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ACYCLIC CHOICE™

by

Donald J. Brown

1. Introduction

Traditionally, with few exceptions, economists have aggumed that
individual's preference orderings are complete and ;ransitive, Transi-
tivity has the untenable congequence that indifference is a transitive
relation, The notable exceptions are Georgescu~Roegen [16], and Armstrong
{3]. They argue that intransitivities can arise out of a threshold in
the perception of preference, In another vein May [21] has suggested that
if the alternatives are multidimensional then pre@erences may be intran-
sitive, An excellent survey of intransitive indifference is given in
Fighburn [12]. Following Fighburn, we shall call complete and tramsitive
orderings weak orders. In the most general case where we do not assume
any additional structure on the set of alternatives, such as convexity,
three other families of relations have been suggested as models of indi-
vidual's preferences. They are partial orders, semiorders, and suborders
or acyclic orders. Partial orders have been systematically explored by
Aumann [5] and his colleagues Peleg {24) and Schmeidler [29]. Semiorders

have been studied primarily by mathematical psychologists in particular

*Phe regearch described in this paper was supported under grants from the
National Science Foundation and from the Ford Foundation,



Luce [19] and Tversky {23]. Acyclic orders were introduced into the

economic literature by von Neumann and Morgenstern [36] and have received

some attention from Sen [32], Adams [2] and Fishburn [13]--acyclic orders

are called suborders by Fishburn. We should mention that Sonnenshein [34)] has
proved the existence of demand functions where the transitivity of preferences
has beenireplaced by the convexity of preferences.

The need to study orderings other than weak orders is also occasioned
by several theorems pertaining to the aggregation of individual's preference
orderings, the most important theorem being Arrow's Possibility Theorem.
Arrow has shown that even weak orders can not be aggregated into a weak
order, if the method of aggregation must satisfy certain intuitively ap-
pealing conditions. A fortiori more general individual's orderings, say
acyclic orderings, can not be aggregated subject to the remainder of Arrow's
conditions. Even if we were willing to accept the assumption of weak
orders for individuals, the Arrow theorem still suggests that we ought
to congider a broader class of orderings for social preferences. This has
been the approach of Sen and Mas-Colell and Sonnenschein. Sen [30] has
replaced Arrow's condition that the social ordering be a weak order with
the condition that it be a partial order. Mas=-Colell and Sonnenscheir {[20]
have only required the social ordering to be acyclic, Thelr work and its
relationship with Arrow's Posgibility Theorem is discussed in detail in
Fighburn [15].

The need for studying the lattice-theoretic or combinatorial pro-
perties of acyclic relations is evidenced by the observation that many

gocial decision functions can be expressed as 'polynomials' over the family



of acyclic relations,on the set of social altermatives. Where the operations
of combination are union and intersection of relations. For example majority
rule is such a function. We, of course, wish to find sufficient conditions
for given combinations of acyclic relations to be an acyclic relation.

This is a special ingtance of the more general desire to characterize
what properties of individual's preferences are preserved by various group
deciszion functions., If we are to make precige the notion that the social
ordering produced by majority rule or any other social choice function
ig typical or representative of the preferences in society, Then we shall
have to introduce a formal language, such as the first order predicate cal-
culus, where the properties of individual's preferences are expresgsed as
formalized sentences and determine the clags of sentences which are pre-

served by the aggregation procedure. This isdone in a paper by Bloom and Brown i71.

II. The lattice of Acyclic Relations

Let A be a nonempty set and PC A x A . P is said to be a
partial order if it is asymmetric and transitive. A relation P is anti-
gsymmetric if <a;b>e¢P and <b,a>eP them a=b ., Arelation P is rransitive

if <a,b> e P and <b,c> ¢ P implies <a,c> ¢ P . A partially ordered,

p.0., set is a pair <A,P> where P is a partial order on A . We will
often denote the partial order as >, and <a,b> e¢ P as aPb or a>b .,
The least gggg;,ggggg of two elements a and b in a p.o, set A is
denoted a Vv b and is defined asg the element in A such that for all
ceA if c¢>a and c>b thern ¢c>aVb, and where aVb >a,

aV b>b . The greategt lower bound of two elements a and b in a p.o.



get ig denoted a A b and is defined in an analogous fashion. A lattice
'Qi;is a p.o. set where every pair of elements has both a least upper bound
(join) and a grestest lower bound (meet). The classical example of a lattice
is the family of subsets of a nonempty set ordered under set inclusion.
In this case the least upper bound of two elements is their union and the
greatest lower bound is their intersection. A lattice is said to be complete
if the join and meet of every set of elements in the lattice exists.

An element a in a lattice is called meet irreducible if it cannot
be expressed as the meet of all the elements which contain it, A subset
B of a p.o. set A 1is sgaid to be directed if every finite subset of B
has an upper bound in B . Where a 1s an upper bound for C in the p.o.
get <A,>> if forall beC, a>b , The meet of any subset, B,
of A will be denoted AB and the join as VB . Let oﬁ = <A,>> be a
complete lattice. An element ¢ el ig called compact if whenever D C A
is a directed set such that VD> ¢, then a>c for some a eD . A

lattice &fl is compactly generated if it is complete and every element of

gi,is the join of a set of compact elements. Compactly generated lattices
have an abundance of meet irreducible elements as is shown by the next

theorem,

Theorem 1, Pierce [25]. Let oL be a compactly generated lattice. Then
every element of V4 igs the meet of the set of all meet irreducible ele-
ments that contain it. That 1s, if M 1is the set of all meet irreducible
elements of Cf, ; then for every a eaf, y 4 =A[m € Mfm > al .

If X 1s a nonempty set and P a binary relation over X , i.e,

PSS Xx X. Then P is gcyclic if there does not exist a finite subset



Xy Xpy esey X such that lexz, szx3, seay xn_'lP:sc,ﬂ » and anxl .
An equivalent definition is that every finite subset of X has a maximal
element with respect to P, If x eY, then x ig maximal if Y with
respect to P is there does not exist y ¢ Y such that yPx .

Let kﬂx be the family of acyeclic relations on X and 5}( = in u
{X x X} . Then HX ordered under set includion is a complete lattice.

Also the union of any directed family of relations belonging to .Hx belongs

-

to ij . Hence by the following theorem ;Hx is a compactly generated lattice,

Theorem 2, Pierce [25]. Let Z be any set. Suppose that &f,g_ Cp(Z) (where
'{)(Z) ig the power get of Z ) satisfies the conditions
(1) Qf) is a complete latticeunder the partial ordering of set inclusion

i) D cd , DO directed implies 1O e .

Then <§L; C> is a compactly generated lattice,
Theorem 3. Every acyclic relation has a maximal extension.

Proof. The union of a directed family of acyclic relations is acyclic.

Hence the theorem follows from Zorn's lemms,

Theorem 4. P is a maximal acyclic relation on X 1iff P is transitive,
asymmetric and complete, i.e. a total order., Where a relation ig complete

if for all distinct x, y ¢ X either xPy or yPx .

Proof. Suff. is obv. so suppogse <,B> ¢ P, then J<B, Pg>r <Pgs P> eee
<pm, ¢ ¢ P, which we ghall denote by <B = >, since P is maximal.
Again by the maximality of P, <B = 0> ¢ P implies that <B, (- e P .
If <o, B>, <B, 7> ¢ P, then since P ig total either <&, > ¢ P or

<y, &> e¢P . But <y, C& ¢ P contradicts the acyclicity of P .



This is a minor modification of the proof of the same proposition
for finite A given in Harary [ 18],

Clearly every maximal acyclic relation is meet irreducible, but there
exists meet irreducible elements in Qgg which are not maximal, This follows
from Theorem 2, since the meet of transitive relations is transitive and
there exists intransitive acyclic relations, If R and S are relations

on X, then RoS is defined as {<x,y> ¢ X x XI(HW e X)<x,w> ¢ R and

<M,¥> ¢ S} .

Theorem 5. P eJﬂx is irreducible and not maximal iff P = Q - {<q,p>} s

where Q 1is maximal and <Q,B> ¢ Po P .

Proof. Since P is acyclic it has a maximal extension P' , by hypothesis
<@ = p>¢ P, Hemce <a,B>e¢P', but PU {<a,p>t=q, i.e. Qc P
Therefore by the maximality of Q , Q = P', which implies that Q 1is

the only acyclic relation which properly contains P , Suppose P is
irreducible and not maximal, The P has a maximal extension P' . Suppose

P is intransitive, then <Q,p>, <B,y> e P and <0,y> ¢ P . But <o,y> ¢ P’ ,
hence let § = P' - [<I57>} . Note that PC S and S acyclic., If PC S,
then define F= {v|]v =P U {<n,0>}}, <n,6> ¢ P' - P . Consequently

P =N » Wwhich contradicts the complete meet irreducibility of P .

The intransitivity of P follows as a corollary to the next theorem.

A sublattice of ij of particular importance is the lattice of
trangitive acyclic relations or partial orders, which we shall denocte ‘F}x .
Letting élx = 1*% U {x x x} » 1t is easy to show that i;x is a compactly

generated lattice. But in ?+k a relation P is meet irreducible iff it



is maximal, Where P 1is maximal iff P is a total order. These obser=
vations are immediate consequences of the following theorem of Dusghnik

and Miller [11].

Theorem 6. Any intersection of total orders on a set X is a partial order

and any partial order is the intersection of the total orders containing it.

Corollary 6.1, If P eéﬁx and P 1is meet irreducible but not maximal,

then P 1is intransitive.

TIL. Choice Structures and Acyclic Preferences

If P 1is an acyclic relation over X , %Py is to be interpreted
as x 1is (strictly) preferred to y . Economists usually assume that
the element chosen by an individual is maximal with respect to hig preference
relation P . With each finite nonempty subset B of X we can associate
a finite nonempty subset A € B which is the set of maximal elements with
respect to the acyclic relation P . This is a special instance of a choice
structure. Cholce structures were first defined by Arrow {4].

Let X be a nonempty set, E; a family of nonempty subsets of X ;
d a function from J; into the family of nonempty subsets of X , where
for every B ¢ E} , d(B) S B . The pair <J;,d> ig called a choice struce

ture. In particular we will be interested in acyclic choice structures.

-<E},d> ig said te be acyelic if there exists an acyclic relation P on
X such that for all B eF , d(8) = {a ¢ B|(F#Db ¢ B)bPa} , i.e. the
set of maximal elements in B with respect to P . In the voting litera-

ture, X 1is usually finite and F is the family of nonempty subsets of



X , but in economics where X 1is infinite and the subsets belonging to
5; are infinite, one hag to assume gome additional structure. If X 1is
a topological gpace and a P a relation over X, then P 1g said to

be upper semicontinuous if for all y ¢ X, {z e X|yPz} is open.

Theorem 7. If P 1ig an upper semicontinuousg acyclic relation over the
topological space X and B a compact subgset of X, Then P hasg a

maximal element in B .

Proof. Let P']'(b) = {a‘bPa} . If B has no maximal elements with respect

to F, then B C LJP-I(b) « By assumption Pnl(b) is open. Hence by

beB
the compactnegs of B , there exists a finite subset B, € B such that
sc U Pal(b) » Since P 1is acyclic, Bf containg a maximal element bO .
beB
£
But bo £ U Psl(b) , a contradiction.
chf

Therefore every upper semicontinuous acyclic relation on a topological
space X defines a choice structure where the domain :;' ig the family of
compact subgets of X and for all B e:;, d(B) = fa [ B|;Tb € B)bPaT o

It is important to note that there exist choice structures on finite
sets X , with domain G} the family of nonempty subsets of X , which
are not acyclic choice gtructures. The following example~~due to Plott
[26]--ig such a choice structure, Let X = {a,b,c} and for all proper
subsets B of X, let C(B) =B . Let C(X) = {al . That C 1is not

generated by an acyclic relation is a congequence of the next theorem. -



Theorem 8. If <g,d> is a choice structure over X , where 3— is the
family of all nonempty finite subsetsof X . Then <3,d> is an acyclic
choice structure 1ff <.§,d> satisfies the following conditions:

(1) If B, FeJ and ECF then EN d(F) < d(E)

(1i) 1If Bl’ Bz, couy Bn a finite family of gets belonging to g‘

then d(By) € d( JBi) R

b1} n
=1

i=1 i

Proof. Suppose <g',d> is acyclic. Then the necessgity of (i) and (ii)
is obvious. Suppose <3,d> gatisfiegs (1) and (ii). Define aRb if
ae d([a,b]) . 1If E eg' s let 'c'I‘(E) ={a e E[aRb, for all b e EV .
Suppose ¢ d(F) and P e F, then let E = {a,B} . By (ii)

{o,8Y N d(F) ca({o,BY)y , but e {o,BY N d(F) . Hence < € d(F) . Sup-

pose ae’&'(F) and let B, = {&,f) for each BeF, where FeS'a Consequently

B
ae N d(BB) and F = !} By + This implies by (11) that « e d(F) .
BeF BeF

Therefore E(F) C d(F) , and we have shown that d = d . We have
defined aRb as a e £({a,b}) . Let aPb 1if <a,b> e R and <b,a> &R .
Suppose P is cyclic, then there exists [al, By ecevs an} guch that

(a4
alPaz, a2Pa3, seey @ Pan , and anPa . But then d([al, 85 sooy an'})

n-1 1

= @ which contradicts d =d ., If E c[_:;f- , then d(E) = b e Elja € E)aPb} .
Hence <3‘, d> 1s an acyclic choice structure.

Another representation problem, of some higtorical interest, is the
existence of utilities for acyclic relations. ¢ 1is said to be a utility
for P 1f xPy implies &(x) > ¢(y) , where cp is a real valued function,
Every acyclic relation P can be uniquely extended to the smallest partial

order, denoted i3 , which contains it, P is just the transitive clogure
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of P ., Since any utility for P is a utility for P , conditions on

P which are sufficient to guarantee a utility for P suffice for

P . For example the proof that every countable acyclic

relation has a utility is the same as the proof for countable partial orders.

P is saild to be Q-geparable if there exists a countable subset (7i]T

in X such that for all <o,B> ¢ P, there exists some 7j where <a, yj> e P
and <7j, p> e P . It is easy to show that if P is O-separable, then

P is O-separable, hence T has a representation--gee Milgram [2Z}. For

more resultg of this type, see Fishburn [12].

IV. Appregation of Acyclic Preference Relations

Let A be a nonempty set, to avoid gpecial cases we shall assume
that A is denumerably infinite. We will consider three classes of re-
lations or orderings over A . Weak orders, partial orders, and acyclic
orders, They will be denoted as W ,‘&D s and 13 regpectively. Clearly
_(O?‘P % (.. let I be a nonempty set having at least three elements,
Wt s %&) =‘fDI s and étL = CLI .

{8|8 : B=C} ., The intended

We define three kinds of societies: X&ﬁ

where for nonempty sets C and B , CB

interpretationg of A and I are the set of social altermatives and the
set of individuals in society, respectively,

Throughout we will ignore the strategic aspects of voting and assume
that individuals vote their true preferences. The problem of social choice
or aggregation is to show the existence of functions which we shall call
social choice functions, say from y%u. into TQT: which have certain de-

sirable ethical and institutional properties, In his classic, Social Choice

and Individual Valueg, Arrow proposed the following necesgary conditioms

for a gocial cholce function ¢ .
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(i) Individual ratiomality: Domain of ¢ 1is %

(i1) Collective rationality: Range of ¢ 1is w .

(1ii) Pareto Optimality: If for all i eI, xPiy then xPsy .

Where Pi is the ith

individual's (strict) preference rela-
tion and Ps 1s society's (strict) preference relation.

(iv) Independence of Irrelevant Alternatives: The social relation

for any pair of alternatives x and y depends only on the
individuals' preferences between x and y .

Arrow's Pogsibility Theorem is that if ¢ is a social choice func-

tion satisfying these four conditions, then there exists an individual i

0
guch that xPi vy implies xPsy . That is, the social choice function is

dictatorial. °

Sen [30] allowed the range of ¢ to be 1 instead of A5 . He then
demonstrated that the relation of Pareto dominance or the unanimity voting
rule was 2 nondictatorial social choice function satisfying the remainder
of Arrow's conditions. In a later paper {31], Sen announced a result of
A. Gibbard, which stated that in any society whose social choice function
gatisfied all of Sen's conditions there exists an oligarchy. Where an
oligarchy is a set of individuals who if they unanimously (strictly) prefer
¢ to B then society (strictly) prefers « to B, and if one individual
in the oligarchy (strictly) prefers <« to P then society does not (strictly)
prefer B to & . Gibbard's Theorem is proven in Fishburn [15].

Implicit in the results quoted thus far is the agsumption that I
ig finite. A fact first explicitly pointed out by Fishburn [14] who con-
structed a non-dictatorial social choice function satisfying all of Arrow’s

conditions for any society having an infinite number of individuals. In
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Arrow's proof of the Possibility Theorem he defined the notion of a decigive
get of individuals. A set of individuals, J , 1is decisive for a given
gsoclal choice function if for all i e J, xPiy implies xPsy s regardless
of the preferences of the rest of society. In the case of a gociety of
three people where the social choice function is majority rule, then any
group having more than one individual is decisive. The interesting aspect
of Fishburn's example was not that he had managed to avoid dictatorghip
by pogiting an infinite gociety, but that the family of decisive sets for
his social choice function had a very well defined internal structure.
They were, in fact, a free ultrafilter over the set of individuals,

Let I be a nonempty set and {; a family of subgets of I . J; is
a filter if (1) T e¢J , (1) Aed , ACB implies B e ,

(41i1) A, B eJ implies ANB e , (iv) P £F . An ultrafilcer

E} » 1is a filter such that each subset of I or its complement belong to

:; . A free ultrafilter is an ultrafilter where the intersection of all the

gets belonging to the ultrafilter is the empty set. That free ultrafilters
exigt only on infinite sets is well known. Fighburn zimply took a free
ultrafilter 3 over the infinite set of individuals and defined the social
relation: xPy iff {ie IIxPiy} et . mma sense, Fishburn picked
hig decisive setg first and used them to define his social choice function.
Although free ultrafilters do not exist on finite gets, ultrafilters do
exigt, which are called fixed, A filter on a finite set is an ultrafilter
iff the intergection of all the gets in the filter consists of a single
element.

These observations suggest that a coherent treatment of the work
of Arrow, Sen, and Fishburn might be given within the theory of filters.

Hansson [ 17] provides an extremely elegant treatment in his recent paper.
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Hansson's major theorems are: (1) the decisive sets of any social
choice function satisfying all of Arrow's conditions form an ultrafilter;
(2) the decisive gets of any social choice function satisfying all of Sen's
conditions form a filter.

Sen [32] recognized that requiring the social preference relation
be a partial order was a sufficient but not a necessary condition for the
existence of gocial equilibria, i.e, maximal elements of the social pre-
ference relation, in any finite set of social alternatives. As noted earlier,
the necessary and sufficient condition is that Ps be acyclic. In order
to extend Hansson's analysis to acyclic social choice, we shall have to
congider families of decisive sets which are not, in general, filters.

Let I be a nonempty set and J} a family of subsets of I . 5; is
a prefilter 1f (1) I e , (1) AeDd , ACB implies B eF ,
(iii) Every finite family of gets in E} has nonempty intersection. For
a finite set I, (iii)is equivalent to assuming that there is some individual
who belongs to every set in E}

In a society of three people {a,b,c} , the collection of sets
{a,b] R {a,c} R [a,b,c} is a prefilter which is not a filter. But, of
course, every filter is a prefilter. Given a prefilter E} , following
Fishburn, we define the social relation: xPy iff {i e I]xPin e 3
In the example above, society (strictly) prefers x to y if individual
a and at least one other individual (strictly) prefer x to y . In
the first part of the paper, we suggested that individual preference relations
need only be acyclic. Hence we will weaken both Arrows individual and col-
lective rationality conditions to acyclity. These together with the remainder

of Arrow's conditiong will be called the "Cl" conditions.
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Theorem 9, If é} is a prefilter over I , then the social choice function

defined as xPsy iff {i e lePiy} eé} satigfies the "(1" conditions.

Proof. We need only check that PS is acyclic, the other conditions are
obvious., Suppose Ps is cyclic, i.e, there exists {al, Ays seey an1

such that aIPsaZ, azPsa3, ceus an-lPsan , and anPsa1 . Then there exists
snts El’ Zns eeey En in C; such that for all 1i ¢ Ej s ajPiaj+1 for

i=1, 2, ..., n-1 and for all i ¢ En ’ anPial + Since {; is a prefilter

there exists io ] r\Ei , hence Pi is cyclic which contradicts the
i=1 0

hypothesis that every individual's preference relation is acyclic.

Theorem 10. If ¢ 1is a social choice function satisfying the "L " con-

ditions then the family of decisive sets form a prefilter,

Proof, We need only check the intersection property. Let é} be the family
of decisive sets for ¢ . Suppose there exists [Ei}?=1 , Wwhere each
n
Ei € E; » such that FWEj =@ . Define a society where for all i ¢ Ej B
i=1

a,P.a for j =1, 2, ..., n~1 and for all i e En ) anPia All the

ji%3+1 1

aj are assumed to be digtinet. Extend the preferences of the individuals
n

belonging to UEj to acyclic preferences. Give the remainder of society
j=1

arbitrary acyclic preferences. Then this is a society whose individual

preference relations are acyclic, but the social preference relation has

the cycle alPsaz, azPsa3, reuy an-lPsan , and anPsa1 .
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In Hansson's demonstration that the decisive sets for a social choice
function satisfying Sen's conditions form a filter, the only property of
individual's preference relations he used was that (strict) individual pre-
ference was a partial order. This allows us to summarize the relationships
between aggregation of weak, partial, and acyclic orders in the following
manner: If E} ig a prefilter we define the social choice function gg; 5
where given any socilety {Pi}ies s xPsy iff {1 ejleiy} e&r . We will
denote the Pareto optimality condition as " P " and the Independence

of irrelevant alternatives as " I " .

Theorem 11.
(i1 If o :Aﬁj"iﬂ‘ and satisfies conditions " P " and " 1 ',
then the decisive sets of ¢ are an ultrafilter.
(1i) 1I1f E} ig an ultrafilter over I , then Qg :g%u-*'ur and
satisfies conditions " P " and "I ",
(iii) If o :y%g'* #D and satisfies conditions " P " and “ 1 7,
then the decisive sets of © are a filter,
(iv) 1If é} is a filter over I , then qti :kgf,-‘ép and satisfies
conditions " P " and "I ",
(v) If o :341'-'Cl and satisfies conditions " P " and "I ",
the decigive sets of ¢ are a prefilter.
(vi) 1If C—f— is a prefilter over 1, then cpg :xfa-.a and satig-
fies conditions " P " and "I " .,
We should note in passing that prefilters on finite sets, I,
aggregate upper semicontinuoug relations into upper semicontinuous relations.

The generic example of a social choice function which is generated by a
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prefilter is given by considering a society of k people. Choose m

people as the collegium and then pick an n such that wmn <k . Let

the social preference be that « is (strictly) socially preferred to B

iff every one in the collegium (strictly) prefers & to £ and at least

n other individual in society (strictly) prefer & to P . The interesting
cases are when both m and n are positive and wtn < k .

The gocial choice functions generated by the prefilters on a set of
individuals range from dictatorship to oligarchy, If we consider a nontrivial
prefilter, i.e. one which ig not a filter, we have those polities which are
neither dictatorships or oligarchies. Let us call thege polities collegial
polities. Certainly the distinguishing feature of collegial polities is
the marked asymmetry between a coalition's power to carry a motion and a
coalition's power to block a motion, Given any proper prefilter, we define
the collegium as the intersection of all the sets in the prefilter. Each
member of the collegium has an absolute veto. Individuals outside the
collegium have no veto power. A necesgsary but insufficient condition for
a motion to carry is that the members of the collegium must vote
in the affirmative, not just concur by abstaining. I1f this condition is
met, then their vote mugt be ratified by a coalition of individuals, none
of whom belongs to the collegium, such that the coalition comprised of
the collegium and the given coalition belong to the prefilter.

The requirement that each member of the collegium must vote in the
affirmative before a motion can carry seems a little strong. Consider the
voting rule ugsed in the Security Council of the United Nations prior to
Augugt 31, 1965. The Security Council consisted of eleven members; each

of the five permanent members had an absolute veto. On substantive matters,
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a motion required seven affirmative votes and the concurring votes of the
five permanent members. Of course, we wish to know if thiz voting rule
is acyclic., It is not if we only require individuals' preferences to be
acyclic. But, if we assume that the preference relations of individuals

are weak orders. Then it is acyclic.

Theorem 12. Let ¢ be the Security Council voting rule., Then ¢ :J%U-* Cl

and ¢ satisfies conditions “ P " and "I ¥,

Proof. That ¢ satisfies conditions " P " and " I " ig immediate.

L1
Suppoge for some society {Pi]i=l B

the Ps generated by ¢ has a cycle
{al, 8gs soey an} » A permanent member voted affirmatively on a, versus

a, , say individual 1 , For each pair of alternatives (aj, a ) for

j+1
j=2, oss, m=1 , either individual 1 (strictly) prefers aj to aj+1
or he is indifferent. 1In any case, because his preference order is assumed
to be a weak order, alPlan » Hence society can not (strictly) prefer a

to a since individual 1 hag an absolute veto and he (strictly) prefers

1 b

1 to an s

a
The fact that © can cycle if we have acyclic individual preference

relations implies that the Security Council is not a collegial polity,oligarchy,

or dictatorship. That is, there does not exist a prefilter which will

generate ¢ . Of course the family of decisive sets is a prefilter, this

follows from Theorem 10. But the preference relation generated by the pre-

filter of decigive sets is properly contained in the gocial preference relztion.

The difference between the Security Council and the polities generated by

prefilters is analogous to the difference between a strict majoriiy voting
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rule and a majority or plurality voting rule., 1In a strict majority x
defeats y if more than one half of the people vote for x over vy . In
a majority or plurality voting rule x defeats y if it gets more affir-
mative votes than y . Againit's a matter of how abstentions are counted.
The next theorem gives necessary and sufficient conditions for the {(astrict)
social preference relation to be completely determined by the relation

generated from the decisive sets.

Theorem 13. Let ¢ :§41-=°Cl and F the family of decisive sets of ¢ ,
Then o = mé} iff ¢ sgatisfies the following conditions:
(i) Pareto Optimality
(ii) Independence of Irrelevant Alternatives
{(iii) Independence of Irrelevant Individuals: For all alternatives
x and y . 1If xPsy , let A(x,y) = {i ¢ Ifoiy? . Then
xPSy depends only on A{x.y) .

(iv) Neutrality: If a set of individuals is decisive for some pair
of alternatives then they are decisive for every pair of alter-
natives,

The Security Council wvoting rule has the following extension. Suppose

the soclety or group has k people. Choogse m people as the collegium

and then pick an £ such that 0 < k-m < £ < k . Let the social preference
be that @ is (strictly} sccially preferred to P if £ individuals
(strictly) prefer & to P and all the members of the collegium concur.
That this family of voting rules are acyclic, if individuals' preference
orderings are weak orders, follows immediately from Theorem 12, These rules

and the generic example of a collegial polity are uniquely chasracterized
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by the properties of Pareto optimality, Independence of irrelevant alter-
natives, Anonymity among the collegium, Anonymity among the individualg
outgide the collegiﬁm, and Neutrality. Anonymity with respect to set of
individuals means that the voting rule is invariant under permutations of
members of this set.

One would like to characterize, in some sense, all the collegial
polities which come closest to satisfying all of Arrow's conditions. The
next three theorems are one way of formulating this problem. Let I be
a finite nonempty set, l\ the family of prefilters over I , and _EL=

Au {'P(I)} . Where IP(I) is the power gzet of I .

Theorem 14, [\ ordered under set inclusion is a compactly generated lattice,

Proof. It is clear that /\ satisfies the conditions of Theorem 2.

Theorem 15. A necessary condition that a prefilter \2; be meet irreduciblie

in the lattice <JK, C> is that f\E} = {io] for some i, e I .

Proof. Suppose NF contains at least two elements {il’ iz} . Let

A= {11} . Let E}: be the smallest prefilter containing G;LJ {A} and

g'” the smallest prefilter containing gU (Ac'} . F and g’n exist

since both gU {a} and &fu {Ac] have the finite intersection property.
Clearly g c 3' n 3" . Suppose g' N q”/&r £#0. If B e g' ﬂgm/xr:rf p
then B2 AU A =1 . Hence B ¢ a contradiction. Therefore g’ = gl N S'w

and 3! is not meet irreducible.

Theorem 16. If d’ igs an ultrafilter or él =;H«/ ﬂb where 8. is an

ultrafilter then 5{' ig meet irreducible.
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These theorems suggest that the collegial polities defined by the
meet irreducible prefilters are the ‘best' approximations tonondictatorial
gocial choice functions satisfying Arrow's conditions. TFor example the
one given in Theorem 16 is of the form where one individual ig chogen as
the collegium and society (strictly) prefers O to B 1if he (strictly)
prefers & to B and at least one other individual in society (strictly)
prefers ¢ to £ .,

In the normative literature of mathematical political theory, Buchanan
and Tullock [ 8] have argued that among the linear voting rules unanimity
"minimizes' the asymmetry between the power to enact and the power to veto.
Their argument has been challenged by Baumol [6] who asserts that majority
rule "minimizes® the difference between these two powers. Both of these
analyses are heuristic, but they do suggest that some quantitative measure
of an individual's power in a polity might provide a means of ethically dis-
criminating between collegial polities.

At least two methods of meaguring individual political power strike
me as appealing. One is the method of Rae[27] and Taylor [35], they suggest
that for a given class of voting ruleg--say collegial polities-»we compute
the a priori probability that an individual supports a proposal which is
rejected and opposes a proposal which is adopted. Under this measure, the
best voting rule is that which minimizes this probability. In a much quoted
article [33], Shapley and Shubik have proposed that the a priori probability
that the individual is critical to the success of a winning coalition be
used as an index of power. They in fact made such a calculation for the
Security Council. It would be interesting to compute Rae~Taylor and Shapley-

Shubik indices for the collegial polities on societies of different sizes.
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In the descriptive literature of political theory, Dahl and Lindbloom
[10] have been concerned with what they call the conflict between the ten-
dency in small groups away from equality of control to inequality of con-
trol and the tendency away from purely unilateral control. The first ten-
dency they call the "iron law" of oligarchy and the second tendency they
call the '"law" of reciprocity. The "iron law" of oligarchy ig due to Roberto
Michels, he along with Mosca and Pareto developed the theory of political
elites. Their central tenent is that all governments are oligarchies, i.e.
govermment ig always by a few for the interests of a few. 1In particuiar,
they argue that democracy is a fraud. An excellent summary of the theory
of political elites appears in Runciman [28].

We do not suggest that the Sen-Gibbard theorem is a "proof" of the
theory of elites, but point out that in political theory the suggested
checks against the tyranny of a few are not only within the polity. For
example presidential veto. But algo in the manner in which the polities
are chosen, A serious defect of our approach is that it does not include
how people choose the members of the polity, what are the terms of office,
how are they recalled, etc.

The "law" of reciprocity, due to Dahl and Lindbloom [10], is simply
the observation that in small groups leaders can only lead if they are
supported by the group. The leader must be regponsive to his followers.

Of course, Dahl and Lindbloom, are concerned with an informal and ill de-
fined ratification of a leader's choices. When they apply their law to
governments, they suggest as does Runciman that the mechanics of reciprocity
are open competitive political elections. Both mention in passing that the
'checks and balances' of traditional comstitutional theorists is one way

of limiting oligarchical rule, hence supporting reciprocity.



22

Collegial polities are distinguished from the oligarchies of Sen
principally because of the asymmetry between the power to enact and the
power to veto. The necessary ratification of the collegium's preferences
act as a check against oligarchy and the agbsolute vetos of the collegium
act as a check against Madison's "tyrannical majority."

Collegial polities most commonly occur in defining the relationship
between the executive and the legislature in the passing of laws. Clearly
in any country where the executive has an absolute veto over the bills
passed by the legislature, we have a collegial polity, i.e., the executive
belongs to every decisive set., For example, the parliamentary governments
of Spain and Ghana. Those governments, like the United States, where the
executive veto can be over-ridden are not acyclic, hence not collegial
polities.

The cabinet govermment affords us with two examples of collegial
polities. By a cabinet government we mean a parliamentary form of govern-
ment where the cabinet isg chosen either by the parliament or head of state.
In the cabinet, we have the executive or prime minister., One collegial
polity is defined by the voting rule that a motion passes if and only if
it receives the support of the prime minister, some fixed fraction of the
cabinet-~say a third--and a majority of parliament, Another collegial polity
ig defined by the rule that a law passes if it is supported by the prime
minister and a2 majority of parliament. In the second case the members of
the cabinet are merely administrators and informal advisors. Crick {9] has
argued that the British parliamentary system has changed from the strong
cabinet government of our first example to a parliament dominated by the

prime minister as in our second example.
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The British form of a government provides a novel solution to the
problem of social incomparability arising out of using a collegial polity,
On issues basic to the government's program, either the prime winister
is supported by a majority of Parliament or new elections are called. That
ig, in the event of a gocial incomparability, produced by an irresolvable
conflict between the executive and the legislature, a new collegial polity
is chosen, This is similar to impaneling a new jury in the event of a hung
jury.

Finally, the Roman Republic used the power of veto along with separa-
tion of powers as their primary check on abusive political power. We men-
tion one such check which is discussed in Abbott [l]. The Roman senate was
attended by ten tribunes and three hundred senmators. Each tribume had an
abgolute veto and a motion required a majority vote of the senators. Note
this voting rule differs from that in the Security Council of the United
Nations. lIn both cases concurring votes of the five permanent members and
the tribunes are necesgary conditions for a motion to pass. But affirmative

votes of the tribunes did not count for passage.
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