS

egstimators.

6.

ungatigfactory in producing no general conclusions,

is more satisfactory for the practically interesting case where each con-

A Lower Bound for the Separable Constraint Case

The previous discussion for the general linear constraint case is

straint refers to the coefficients of only one equation. Using similar

0
1
2

However the situation

2

2
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inequalities to those of Section 5, we consider the coefficients of the

.th
i equation only by Introducing an nxl vector e which has all

j b

its elements zero except the jth element, which is one. Then starting
from the inequality (27) of Section 4, and assuming as before that ¥ and

-1
¥ have all their elements bounded, we note e.e' - AY will be non-

i’

positive definite if A > eiW le Thus

i

A T ontper U voer R TR L
(aj aj) R(aj aj) tr(ejej(A AR@A-4A)Y")

< (ejw'lej)tr(*if(ﬁ-X)R(R-K)')
4 tr(‘l’KRK')(e;i'-lej) .

I

Now writing a,6 = ajO + K*a ; we have

i 33

& - T)KRMRK*@Q. - 3.) < & tr(YARA')e'v!
(@ = @)K RRG (@ - @) £ 4 tx Yes¥ ey)

Defining h? as the smallest latent root of K?‘RK? we have
'y — ~ — — - -.1 *

T(x! - a')(Cx, - a,) < 4T tr(YARA')(e'Y A .
( D@ - Q) < AT ex( Y(e[¥ e )]

Although as in the Theorem 2 it is peossible to relax this assumption, for
simplicity and in order to make use of the known theory of the non-central

Wishart distribution we assume that all the u, are independently distri-
% e ol Nj-l
buted N (O, Oh) . Using as before that Aj > det:(l{jRKj)(tr(K,j RKj)

where N, = n+m-r and r is the number of constants on equation

3 i’ 3

j , we have

N -1

A — ~ - —— _1
- t - ' 3 ]
(32) T(o¢j o:j) (ocj ozj) < 4T tr(\YARA)(ej& ej)(tr j) /det 6j
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where &, 6 = K*'RK* . Define
] i)

- - N.-1
C(P) = 4T £x (YARR") (e]¥ Ve, ) (£r (3.))

so that

A‘e—-
’!.r—-
4_0-—4

~ = ~ - .2 2 2

E([T(ax, - a,)'(a, -~ )] < E((C. det” (%)) .

(fT( ! J) ( 4 j) ) < ((QJ(P)) /det™ ( J))

Since we have assumed that the largest and smallest latent roots of

Y are bounded, it is simplest in the rest of this section to treat Y as
constant, so that the dependence of the expression sbove on w can be

neglected, so that the last expectation can be written

L -1 L L
E‘nm Emr 2 2 1. =\t -1 =
(T/2m)"  (det Q) H(Cj(P)) (det ¢j) exp(- 5T (p-p) (A~ @ I)(p-p)dp .

Congider now the function
(33) ¢y (Plexp (-T/2k(p-P) ' (O," ® D (>-P))

- This is continuous for all finite p , and tends to zero at infinity, and
so has an upper bound in p space. Noting that T(ARA') = TB(P-P)(P-P)'B' s

where P = E(B) , which remains 0(l) as T — =, it is not difficult

to see that as T = & , the function (33) is dominated by
K* tr (YARAJexp (-1/2k(p-p)' (U @ D (0-P)) ,

for gsome large but finite k* , 8o that the bound on the function remains

finite as T = ® . Let the uniform bound be denoted by M,

sk Then
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A
BUT(@&; - &)@ - &) )
%k %nm -%m -%k 1 - -1 -
S M (T/2m° (et Q) © fder 8.) “exp(-2T(-p) (' x D (p-p))dp
1 1 1
_amm T2k ok
=2° E (det(aj) )Mjk ,

where E* denotes the expectation taking the variance matrix of (p-p)
to be that obtained when the variance matrix Qv is double 1ts original

value. The advantage of this inequality is that & 1s a non-central Wighart

i

matrix, so that known results on the moments of the determinant of such a

matrix can be used. We can write &, = D?D?' , where

i

0¥ = k. 'nyz'zy MY+ Ky

i 31

-1/2

= KJ!I(V'Z)(z'z) /1/T + (KJflP + K'z) .

3

Thus E(D?) = K51§-+ K;z s and its columns are independently and

normally distributed with variance matrix (Kglqujl)/T . It is impossible

to use the results of Herz [1] directly if this variance matrix is singular.

+

Suppose then that its rank is Nj S_Nj = m+n-—rj « We can find an orthogonal
matrix H? such that

i QK E = G

LR PR R o o/’

1
and oj‘ is an N?@N-; positive definite matrix. Define D*j' = (H;D;)'
] )
= (ﬁ;lz ﬁ;z) s and note that D;Z is non-gtochastic. Define an

*

+ Ng) matrix Hj s 80 that its columns are mutually orthogonal

mx (m~-N

3
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r -1
and go that H'v*' =71 - ooty ot D =
i1 j2( j2 32) 12 » and then define Dj D 1HJ .

. N ] - + 4
Then det(Dij ) = det(D D ) det(Dj2 j2)det(D D ) . det(Dszjz) is

a constant (non-stochastic and independent of T ), which is strictly

positive if the equation j 1is identified. Then E(D )y = Hjl(K' P+K'2)Hj s
-+
where Hj1 congists of the first N; rows of H . Define

i

+l

1
) E(D}E(D)—H +x)1j,

3 j(1(' P+ K'z)(I - Z(Dj?. .2) jz)(P Kjl

and note that the columns of D are independently identically distributed

i

normally with variance matrix Q?/T + We can then use the resultg of Herz
f1], that

Pt el -é*
E{(det D.,D!) )

1]
1
1 + n* -Ek —k 1 30*-1
5 - - 2 + s - T8 0O
N_;.z(m Nj+N k))/PN+( (m Nj+Nj))[det( J./T)] F. G ,2(m N, N) -5 T8O

This result was only discussed by Herz for the case where k is
negative, but it is easy to see that his proof extends to the case where
(34) k<m- Nj +1.
" From the definition of the hypergeometric function

1
- —k

" -3k (detB)) S 2(-NT) 1 3@k

E((det(njn;i)) ————1— [ etr(-8)(det §)° 3 det(I- ss_"/T) J ds
FN‘?-l(E“) 0
J

where S, %( 1/20*-1"§/2) , and the range of integration of § 1is all

non-negative definite matrices such that TSm - S 1is non-negative definite.
Note that if Sm is positive definite, we can find a sufficiently large

neighborhood of the origin, such that, as T = = , the contribution of the
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integral outside the neighborhood can be neglected, and that within the
neighborhood the third term in the integrand can be put equal to one, so

that

s

- _ -3k
limE(det (D.D') = (det 3.) s
T—e h| j

and the bound on the moment is uniform as T — o .,

7. The Case Where 2SLS is Used to Estimate Qu

This last section develops an upper bound for the case where Qu
is estimated by 2SLS. I conjecture that the correct maximal exponent for
this case is the same as for the case ¥ constant, but I have not been
able to prove this.

Considering only the separable constraint case, denote the 2SLS estimates
of the matrix A by I s suppose that we are interested in the 3SLS esti-
mates of the first equation, so that we write A' = (a;, Aé) , and define
A*' = (31, E;) where as before " means 3SLS estimates, and ~ means

2SLS estimates. Define

' d gt ~ '” ’“
O =AX'XA'/T = 1112 .

My oy

From the minimization definition of the 3SLS estimates we have

er @ 1ARAY) < er (T Ta*Ra*')

Then as in the last section we can deduce that
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A - - 1 » - - 1 % * ¥
(a.1 al) E‘.(al al) < amll tr(’ﬁ— A"RAT ) .

Now write

so that
1, *ty o P L= et
tr (T "A*RA*') 1 (@jRa;) + 2(% ,A,Ra ) + tr(¥,,ARA")

1 1 2
—y = \12 ~ o~ 2 -1y~
S [0 aiRay )" + (¥ A RA Y, )/ 4,171+ tr (R, 4,RA%)

where use is made of the Cauchy inequality,

JEIRE)) (4 AR 4, 1) 2 EIRATE)

_ -1
and that V¥, = $21¢12/$11 + 022 . Also we have

A,RA, Xé(x'x)ﬁg/r - K%(X'(I - 2(2'2) Z')X)X;/T
S RUPE,

-1 ' - A1pat = o s
so that, tr(ﬂzzA RA') < n-1, and .4 o¥sq < *12022¢21 = =Myt

= Thus

1 b= g

1
- - 7 2
@ Laxra*'y < [('!rll(aikal))2 + /1 - TR

and so
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L L 2
- - a - ) 2 = =~ .2 ~
@) - a)'RE;) - a)) SANU ) @Ra DT+ (o) (- m P 4 (@=1ym . ]

=

Also 0 < *11m11 <1, a0 that finally

.= e Atn—
1 1 1 al) 5.4((31Ral) + 2 /mll(alRal) + oy

Now

= y! ! - a - m ATt ~ -
= uju /T + 2(u1x)('e1'l a;)/T + (5’1 a,)' (X X)@E, - a)iT,
so that using the Cauchy inequality again we have

Sy ST + (@] - ADEOE, - 3

Writing w, = (Z'Z)-llz(Z'ul)/fT , and H = (K* 'Rer) "1 -1/2

1RO (x'zyz'y
we have that a -a = Ki(al - al) = K?lel .

Then

(’51 - El)' (x'x)(ir1 - 2'1)/1' = tr (0] (K’{‘x'xx"l')/'r]ulwlwi

< e (H] (K X XS/ T Y wlw )

since wiwl is the largest latent root of the matrix wlwi

1

= er (K RKY) TR X 'RKE/T) ()

*e=] R S &% '
< 7“1 tr (K X XKl/T)(wlwl) R
where AI is the smallest latent root of K?'RK? . Writing

2_ L 1 -
d/ = tr(K X XKllT(wlwl) and s, = Ju{ullT ; we have
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i
j—

- 1o
N+ n(s, + dlh’l' 2y
1 1 1

2 alng o 'pa z 2 2 2
= 4N D] @Ra)) + 205 @IRa)Y (524 d)) + ns AP a )]

N

@) -a)@E ~5)) < 4/xf(ajRa; +2(a]Ra, ) (s + d,

At this stage the argument can be continued as in the last gsection,
since the factor in the square brackets can be dominated in the integration
in a similar way. The significant difference is that hiz now occurs in

the denominator, so that the previous argument shows that the kth moment s

of (31 - ;i) are finite if

(35) Zk<m - N +1.

This is, of course, only a sufficient condition for the existence of
the moment, and is probably not necessary. However for low values of k ,
it provides a useful result, showing that the mean exists if the degree
of overidentification is two, and that the variance exists if the degree
of overidentification is four. Unfortunately the proof does not show that
the bounds are uniform a8 T - ® , go that the result cannot be used to

validate a Nagar expansion as in my article [3].

8. General Comments and Conclusions

The results of this article are incomplete in not giving definite
answers either in the general case, or in the separable case with 25LS
variance matrix, The bounds obtained are generally crude but are suffi-
cient in most cases to allow Nagar approximations to be developed [3], which

are the most useful method for analyzing the factors affecting the lower



order moments of these estimators. Unfortunately the last section does

not give the uniform bounds as T - ® required for this purpose.
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