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I. Introduction

Many peiiticel gnd social choice processes, particularly those based
on gome form of wvoting rule, can be usefully represented as zimple games.
A gimple game differs from the usual variety of n-person geme in that certain
combinationg or coalitions of voters are “all-powerful,” and are able to
enforce their will irrespective of the desires or actions of the players
who are not members of the coalition, while all of the remaining coalitions
are egssentially powerlegs to affect the outcome. A familiar example is a
majority game, in which any coalition containing a majority of players can
gecure any outcome its memberz are able to agree upon, while no minority
coalition can infiuence the cutcomg if the opposing majority is agreed upon
& course of action. Other examples of gimple games, some very complicated,
are cited in [7] and {8, Chapter 10].

While simple games clearly represent a rather special form of the
more general ne-persom game, they may nevertheless be quite complex in
structure and difficult to analyze. Moreover, the existence of a cooperative

golution, guch as the core, is by no means assured in games of this type.

*rhe regesrch degeribed in this paper was undertaken under grants from the
Wational Scisnce Foundation and from the Ford Foundation.



Many simple games are known for which nc core exists: the famous ‘wotersg!'
paradox” is a particularly simple three-player example of such a geme.
Indeed, much of the social cheice and voting theory literature, though mot
cast in an explicitly game-theoretic framework,; can be interpreted as showing
how difficult it is to ensure the existence of a cooperative equilibrium

in multi-person situations based on any reasonable kind of voting Process

or social cholce mechanism.

A particular equilibrium condition for majority rule known as "single
peakedness" has received congiderable attention in the voting theory litera-
ture, and it has been the basis (sometimes only implicitly) eof various studies
of voting on public goods or other public sector problems. The condition,
which ig due to Duncan Black, 1s sufficient for the transitivity of majority
rule, and hence for the existence of a core in 3 majority game. (We are
ignoring various technical qualificarionz here.} In facl, the condition
ig even more powerful than thig, for it car algo be ghown to be sufficient
for the existence of & core in any simple game (Theorem 2 of the present
paper). Roughly speaking, single~peakedness is equivalent to requiring that
the relevant set of alternatives or posgible ocutcomes be cne-dimensional,
and that voter preferences over this set ba representable by strictly quasi-
concave utility functions. Thus the condition, while clearly restrictive,
is nonetheless a useful one, for in many economic problems, it often arises
as a natural consequence of the convexity of individual preferences. The
usual examples of voting on resource-allocation or other public sector

problems {3}, [6, Chapter 6] are of this type.



There have, however, also arisen examples of voting problems which,
though egsentially one-dimensional in character, are nevertheless such that
the single-peakedness condition cannot be satisfied. 1In one such example
described by Musgrave [6, Chapter 6], the electorate is to vote on the size
of the budget for some single public service, and the budget is to be financed
by means of a tax formula according to which the relative shares paid by
different voters may vary arbitrarily. Another appears in [4], in which
representatives of firmg and households in a water-management area must
vote to determine the water-quality standard which is to prevail in the
region, with the revenue for constructing and operating the treatment
facilities required to reach the agreed-upon standard being raised by efflu-
ent charged imposed on both households and firms. Under various conditions,
such as increasing returns to scale in the technology of pollution treat-
ment, non-convexities are introduced into the problem which cause the single-
peakedness condition to fail.

In examples such as these, the failure of the single-peakedness assump-
tion can easily lead to the non-existence of a core. Congider, for example,
the situation in Figure 1. Points on the horizontal axis are possible values
of the underlying decision variable to be voted on, while those on the ver-
tical axis represent (ordinal) utility levels. The utility functions of
each of the three voters are graphed together in the figure. Under simple
majority rule, the existence of a core is equivalent to the existence of
a value x° of the decision variable with the property that no different

value, y , 1is strictly preferred by a majority to x° . It is readily



x X x"
FIGURE 1

A Voting Game without Single-Peakedness and without a Core

verified that in this example no such value exists. For example, the value

xl

is preferred by voters 2 and 3 to any smaller value; x" in turn de-
feats x' , as well as any value in the interval [x’, x") , via the
coalition {1,3] , and it also defeats any value larger than itself via
the coalition {1,2} ; yet x" is itself defeated, in turn, by the point
x , via the coalition {1,2} . Thus, any proposed resolution to the under-
lying choice problem will be blocked by some majority coalition, and no
cooperative solution exists for this simple 3-person game.

In determining in this fashion whether a particular alternative con-
stitutes a cooperative equilibrium in the game, it is assumed that the members
of each winning coalition collectively examine the alternative to see

whether they can improve their position relative to it., If they can, that

is, if they can identify some other feasible alternative which every member



of C prefers, then the alternative in question is vulnersble to collusive
action by the coalition, and hence does not constitute am equilibrium., A
possible equilibrium is thus pitted againsgt every other feasible alternative,
no matter how digtant; the various coalitions are assumed to have the ability
and foresight to examine and weigh every possible cutcome, even those quite
diséant from the current state of affairs, with which the members of the
coalition may have had nc experience.

The equilibrium concept considered in this paper is based on a more
limited view of decisiommakers®' abilities to examine and evaluate alterns-
tive states. We shall suppose the voting process to be more "incremental®
or "myopic" in character, in the sense that the various potential blocking
coalitions consider only "nearby" alternatives in determining whether to
block the current state. If gome winning coalition preferg a neighboring
alternative to the current state, then as before, the existing state of
affairs is vulnerable to collugive action by the members of the coalition,
and is not am equilibriuwm. Conversely, an alternative which 1s not blocked
by any nearby outcome will be said to be a "local” cooperative equilibrium.
In Figure 1, it is easily seen that the point x* 1s a local equilibrium
in this sense; moreover it is the only such equilibrium in that example.
The principal result of this paper shows that in simple games of this kind;
where the alternative set is essentially one-dimensional in character but
the single-peakedness condition does not apply, a “local” cooperative equi-

librium nevertheless exists quite generally.



II. Definitions and Asgumptions

We denote by N = {1, 2, ..., nl the set of voters or players, and
by A the set of glternatives or possible outcomes of the game. A basic
assumption of this paper is that the set of alternatives being considered
iz essentially one-dimensional. More precisely, A 1is assumed to be a
point set homeomorphic to some closed interval. For simplicity, and without

logs of generality, we can reformulate this premise as:

Assumption I, The set A of alternatives is the cloged unit interval:

A=1{0,1] .

Each voter 1 ¢ N has an ordinal utility function u defined

i 2

and continuous on the get A . Our principal result will depend on one
further assumption about voter preferences. A real-valued function f

defined on a point set will be said to have a preoper relative maximum {(p.r.m.)

at a point x in the set if it has a relative maximum at ;’, and does
not have a relative minimum st x . Our additional agsumpiion on voier

preferences is that each voter's utility function wu_, satisfies the

i
following:

Agsumption II. Each uy hag only a finite number of proper relative maxima

in A .

This "finite-peakedness” premise is a natural generalization of the
well-known "single-peakedness” condition. In effect it congtitutes a rather
weak '"smoothness' condition on individual utility functions: 1t excludes

functions which "oscillate infinitely many times in the interval, but permits



functions with any finite number cf oscillatioms, or with "flats” (regions
over which ug is congtant). The assumption does not require differemtiability,
and it is clearly much weaker than quagi-concavity or “single-peakedness."

The outcome eventually adopted will be determined in part by the
preferences of the players, and in part by the manner in which the rulesg
or structure of the game distributes power among the various coalitions,
that is setg CC N cof players, The distribution of power in a simple
game is such that each of the coalitions is either all-powerful, in a gense
to be made precise below, or is powerless. We denote by U) the collection
of "powerful® or winning coalitione. W is assumed to be:

1, Non~empty

2. Proper: If C el then N-C £W .

3. Superadditive: If C e) and CCC'C N, then C' ¢% also.
An obvious consequence of these properties is that the set N of all players
is winning and hence that any winning coalition is non-empty. Note also
that it is not true, in general, that the complement {(in N) of a noun-
winning coalition is necessarily winning.

The coalition of all players, acting together, cam achieve any out-
come., Whether a particular outcome x € A 1s a solution or equilibrium
of the game depends on whether any player, or combination of plavers, could
improve their position by acting differently. In particular, if there is
some other alternative which is preferred to x by each member of a particular
coalition CC N of players, and if the coalition € i3 powerful encugh
to ensure or attain thig outcome, then the original outcome x will be

prevented, or ‘'blocked,’ by thisg coalition. In & gimple game only the winning



coalitions are powerful enough to block in this sense. A winning coalition
can block any outcome its members wish to prevent, while no outcome can

be blocked by a coalition which 1s not winning. Thus we have:

Definition.” An alternmative x is blocked by another, y , 1if and only
if there exists some winning coalition C ¢ for which ui(y) > ui(x)

for each player {1 ¢ C .

*Unfortunately, the same term is also used in the game theory literature

to denote a quite different concept. A coalition which is not itself winning,
and whose complement (in N) 1is also not winning, is often referred to as

a '"blocking™ coalition. Such a codlition is unable to block (in our sense)
any alternative itgelf, but is powerful enough to prevent (or 'block®) any
disjoint coalition of players from blocking an alternmative. (A simple game

in which there are no such coalitions is strong.) None of our results depends
on the existence or non-existence of such coalitions, and we shall use the
term "block" in the sense of the above Definitiom throughout.

The usual cooperative solution, the core, can now be simply defined
as the set of umblocked alternatives; that is, the core is {x ¢ A: x is
not blocked by any y ¢ Al . As discussed earlier the equilibrium concept
with which we ghall be concerned is based on a more restricted notion of
blocking, wherein a particular alternative x can be blocked only by "nearby®

alternatives. More precisely, we define a local cooperative equilibrium as

follows:

Definition: A point x*¢A isa local cooperative equilibrium if there

exists a neighborhood (x° - ¢, x° + e) of x° which contains no poing

y ¢ A that blocks x° .



III. Existence of a local Cooperative Equilibrium

The principal result to be established can now be stated as follows:

Theorem 1. A simple game which satisfies Assumptions I and II has & local

cooperative equilibrium.

Before proceeding to the proof of this proposition it will be useful
to establish a preliminary result. At any point x ¢ A there is a set of
voters who "prefer small increases’--that is, a set for whom x 1is inferior
to any slightly larger value--and a set who "prefer small decreases.'" Let
us represent these sets by I(x) and D(x) , respectively. More precisgely,
for any x ¢ A we define I(x) = f{i e N : there exists & > 0 such that
ui(z) > ui(x) for all z e (x, x+8) N AY , and D(x) = {i e N : there
exists &' > 0 such that ui(z) > ui(x) for all z e (x-8', x) N Al .
(Clearly gome voters may be contained in both of these sets, and some in
neither.)

If at any x € A the set I(x) constitutes a winning coalition,
and if x <1, then evidently every neighborhood of x will contain points
y ¢ A which block x . This will also be true if D(x) e) and x >0,

If at some x° ¢ A mneither of these conditions holds, however, then a
neighborhood (xowb, x°+6} of x° can be found which contains no points
that block x° , and hence x° itself constitutes a local cooperative
equilibrium. To show the existence of such a point we first establigh the

following property of the sets I(x) and D(x)} .
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Lemma., Assumptions I and II imply that for any point x° e A there exists

a number & > 0 pguch that the utility function u, of each voter 1 ¢ I(xo)

i
is strictly increasing on the interval [xo, x°+6] N A, and a number
8' > 0 such that for each 1 e D(xo) AN is strictly decreasing on

[x°-8', xX°1NaA.

Proof. It guffices to prove the first part of the lemma, since the second
part is argued in essentially the same fashion.

The first proposition is trivially true if x° =1 . If 0<x <1,
then for any 1 e I(xo) we can define a point xI as follows. If
ui(x) > ui(xo) for all x° < x <1, let a=1; otherwise let O be
the smallest point lying above x° which is not preferred to x° ; that
is, o = min{x e (xo,l] : ui(x) Slui(xo)l . The continuity of u; engures
the existence of this minimum. If the interval [xo,a] contains a point
which is a proper relative maximum on A of u, , we define xz ag the
gmallest such point. (From Assumption II the numberlof such points in the
interval must be finite and hence a smallest one exists.) If [xo,a] con-
tains no such point, we gimply set xi =0, S8Since %° ie an absolute
minimum of u, on the non-degenerate interval [xo,a] s 1t cannot be a
relative maximum of u, on A . Hence x° cannot be a p.r.m., of uy
on A, and thus x; >x° .

For any y such that x° < y <'xi , the continuous function ug
must have a maximum on the interval [xo,y] , and there must be a smallest
ﬁoint in the interval at which u, takes on this maximum value. That is,

there exists a point u(y) such that ui(u(y)) 2’“1(2) for all z ¢ [xo,y] ,

and u (u(y)) >u (z) for any z e x°, u(y)) .
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The point uw(y) cannot lie in the interior of the interval [xoyY] .
To see why, suppose it did. Then since it is a maximum of u, on this
interval it would also be a maximum on some neighborhood of u(y) ,
(W(¥)~8, uly>+8) with & < min{|y-u(y)|, |y-x®|} . Hence wu(y) would
be a relative maximum of u;, on A . Moreover, by definition of u{y) ,
any neighborhood of w(y) will contain points =z ¢ [xo, w(y)) for which
ui(u(y)) > ui(z) go that p{y) could not be a relative minimum on A .,

Hence, u(y) would be a p.r.m, of u, on A, but yet it would lie in

i
the interval (xo, x:) « This would contradict the definition of x; .

Thug, either x° = ui{y) or u(y) =y must hold. But x° = uly)
iz impossible, since then we would have ui(xo) = ui(u(y)) 2 ui(z) for
any z e [xo,y] contradicting the original assumption that i e I(x°) .
Therefore uly) =y .

This implies that u, 1is strictly monotonically increasing in the

i
interval [xo, x;] , since if x° <y<y'g x; , then u(y') =y',
so that x° <y <y' implies ui(y‘) = ui(u(y')) > ui(y) » Hence, letting
*
§ = min {[|x° - x|}, the proposition is established. Q.E.D.
1e1(x%)

Having obtained this result, we now turn to the proof of the main

theorem,

Proof of Theorem 1: If the set I(0) C N 1is not a winning coalition, then

clearly a2 neighborhood (0,8} can be found such that no point in the neigh-
borhood blocks O . Hence, x =0 1is a local cooperative equilibrium.

Similarly, if D(1) ¢ , the point x = 1 is an equilibrium.
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The remaining possibility is that both I(0) e%) and D(1) eZJ .
In this case let x° = sup[x e A I(x) e ; clearly, x° >0 . We shall
show that x° ig an equilibrium, that is, I(xo) ¢ and D(xo) £ .

Suppose, to the contrary, that I(xo) e} . From the lemma, it
follows that there exists an interval [xo, x'] on which the utility func=
tion uy of each voter 1 ¢ I(xo) is gtrictly increasing. Since I(1) A‘ZU
by assumption, we have ¥ <1 ; and the interval [xo, %x'] must be non-
degenerate; that is, P <x'. Hence, there exists a point y such that

x° < y <x' . But any u, is strictly fncreasing on the interval [y,x’]

i
if it is strictly increasing on [xo,x'] O {y,x'] . Since u, strictly

i

increasing on [y,x'] clearly implies i e I(y) , we have I(y) > I(xo) .
If I1(x°) ¢ %), then the superadditivity of ) (property 3 of W) 1implies
that I(y) ¢ %) also. Since y > x° and x° 1is by definition an upper
bound of the set (x e A I(x) e 2 , this is a contradiction. Hence,
I(xo) cannot be a winning coalition,

Now congider the remaining possibility, namely, that D(xo) € 7U o
The lemma then implies that there exists an interval [x*,xD] on which

u, 1is strictly decreasing for each 1 g D(xo) . Since x° >0 , this

i
interval must be non-degenerate; that is, x® > x* . It must then be true
that D(xo) N I(y) = @ for every point y in the interior of [x*,xol R
Otherwise, using the other part of the lemma, there would exigt a non-de-
generate interval [v,y'] € [x%,x°] on which some voter's utility function

would be both strictly increasing and strictly decreasing, which is impossible.

Hence, I(y) < NwD(xo) for all y such that x*¥ <y < £° .
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Since, by hypothesis, D(xo) e?) , property 2 of the collection
) implies that N-D(xo) £ . But, then, sguperadditivity of y/b) (property
3o0fd)) and I(y)C N-D{x") imply that for all 7y e «*, 2%y, 1) & .
Since x° 1is by definition a least upper bound of the set (x ¢ A : I(x) ¢ N »
it is possible to have I(y) £ %) for all y e (x*,xo) only if I(xo)
is itself a winning coalition. This is again a contradiction, since it
has just been shown that I(xo) p ?[). Hence, D(xo) é?Z) also, and the

theorem is establighed. Q.E.D.

IV. Discussion

0f the two assumptions on which Theorem 1 rests, Assumption IT ig g
fairly weak ''smoothness" condition on individual preferences. In contrast,
Assumption I, requiring in effect that the set of alternatives be a single-
dimensional point get, is quite strong., It is, however, essential to the
regult and cannot be substantially weakened.

Consider the following simple majority game, in which the altermative
gset ig the unit square (rather than the unit interval as assumed heretofore):
A' = {(x,y): x e [0,1], vy ¢ [0,1]1 , and there are three voters, with
utility functions ul(x,y) = --(x2 + yz) ; uz(x,y) = -[x2 + (y-l)z} s
uy = -[(x-l)z + y2] « Thesge strictly quasi~concave utility functions clearly
satisfy Assumption II, since each has only a single proper relative maximum
in A' . 1In Figure 2 the indifference curve of each voter through a repre-
sentative point a = (;;;) is shown. It is apparent from the diagram that
the point a = (;;;) is blocked by a neighboriing point a' = (;;6, ;)

(for any 0 < § < x) if x>0, and by a" = (x, y-8) (for any 0 < § < y)
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FIGURE 2

A Simple Majority Game with a Twe-~Dimensional Alternative Set
and No local Equilibrium
if ; >0, while clearly the point (0,0) 1s blocked by (8,8) for any
0<86<1 . Hence, no local equilibrium exists even in this simple example.
In general, no such equilibrium will exist when the set A is of dimensionality
greater than one,

Theorem 1 establishes conditions for the existence of a local equi-
librium, but it says nothing about uniqueness, or about the topolegical
structure of the set of equilibria, It is eagily verified by examples that
in general there is not a unique equilibrium, and the set of equilibria need
not be convex, or even closed. However this set does have maximal and minimal
elements., In particular, if we denote by E the set of local cooperative
equilibria, and let x" = sup(E) and xL = inf(E) , then we can establish

the following:
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Comment: x  and xL are themselves equilibria. Moreover, if X" <1
(resp. xL >0}, then D(z) e for all =z € (xu,ll (resp. I(z) e W
for all z e [O,xL)) , and x" (resp. xL) ig a proper relative maximum

of ui fof some i e N .

Proof. Ir suffices to consider x° s Since the corregponding properties

of xL are argued gimilarly. We must first show that x° is an equilibrium,

If D(1l) W , then clearly x = 1 {5 an equilibrium and =1, If

D(1) eW , let x° = supfx e A : I(x) eW?l . It was shown in the proof

of Theorem 1 that x° 1is an equilibrium, so % > x° by definition of x .
Suppose x" is not an equilibrium. Then it follows from the defini-

tion of x° that I(xu) 4 W . Hence, we must have D(x") e W . But the

lemma states that there exists a non-degenerate interval [x*,xu] on which

the utility function of each 1 e D(xu) ig strictly decreasing. Hence,

for all =z ¢ (k*,xu) , D(z) 2 D(xu) ; and it follows from the superadditivity

of’u) that D(z) ¢ 0. Thus, no z « (x*,xu) can be an equilibrium,

Since x° is by definition a least upper bound of the set of equilibria,

the only remaining possibility is that x" is an equilibrium,

Now suppose %0 < 1 , and hence D(1) e ?L). Since x° > x° =
sup{x ¢ A : I(x) e W)}, it follows that if z ¢ (x,11 , then I(z) 4 .
It mugt therefore bs true that D{z) ¢ W) for otherwise z would be a local
equilibrium, and this is a contradiction since z > x" = sup(E) .

Finally, supposge x> <1 but x° is not a proper relative maximum
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of any voter's utility function, Then since the number of p.r.m. is finite,
there exlsts a neighborhood (xuwé, xu+5) of x" s lying in A , which

1

containg no p.r.m. of any voter. Let x* = x" + 2 & . For any =z e (xu-c, x*)

each voter's continuous utility function wu, has a maximum on the closed

i
interval [z,x*] . Let ui(z) be the largest point in the interval at
which uy takes on this maximum value. For any voter 1 ¢ D(x*) , evidently
ui(z) < x* for all z < x* .

If there were any voter i ¢ D(x*) such that ui(z) >z for some
z e (xuwa, ) , then u would have a p.r.m, at ui(z) , since
ui(ui(z)) ig a relative maximum on A , as can be seen by examining uy
in the neighborhood (u,(z)-8, B (z)+8) where 0 <8< minfu, (2)-z, x*-u,i(zﬂ ,
and, ui(ui(z)) 1s not a relative minimum since every neighborhood of
ui(z) will contain a point w such that ui(z) <w< x* for which
ui(ui(z)) > ui(w) by definition of ui(z) . But ui(z) cannot be a p.r.m.,
since it lies in a neighborhood which by hypothesis contains no p.r.m. of
any voter, Hence, it must be true that for all 1 e D{x*) s ui(z) =z
* *J

, i.e. that u is strictly decreasing on [x“»&, X

.

for all z e (x -8, x i
This implies, however, that D(xu)'g D(x*) . Henca, from the super-

additivity of QL) and the fact establighed previously that x* > X" implies

D(x*) e W), it follows that D(x") e W . This is also a contradiction,

however, since we have just shown x" to be an equilibrium, Hence, x"

must be a proper relative maximum of some voter's utility fumction. Q.E.D.

In concluding, let us consider the relation between our agsumptions

and result, and the well-known '"single-peakedness' condition. Though in
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principle the usual definition of single~peakedness is slightly more general,

for our purposes we can define the concept as follows:

Definition., If the set A of alternatives satisfies Assumption I, and if
for each 1 ¢ N, the utility function u, is strictly quasi-concave over

A , then the players have gingle-peaked preferenceg over A ,

Single-peskedness is thus a special case of our ("finite-peakedness")
Asgumption II, since it 1is eagily verified that any strictly quasi-concave

function has a unique relative maximum, and hence only one p.r.m., on any

cloged interval. In the voting theory literature, one alternative vy
is said to be preferred by majority rule to anmother x , denoted yPﬁajx ’

if and only if the number of voters who prefer y to x 1s strictly greater
than the number who prefer x to y . Single-peakedness implies that the

(antigymmetric) relation Pma is transitive over A ([1, pp. 75-80],

]
[2]), and hence that (for finite A at least) there exists a maximal element,
or majority winner, in A . 1In a majority game (that is, a game in which

the winning coalitions are thogse with more than n/2 members), x

meaj
implies x 1s blocked by y , in the gsenge defined in Section IXI. Hence
under single-peakednesgs a majority game will have a non-empty core (if A

is finite), This result can be generalized to other simple games, however,

as follows:
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Theorem 2. A simple game whose players have single-~peaked preferences

possesses a core.”

*A related result of Wilson's {9, pp. 9-101 is that under single-peakedness
(defined in glightly more general terms than we have defined it), the "blocking"
relationghip is transitive in any gtrong simple game, that 1is, in any simple
game in which the complement (in N) of every non-winning coalition is
necessarily winning.

Proof. The theorem is not difficult to establigh directly. {Compare the
proof of the first part of Lemma 3 in [5].) It can be more easily argued
here as follows. A strictly quasi-concave function can have only a single
relative maximum on A , and hence only one p.r.m. on A . Hence, Agsump-
tion II ig satisfied, and from Theorem 1 the game must have a local cooper-
ative equilibrium, say x° . If x° were not in the core, there would exist
y ¢ A which blocks %° . That is, there would exist a y e A such that
C(y,xo) ={if eN: ui(y) > ui(xo)] is a winning coalition. Let

z{t) = ty + (l-t)xO ; te[C1] . Clearly, ui(y) > ui(xo) and quaszi-
concavity of u, imply that for all 1 e C(y,xo) s ui(z(t)) > ui(xo)

for all t e {(0,1] . Hence, C{z(t), xo):g C(y,xo) and from superadditivity
of W 1t follows that Cc{z(t), xo) ¢2) for all such t . Thus, every
neighberhood (x°=6, x°+6) of x° would contain a point =z(t') (where

o<t < ]¢-§1;[ 3 which blocks x° ., But this is a contradiction of the
y=-x

fact that z° 18 a local cooperative equilibrium. Hence x° must be un-

blocked and belong to the core, Q.E.D.
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