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SOME OBSERVATIONS ON 'OPTIMAL' ECONOMIC GROWTH AND EXHAUSTIBLE RESOURCES™

by

Tjalling C. Koopmans**

1. Introduction

it is a principal theme of Irving Fisher's [1930] classical work
"The Theory of Interest” that, in a competitive market over time; the real
rate of interest is determined by the interacting forces of consumer's
intertemporal preferenceg and the opportunities to shift goods across
time offered by technology and resource supply. It will serve as an in-
troduction to the present paper to recall his illustrations (in Chapter
VIII) of the effects of technology and of regource availability by a few
striking examples, of which ¥ cite two. 1In the "gheep example,” the flock
of gheep has a natural anmnual rate of increase of 10%. Assuming other
inputs to be abundant and costless, the rate of interest (with sheep as
numéraire at all times) then also equals 10% p.a. In contrast, in the
"hardtack example,” a group of sailors is stranded on a barren island,
each with a supply of nonperishable hardtack. In that numéraire;, the rate

of interest is zero. 1In these simple settings; the statements describe

*The research described in this paper is supported under grants from the
National Science Foundation and from the Ford Foundation.

**1 am indebted to Robert Dorfman, William Nordhaus and Herbert Scarf for
valuable comments.



the outcome of competitive trades between owners of sheep or of hardtack,
regardless of the intertemporal preferences of the trading parties.

In the models of optimal growth theory a social intertemporal pre-
ference structure is specified exogencusly in the form of a social welfare
functional. In many models this is taken to be of the form

T _
(1.1} U= j"e“"tu(ct)dt ,

0
where <, denotes consumption at time t , u(c) a strictly increasing
and strictly comcave function giving the utility flow ariging from a con-
sumption flow ¢ , ¢ a nonnegative continuous-time discount rate applied
to utility, and eapt the corresponding discount factor for time ¢t .
Then we can again take the consumption good as numéraire. Denoting the
path optimal under given constraints by ¢, , the corresponding discount

t
factor for congumption is

u'(¢,)
- pt £
(1.2} e ET?§;T 5

which in turn implies a continuous~-time interest rate it as a function
of time, defined likewige with the consumption good as the numéraire.
It follows that any constraint on that interest rate it arising from
technology or resource availability must give rise also to a condition
on the optimal path Et .

In this note I wish to contrast the optimal paths obtained for the

hardtack example, to be renamed the exhaugtible resource model; and for a

slight generalization of the sheep example, renamed the capital model.



We shall make this comparison both for p =0, and for positive ¢ .
We occasionally place the word "optimal™ in quotes as a reminder that the
optimality concept is relative to a particular choice of p, of u(:),
and indeed of all other specifications of the models examined.

In these inferences the rate of interest it will not occur explicitly.
It was brought up in the foregoing remarks only to point out that the con-
trast we are examining-—like go much else in capital theory—was already

noted and analyzed in a market context in Fisher's work.

2. The Capital Model

For this, Ramsey's [1928)] model with discounting, we can be very
brief because it has been thoroughly examined and discugsed in the liter-
ature. An additional variable, the capital stock kt ; 1s introduced,
and output g(kt) from that capital stock is at all times to be optimally

divided between congumption ¢ and net investment ﬁt « The horizon

t

is extended to T = ® . The problem then becomes that of maximizing the
welfare functional
[- -]

I e”ptu(c )de
0 t

(2.1) U

subject to

L

(2,2) e, k20, <, + k

e K g(kt) for t >0, 0<k, ({given).

= 0

The utility and production functions are independent of time and satisfy



(2.3) u'(ec) >0, u(c) <0 for ¢ >0,
(2.6) g(0)=0, g'(k)>0, g'(k)=0, g"(k)<O0 forall k>0 andsome k>0 .

While neither resources nor labor appear explicitly, their presence in the
background is implicit in the strict concavity of g(-) aund in the agsump-
tion of a finite saturation level k for capital. The sheep fit into

this model both as capital and as a source of food and clothing, provided
labor and land are limited and, indeed, congtant over time.

The well-known characteristics of the unique optimal path in this
model are exhibited in Figure 1, which is more fully explained in Koopmans
[1967}. In the case of a low initial capital stock ko s the optimal capital
path Et climbg monotonically (starting up more steeply the smaller o
ig) and approaches an asymptotic level ﬁ(p) , which ig higher as ¢
ig smaller. Initially optimal congumption Et is higher as ¢ is larger,
but the asymptotic level &(p) (which can be read from the diagram at
left) is again higher as p 1s smaller., For p = 0 the asymptotic capi-
tal stock £(0) =k achieves the highest sustainable consumption flow

8(0) = & . Hence, in the capital model, discounting of future utilities

as _compared with no discounting favors congumerg in a nearby future. It

also levels off congumption over the rest of the future gooner, and at a

level lower than what would ultimately be attainable by greater and longer

initial gacrifice of congumption. These effects are stronger, the higher
is o -
The construct of capital saturation, so outside the range of ex-

perience, helps overcome a mathematical difficulty conmected with the
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assumption of a constant population. An alternative but ultimately unsa-
tigfactory assumption of exogenous exponential population growth at a rate

A allows g(k) to be interpreted as the per capita output from a per capita
capital stock k minus an allowance Ak for the per capita investment
needed just to make the total capital stock grow in proportion to the popu-

lation.

3, The Exhaustible Resource Model

Hotelling's [1931] classic is for the theory of the optimal rate
of utilization of exhaustible resources what Ramsey's paper is for the
theory of optimal capital growth, Hotelling'’s context is that of a given
demand function for a mineral resource. Separate sectionsg deal with the
allocation of the resource over time resulting from free competition,
from a monopoly of supply, and from a consideration of the social optimum,

The optimal growth literature that has sprung up in the last two
decades consists preponderantly of wide ramifications and generalizations
of the Ramsey model. The attention given to the problem of best alloca-
tion of exhaustible resources over time has been much sparser. While re-
sources have been introduced in an optimizing context in papers by Malinvaud
[1953]), Radner [1966, 1967} and Hansen and Koopmans [1972], it has been
the resource flows rather than the total stocks that have been assumed
exogenougly given. This migses the main characteristic of exhaustible
regources: that extraction and use can be ghifted between future periods,
subject to a finite (though usually uncertain) upper bound on cumulative
extraction over an infinite future. This stands in striking contrast to
the fact that shiftability over time of consumption and capital formation

ig in the focus of the optimal growth literature,



A small step toward the recognition of exhaustible resources in
optimal growth theory occurs in an article by Gale [1967] otherwise entirely
in the Ramsey framework. On page 4 there is a brief "example 2" of the
optimizing cake eater. Each day he can eat a plece of a gize he choogses
from a nonperishable cake of finite gize, until it is exhaugted. If his
current utility from cake consumption r 1is an increasing and strictly

concave function v(r) of r , he seeks to maximize {using discrete time)

- -]
3.1) v= & v(rt)
t=1
subject to
- -]
(3.2) r.o2 o, ert <R, say, where R>0 .
t=

Gale points out that no optimal program exists, because,

(1) if, for any t' , t*" with t' # t", we have T # Tou

]

in a given program (rt) = {rtlt 1, 2, ...}, then the pro-

gram (;L) with

r
I

1
= o(r s + r.a) for t t', t"

T

otherwise
t - T 8

is better than (rt) because of the strict concavity of v(r) ,
(2) the only feasible program with r, =1 for all t has r, = o,

which 1s clearly nonoptimal,



Hence in this problem a zero discount rate paralyzes the "optimizing" de-
cision maker. (This may,but need not be the case with discounting at a
positive rate, depending on the behavior of wv(r) as r approaches zero.)
Let us apply this simple model to Fisher's stranded sailors, with
two modifications. First, rather than trading from private hoards, the
sailors have pooled their resources and, having heard of Ramsey, wish their
pooled gtock R of hardtack to be allocated over time by maximization of
a utility integral. Secondly, they are aware of the existence of a bare
subsistance level r of congumption, at which survival is just possible,
but below which all life ceases instantly. By instantly tightening the
belt to a consumption level of r , the group can assure itself a painful
survival for T = R/x days, but not longer. The paralysis of Gale's cake
eater has now been avolded, but a new problem needs to be faced. It ig
possgible to attain a higher level of daily consumption for the duration
of survival by accepting a shorter period T of survival. Population

Pt can therefore follow any of the following paths
0<t<T,

where T is a decision variable constrained by 0 < T < T .

This formulation raiges a new quegtion in the interpretation of the
objective functional (1.1) of much optimal growth theory. As long as popu~
lation change is treated as exogenously given, the ranking of feasible
paths, and therefore the choice of an optimal path, are not changed if

one adds a constant to the utility function, say



v*(r) = v(r) + 0.

As soon as the number of people 1s no longer exogenously given for all
times, v(r) 1is pressed into the additional role of an gbgolute valuation
placed on one day of life {group life in the present case) at the consump-
tion level r . As a consequence, the addition of a constant to v(r)
will in general change the ranking of paths, hence also the optimal path.
To simplify matters, we shall somewhat arbitrarily assign to life at the

bare subsistence level r an intrinsic value of zero,
(3.3 v(r) =0,

although arguments for another number, pogitive or even negative, could
be advanced. We now regard v(r) as defined only for r > .
Reverting to continuous time but still rejecting the digcounting of

future utilities we must then maximize
T
(3.4) jov(rt ydt

with resgpect to (T, rt) s subject to

T
(3.5) 0<T<LT, j‘ortdc=R, r, 2K -
Maintaining strict concavity of wv(r) , optimality again requires constancy

of r, during survival, so that

rt=r=R/T for 0<t<T, rt=0 for T<t .,
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Adopting r rather than T = R/r as the remaining decigion variable,

we must now maximize

v{r)

T
[ vir e = R
O T

over the domain of definition of wv(r) . Since v(r) >v(r) =0 for

_ 4 vir)y_v'(x) 1
r >t , optimality requires r>r , and O ar log( - )— v(r) -

s0

(3.6) v'(r) = E%l

Figure 2 ghows the construction of a unique optimal + by drawing a tangent
from the origin to the curve v = v(r) . This construction leads to a unique

and finite £ if v(+) is bounded, and also if lim v'(r) = 0 . (Functions
-

v(-) for which no such # exists imply that the value of the maximand
is higher the sghorter the survival period—a case of little interest.)
The "optimal" survival time ig T = R/ , which, of course, falls short
of the maximum survival time T = R/r .
What happens if we discount future utilities at the rate o, maxi-
mizing the welfare functional
T

3.7) J‘Oe‘ pt\:r(rt)dt

with respect to (T, rt) , under the consgtraints

T

(3.8) rtz_x;_ for 0<te<T, ‘rortdt=R.
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We give an intuitive argument, illustrated in Figure 3, suggesting that
the optimal path is uniquely determined by three conditiong.*

As a first step, hold T fixed at some arbitrarily chosen value
with 0<T<T 5, and maximize first only with regpect to r_ . We must

t
then have as the first, myopic, condition of "T-optimality" of r, that

(3.9) ¢ =e P

e v'(rt) = constant for 0 <t <T.

This iz so because, if wt, > O.n, sy, for some t', t" with
0<t', t"<T, one could (see Figure 3) increase (3.7) by shifting a
small amount of consumption from a neighborhood in [0,T] of t" to one
of t' . (A proviso for this reasoning is that r, >r+ e>r for all
t with 0<t£<T.)

Since v'"(r) < 0, the condition (3.9) requires r, to be a geg-
ment of a curve that is one of a family of descending curves. Any curve
in this family can be identified by specifying the value of T, for gome
suitable value of t . The second, terminal, condition** chooses the point
t = T for this purpose. Figure 3 shows another "small' modification of
the path r, that reduceg the congumption flow on a short terminal inter-
val ([T=T, T] by an amount € and uses the amount 7Te thus saved to
extend the survival period by a flow at the constant level r, = tr, con-
tinuing for the period [T, T+7'] , where T' = Te/rT . The first order

effect on the utility integral (3.7) is

*Reserving a rigorous proof for publication elgewhere.

**rhe form of this condition was suggested to me by William Nordhaus.
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v(r.)
<—v'(rT) + rTT >"rge_pT ,

where e though small can be given either sign.* Tt follows that the seg-

ment T 0<t<T, is anchored by the terminal condition

(3.10) r, =r

where T 1is the optimal consumption for p =0 defined by (3.6). (Note

that due to this construction the T-optimal path r, satisfies the proviso

stated above.)

Finally, the third, length of gurvival, condition uniquely determines
the optimal su:vival time f(p) from the requirement that the segment
r, = Et so gelected ghall just exhaust the given stock R .

Figure 4 indicates the nature of the optimal path f£ its con=-

t 2
nection with the utility function wv(+) , and its dependence on the dis-
count rate p . The path ft starts higher, descends faster, and ends

sooner, the larger is p . In the exhaugtible resources model, digcounting
of future utilitieg favors an earlier generation over any gurviving later

generation, and shortemsg the period of gurvival. Thege effects are stronger

the higher the discount rate.

*For ¢ <0, one adds |e| to r, for T'-T<t<T', where T'

is just enough below T to again satisfy (3.8) with T' replacing T .
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4. A Comparative Discugsion

We shall now seek to interpret the contrasts in the solutions of
the two models congidered, and speculate about the empirical relevance
of the variousg traits of the models.

Since the welfare functional is constructed azlong the same lines
in the two cases, the contrast in the golutions must be due to the difference
in supply conditions. In the capital model decision makers can at any
time arrange to reap the prospective consumption-increasging benefits of
a larger future capital stock only through net investment at points in
time in a more mnearby future. The future benefit to be derived from a
unit of investment is smaller the larger the capital stock already attained,
The optimal capital build-up therefore slows down as It proceeds, and stops
at the point where the discounted cost of further investment balances the
more strongly discounted benefit. The optimal rate of consumption therefore
also increages with time, and slows down to a stop at a stationary consump-
tion point corresponding to the stationary capital gtock. The higher the
discount rate, the lower both the stationary optimal capital gtock and the
assoclated consumption flow.

In contrast, in our gimplified model of resource exhaustion, consump-
tion of an extra unit of the regource can at any time be decided on and
implemented instantly, without having to go through a process of prior in-
vestment. Moreover, the opportunity cost of this instant benefit is incurred
later, by an equal curtailment of consumption within the survival period,
or by a shortening of that period. Finally, the analysis leading to (3.6)

gshows that even in the absence of discounting a reduction in the rate of
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consumption below f is deemed too high a price for the extension of the
survival period it could buy. Discounting can therefore only 1ift the
earlier generations above the resource consumption levels of the later
ones, along a path that stops when the level f is reached.

Let us now consider the question whether there is anything in the
long-range outlook for natural resource availability that gives even a
tinge of realism to the model of possibly slow but inexorable and ultimately
catagtrophic exhaustion.

This issue is the subject of a protracted and comtinuing debate
between economists and conservationists. The view prevailing among econo-
mists is that technological change has kept enlarging the aggregate size
and divergity of the economically accessible resource base faster than ex-
traction diminighes the resource base. This enlargement has come about
through cost reductiong in extraction of a given material, and through sub-
gstitution of more abundant materials for increasingly scarce onesz, including
the scientific discovery of entirely new, often plentiful, kinds of resources.
These substitutions within the resources category may be accompanied by in-
creased capital inputs needed for the utilization of ths newer more azbundant
regources. In aggregate accounts comparing quantity indices of total output
regource inputs and capital use inputs (all weighted by base-year prices),
such substitutions may therefore show up as an aggregate substitution of capital

" where the resource flow at the same time changes its compo-

for 'resources,
gition, In contrast, within the resource sector, the chain of events whereby
technological change dominates the effect of continuing aspecific resource
extractions shows up in a gradual decrease in the labor and capital intput

cost per unit of extractive output, relative to that same cost per unit

of net output in the rest of the economy. A similar decrease



i8

ig found in the market price of minerals relative to that of nonextractive
goods, even though the price includes the element of scarcity rent not in-
cluded in the cost measure.

Thig interpretation of events” ig perguasively summarized in Chapter 1
of Barnett and Morse [1963] and statistically documented in Chapters 8 and
9. A more recent study by Nordhaus and Tobin (1972, pp. 14-17) extends
their work by ingenious simulations [ibid., App. B, pp. 60~70} in which
necclassical aggregate production functions are employed to show that elag~
ticities of substitution in excess of 1 between resources and “capital plus
labor® best fit obgerved characteristics of aggregate economic growth in
the period 1909-1658,

The forward-looking relevance of the empirical observations made
by the Barnett-Morse and Nordhaus-Tobin teamg depends on an extrapolation
into the future of the observed rescurce saving or augmenting effects of
technological change. Two observations are pertinent here.

The first concerns the protection of the environmment, through
suitable choices of new technology, and through the modification of existing
technology especially when applied on a larger scale. Particular problems
arise in the extraction of resources from deposits of increasing depths
or lower grades. Regarded itself as a regource, the enviromment is ex-
haustible if subjected to irreversible damage, remewable if the damage

ig temporary or restorable at a cost. An aggregate evaluation of the cost

*An optimization model incorporating some of the traits of this interpre-
tation was recently discussed by Kent Anderson [1972].
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of protection of the environment must await further experience in the study
and application of protective policies for many specific envirommental prob-
lems. I shall here assume that a satisfactory level of protection can be
attained over time at a reagonable cost.

The second obgervation concerns the need for looking behind the
obgerved predominance of resource saving or augmenting technological change
over resource extraction to seek to perceive the underlying causes. The
firet impression here is one of a huge reserve of detailed physicasl, chemi~
cal, geclogical and physiological relationghipsg: known, susgpected but not
yet known, or even as yet unsuspected. The veill ig gradually drawn away
by a process of discovery, partly or initially accidental,; gradually re-
sulting from a more systematic search which ig never assured of gpecific
successes until these are actually achieved. Why should this process per=~
mit extrapolation of past aggregate relationships?

If present knowledge permits an answer to this question, the prin-
cipal contributions should come from natural scientists and engineers.

As long as there are many independent lines of advance for research and
development, it is perhaps not unreasonable to assume that the proportion
of guccegses will continue to fluctuate around the level of past exper-
ience, and a statistical aggregative approach would appear justified,

The crucial question ig whether perhaps there is at least one Achilles
heel of resource supply, a specific resource that is in limited supply,
essential to life and welfare, used digsipatively, and with no substitute

in greater supply.
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My rather casual inquiries and reading of gcientific periodicals
have not revealed a clear and present case of such an Achillesg heel. The
claim made by Goeller {1972] that the phosphorus-fertilizer-food chain
might become an example if world population levels off only at a multiple
of its present size has been contested by others on the basis (among other
reagsons} of the considerable abundance of phosphorus (see, for example,
Wells [1973]). Another example might just possibly arise with regard to
energy in the unlikely contingency that none of a substantial number of
current or future largely independent R&D projects to widen the supply
base of energy is really successful, If the nuclear breeder should turn
out not to be safe or otherwise not environmentally acceptable, if con-
trolled nuclear fusion ghould not be found workable on an industrial gcale,
if both geothermal and solar energy use should turn out to remain limited
to special and local situations, and i1f no other new sources of energy
are discovered and developed, ... only then could our present stock of
fogsil and nuclear fuelsg become such an Achilles heel—though even then
0il ghale might extend the period of availability quite substantially.

An interesting case (though not an Achilles heel) brought ocut by
Goeller is that of helium. Its cost of extraction is expected to go up
by a large factor {Goeller mentions the number 100) when natural gas is
exhausted and extraction shifts to the atmogphere as the source. While
not regarded ag essential to life, helium may well become more important
than it is now if cryogenic power transmission is successfully developed,

with important savings in trangmission logses of energy.
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If we were compelled to choose between the capital model and the
exhaustible resource model, therefore, the former would seem as yet to
have the greater relevance. In the next gection we experiment with com-

binations of the two models.

S, Two Models Combining Capital and an Exhaustible Resource

We conclude by briefly considering two alternative models that com-
bine the essential traits of the capital and resource models. The very
simple form given to this combination will allow conclusions to be drawn
almest directly from the results obtained for the two models in Sections
2 and 3 above.

In both models the welfare functional has the form

T
(5.1) W= joe‘pt(u(ct) + vz, ))dt .

The constraints common in form to both models are

(5.2} . + kt = g(kt) s c, k >0, 0< ko {given)

1AV}

i

s
o

T
(5.3) fortdt =R>0, 1

Thus the total utility flow is obtained additively from a flow u(ct) due

to congumption c, of a good produced with the use of a capital stock

kt and a constant labor force, along the lines of the Ramsey model, and

a flow v(rt) ariging from the rate of depletion L of a resource stock
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R . (We neglect any capital and labor inputs involved in the extraction
or consumption of the resource.) u(-} and v{(-) are again increasing
and gtrictly concave.
The two models differ only in regard to the gpecifications with
regard to the horizon T and the resource flow utility function v(+) .
In the first model consumption of the resource is not essential to life.
We can therefore take T = , and specify that r =0, v{0) =20,
v'(0) < ®» ., Thig model has some of the traits of the helium problem.
The problem now breaks up into two independent maximizations, of
o ©
(5.4) u=[e Mutedt, v=[e e,
0 0
respectively. The maximization of U leads to the same optimal path
Et as before, while that of V has a somewhat different outcome only
because now r = 0 ;, whereas survival can continue on the basis of the
consumption flow . alone. The modification of Figure 2 thus needed
ig obvioug. For the reasons given by Gale there is no optimal path for

p=0. For ¢ >0 there igs an optimal path r, =T, defined by

[1FaN
=

emptv'(rt) = e-pTv'(O) for 0<t
(5.5)

r, = 0, hence v(rt) =0, for t 2T,

where we must again choose T = ﬁ(p) gso that the regource congtraint (5.3)
is satisfied. Thus the resource flow diminighes over time, the more steeply

the larger is p , and reaches zero at the time of exhaustion of the resource
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stock, The path Et is not affected by these events, and is therefore
independent of the resource stock R .

In the second model the regource ig essentlal to life, and consump-
tion of both ¢, and r_ ceases at the time t =T of exhaustion of the

resource. Now, as in Section 3, v(r) 1is defined only for r >2r, where

A\

the minimum resource flow 1 required for survival satisfies r >0 .
Therefore, T in (5.1) is now a number such that 0 <T < T =R/r . We

also specify v(r) =0, 1lim v'(r) =® , as a further expression of
r=r

the essential character of the resource, Finally, we set u(0) = 0,

lim u'(e) = =,

c—=0
In this model we need to maximize W = UT + VT ; where
T T
- -pt - -t
(5.6) Up j‘oe u(e, )t , Y, joe v(r, )dt

with respect to the triple (T, Cps rt) , subject to the comstraints (5.2),
(5.3). The new element is that the same as yet unknown value of T has

to occur in both UT and VT .

Figure 5 illugtrates the nature of the unique optimal paths ét s

?t for p >0 ., The resource usge path ft now dips bglow the value T
near the end point f*(p) of the survival period. This occurs because
continued enjoyment of a high level Et of general consgumption compensates
for what otherwise would have been an unacceptably low level of resource
consumption ft . In an Appendix we give a list of intuitively plausible

statements from which a proof of the assertions of this paragraph can be

built up.
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An interesting implication of these findings ig the behavior of
the ratio qt/pt of the shadow prices

(5.7) q Ee'ptv'(et) =v'(F) , P

— =Pt g4 a
¢ =e " u (ct) s

t

of the resource and the consumption good on the long middle interval
[T, f*(p)- 7] in the second model, and in the longer interval [fT,®)

in the first. In both cases we have

(5.8) Py = e-ptu'(E(p)) , hence qt/pt ~ const. et .

Thus, the combination of discounting of future utilities at a positive

rate and the costlegs storage in nature of the resource prior to extrac-
tion leads to an exponential increase in the shadow price of the resource
relative to that of the congumption good. In a monetary system with the
latter good as the numéraire, an ideal competitive market with indefinitely
long foresight would therefore exhibit a sustained exponential increase

in the scarcity price of the resource. The extent to which actual markets

reflect this effect has been discussed by Nordhaus [1973].
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APPENDIX

Statements Supporting the Solution of the Second Model of Section 5

As in Section 3, we consider again first a prescribed survival period

T , which allows provigional independent maximizations of UT

for that period. The following intuitively plausible statements will not

and VT

be sharpened and proved here. Thosge relating to UT follow from the work

of Brock [1971] and earlier work of Cass [1966] or Koopmans [1965). Those

relating to VT are implied in the results of Section 3, Regarding UT s

writing ¢, = CE for the T-optimal consumption path and ﬁT for the maxi-

mal value of UT attained on that path, we have for sufficiently large

T that
(i) ci increases with t for O <tgrT,
T T L
(ii) <o is practically independent of T and lim ¢y = ¢g >0,
'I‘-lﬂ
(1iii) CE is close to &(p) during a long middle segment (T, T-T] ,

0 <1< T, of the survival period,

(iv) for t appreoaching T , cf rises further while the associated
capital stock kz falls to k$ =0,

dﬁT
(v) = >0 (forall T >0),
il
(vi) 0< lim epTd—T-<m for all p >0 .
= rme T
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Regarding VT s writing r_ = rT for the T-optimal path, V_ for the

t t

maximum attained, we have for 0 < T < T that

(vi1) r' satisfies (3.9), hence rz

e N |

r

A

d >

(viii) egT- ?ﬁ; = v(r:) - riv'(r:)

<.

defined following (3.10) and e

creages for 0 < T <T s

(ix) as T = T » rE = r uniformly in ¢t

oT

T

decreases as t increases and

>r forall p>0 and 0S<tST,

<
0 for T {( = )T(p) as
. >
dVT
?ﬁ? decreases as T in-

for each p , hence

It follows from (v), (vi), (viii), (ix) that for any given ¢ >0,

if the resource stock R and hence T are

a unique maximum for a survival period T =
condition

T f +9)=
(A.1) e” 37 W+ VD)

and located in the open interval

(4.2) fp) < T*(p) <

i

sufficiently large, W reaches

™) ,

determined from the
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