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EXISTENCE OF A COMPETITIVE EQUILLBRIUM

IN A NONSTANDARD EXCHANGE ECONOMY*

by

Donald J. Brown

I. Introduction

Nonstandard exchange economies and the associated nonstantard concepts
of the core and competitive equilibrium were first defined in Brown-Robinson
[3]. 1In that paper they proved the equivalence between the nonstandard core
and the set of nonstandard competitive equilibria. In a second paper [4],
using the equivalence theorem for nonstandard exchange economies, they showed
that core allocations in large standard exchange economies were approximately
competitive equilibria,

In this paper, we shall modify slightly their definition of a compe-
titive equilibrium and then prove the existence of this nonstandard competi-
tive equiiibrium. In a future paper, we hope to show that this existence
theorem implies the existence of approximate or "¢"~equilibria in large standard
‘exchange economies,

Qur proof is based, in part, on Schmeidler’s elegant proof of the

existence of a competitive egquilibrium for a continuous economy [8].

*The research described in this paper was undertaken under grants from the
Naticnal Science Foundation and from the Ford Foundation. We ate happy to
acknowledge several very helpful discussions with Abraham Robinson,



As in the continuous case we do not assume convexity of preferences,
since we use a nonstandard analogue of the Lyapunov theorem, on the convexity
of vector-valued measures, due to P. Loeb [6].

Also we have benefitted a great deal from Auman’s seminal papers
[11, { 2] and Debreu's paper on the integration of correspondences [ 5].

For an introduction to nonstandard analysis, as it will be used in
this paper, we suggest the introduction of Brown-Robinson [ 3] or [ 4] and

the references listed there.



IT. Mathematical Preliminaries

Let T be an internal set in a nonstandard model of the reals where
IT| =w , w an infinite natural number, Define QQ(T) as the family of
internal subsets of T and note that Ca(T) i8 a Boolean algebra. Let
[gt1iw1 be an internal set of positive infinitesimals such that :%let

is a finite number. For any non-empty internal subset of T, =say S,

define ut(S) = gsgt . Let ut(p) =0, then <¥(T}, ug> Will be called
te

an infinitesimal scalar measure space, Any n-tuple of infinitesimal scalar

measures, <u't 3 ees Uy > defines an infinitesimal vector measure denoted
1 n

by u, - An infinitesimal vector measure y_ 18 said to be S-convex iff
for all internal subsets of T, S, and all A, (0,1), there exists
an internal subset of S, R, such that E;(R).: Aﬁ;(s) . The following
fundamental theorem is dué to P, loeb [4 ] and is the nonstandard analogue
of Lyaponov's theorem.

Theorem 1. Every infinitesimal vector measure is S-convex,

A set B 1is said to be S-convex if for all ;; ; elB and X ¢ (0, 1),
there exists z ¢ B such that z ~ Ax + (1-\)y . Note that this definiticn
differs from that given in [ 3 i; they are equiﬁalent for 5-open sets.

Let ¢ gWF%*Qn)T y 1.e. @ 1is a correspondence from T to *Qn .
Let T = (f ¢ *ngf is internal and for all t ¢ T, £(t) ¢ o(t) and

] 1 - & = 1
f(t is finit . We define — T = X o - t for some 1,
(t) 1is finice} e in ’”t¢£P {x ¢ in ~ g(t) g ¢ ﬂm

bX
teT



Theorem 2. 1 T ¢ 18 S-convex.
P teT

Proof: Suppose E, ; e'% T, then 3 infinitesimal vector measures
teT

4. > W, Suchthat T, (t)~Xx and Sy ~y, where g =}-g and
. n ter ¥ roT ey =

TN =£~ f for some g, f ¢ nco . Consider the infinitesimal measure
E; = {"-v’ 'In> on J(T) . By Theorem 1 it is S-convex and J(ﬂ) ~ <0, 0> ,
;I(T) =<;;,;> . Hence for any A, O0<A<1, (I8 ¢3(T)) such that
1(8) ~ Ng(T) = <Ax, A\y> . Therefore »(T-5) ~ (1-A)L(T) = <(l-A)x, (i-A)y> .

Define the infinitesimal vector measure

E; for t ¢ S

el
H

then 1,'(T) = JV(S) + g (T=8) o~ Mx + (1-A)Y
19 for ¢t e T~-S

- h g for t g 8§
which is a finite vector. Hence = o where h =
f for t e TS,

which implies that Ax + (1-A)y ¢ ;];- T .

oo 1s said to be internal if the graph of ¢, [<t,§>[t e T, X e (N

is internal, ¢ is said to be internaily bounded if there exists an internal

*

function g ¢ Q§ such that for all t ¢ T and for every x e o(t) ,

X< g(t), and g(t) finite for all t ¢ T .

Theorem 3, If ¢ 1is internal, internally bounded, and for all t ¢ T,

o(t) # 9, then = 5 o(t) #P .
" teT



Proof: By transfer there exists an internal selection, £ , where
f(t) ¢ o(t) for 2ll t ¢ T . Since ¢ is internally bounded, £(t) is

finite for all t ¢ T .

We will need several notions of convergence and sequential compactness.

* . * *

let ¢ be a sequence in *U taking walues in
If @ is internal, then x i3 said tc be a Q-Lim of ¢ or ¢ Q-converges
to x iff (Y8e™ §>0(Tpe M¥Vme  Mu2n =>|pm - x| <4,
x 1is said to be the EF-Lim of ¢ or ¢ F-converges to x iff

(VseR §>00(3n e N)(Vme N)m>n => |p(m) - x| <4 . Note that the

definition of F-convergence does not require that ¢ be an internmal sequence.

A subset B of *Rn is said to be Q-sequentialiy compact if every
internal sequence of elements in B has an internal subsequence which Q-
converges to a point in B . A subset B of *Rn is said to be a Q-compact
get if every internal cover of Q-open subsets has an internal star finite

subcover. The @ and S topologies are defined in [7].

A subset B of *RF ig said to be F-sequentially compact if every
gsequence of elements in B has & subsequence which F-converges to a point
in B. B is Scbounded if (Ir ¢ RI(Wx ¢ B)|x| <z .

We note that a set B I8 S=closed iff it is closed under F~Limits.

Theorem 4. If B 1is a $-convex, S-closed, and S-bounded subset of *

Rn ;
and ¢ ep(B)B i S-convex, S=-closed, and nomvoid. Then there exists a

b g B such that b g o(b) .



Proof: Let Op : °B «TA°B) , where C%p(b) = ®(p(b)) . Then s has
a fixed point by the Kakutani fixed point theorem, call it b . Therefore

b+ 4 ¢ o), where § . 0., But (b} 1s S-closed, hence b ¢ (b) .

Theorem 5. (Robinson) Let {At}tg'}? be an internal family of nonempty sub-

sets of *Rn and B = X3 At » the internal set of internal selections from
teT

the At . Suppose {;t.‘th an internal function such that (Yt ¢ T)(d Et e At)

Et '-"-;t » then there exists g ¢ B sSuch that Yt ¢ T > g(t) ~ ‘;t .

Proof: The following sentence is true in our standard universe, U, for
every positive § ¢ R : (YT c N)(Y {Atlte,r)[(f € R;_rl) AN (Yt ¢ T)(E?l'bt ¢ At)

(J£¢e) = b | <8) =>(Fege XAV Ee D(alt) - £(t)] < §)] . Hence
teT

this sentence is true when translated inte *y s our nonstandard universe,
This implies that for every n ¢ N, agn ¢ B such that Yt £ T|gn(t) - §t]
< 1/n . Hence we have a sequence ¢ : N« B 8.t. m(n) =g . Extend to ¢ ¢ ¥*N-B.

Hence Ty ¢ *N = N s.t. g ¢ B and lg\)(t) - ;t] < 1ify .



I1X. Definitions and Assumptions

The nonstandard exchange economy, 8?0 ; wewill consider is assumed to
have the following properties:
(i) The function indexing the initial endowments, 1I(t) , 1is internal,
(ii) I(t) 4is standardly bounded, i.e. there exists a standard vector
?0 such that for all t, I(t) 5_?0 - I(0) 0, i.e. I(t)
has at least one non-infinitesimal component,

- i =
(iii) = ¢ I{t}ig 0, i.e., each component of 1 w I(t) is noninfinitesimal.
W oteT W teT

(iv) The relation, Q , where Q = {<t, >>t et > ¢ *Qn x *q )
is internal. For all ¢t :
(@) >} is a partial order
() If x>y then I%§
- - - % = -
(y) >, is Q-continuous, i.e. for all x, y ¢ 0 {z ¢ Qn|z > 71
and {; [ *inz >f z} are Q-open subsets
(8) For all x, y ¢ *Qn, ifx Ly and x>y then for all
Veunlx)and veu(y), w> v.
x>y Lff weu(x), Veu(f) implies that w> V. Note that this
definition differs from [3].
An assignment is an internal function from T , the set of traders,
) *
into " .

An allocation is a standardly bounded assignment Y(t) from the set

V] "
of traders {1, 2, ..., ! into *Qn such that L T Y(t) z:l eI .

W=l V=1

A price vector, ;', is a2 finite nonstandard vector such that Sli 0.



The t*® traders budget set, BE(t:) , 18 [x ¢ *Qn[;.E < PpeI(t)) .
y is said to be maximal in Bs(t) if Y e B5(t) and there does
not exist an x e Bf(t) such that x >>f ; .

A competitive equilibrium is defined as a pair <$;x> s where p

is a price vector and X an allocation such that there exists an internal
set of traders X where [K|[/ya~ 1 ; X(t) is maximal in B;(t) for all
teKo

That the above assumptions are consistent follows from the consistency

lemma proved in [3].



IV. Theorems

k3 n
P={pe*i|vpr ~1, P={Pec*y| vy =1
Wl = Py fennmi

M={xe*n |X<R(T = £ 1i(£))e}, where ==(1, 1, ..., 1) and K
~ o j=l ™ et
a standard integer
— — n 1 -_—
M={Xe* |X<R(s = ¢ 1i(e)d)
§=1 " teT

"ﬁ“(t) = [;!- e *ing';'s ;ol(t)} 3’ Bi(t) = {; e *Qn]i;-; S ;.I(t)?

Cc=(t}) = Ba(t) nM, Cﬁ(t) = Bﬁ(t) nM

A X-bounded partial competitive equilibrium is a pair <p,X> where
Eﬁ 0, X is an allocation, and for each t such that p.I(t) 30 the
peint X(t) 1is maximal with respect to t in the "K-bounded budget set"

Eg(t) . By maximal in ﬁr(t) we mean maximal with respect to >> .
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Principal Temma, For all K ¢ N, if K > 1 then under the assumptions

of Section III, there is a K-bounded partial competitive equilibrium.

Proof: Let

% e “d,ﬁ(c)[QE is maximal in E.ﬁ(t)'t if p.I(t) 70

Do(t) =( _ -
P Es(t) if PoI(t) x O

fx ¢ C )Yy e C=(t), mot ¥y > X} 1f p-I(t) > O
B(t) = LA P t
P Cx(t) 1f PeI(t) =0 .

Next we shall define the set-valued functions

miM=P, g:ﬁ-oﬁﬁ, @:P-’ﬁ; # ¢t P M

~ = - g o = =] - - 1
B ={pePlfae? P(x-= TI()) >q &= % I(L)
" oteT ~ teT
- = - - - 1 — - 1
w(x) = {p g PIVQe B, pr(x-= vI(t)) 2q(x~-= 5 I(tIN
%P = {x ¢ *Qn[B an assigmment X(t), E,_.._’% W X(t) and Yt ¢ T, X(t) ¢ '1‘)'3(1:)'1

teT

=1 s X(t) and VWt ¢ T, X(t) ¢ D=(t)}
HY teT P

"

$(B) = {x ¢ *’inﬂ an assignment X(t),

Finally we define 8 : PxM~Tx M as E("ﬁ,;) = ?5(;) X Tf;'(.ﬁ) . We shall
show that § fulfills the conditions of Theorem II.4 and censequently has
a fixed point. Suppose <p,x> 1is a fixed point of J , then there exists

an assignment X(t) such that X~ = © X(t) and X(t) e Sﬁ(t) . We need
0 teT
only show that 1 T X{t) ~ L 5 I{t) to complete the proof.
o teT L feT



i1

X(t) ¢ '530:) « Ts(e) © By(t) implies thac P-X(t) < BoI(t) . We
shall show that p.X(t) ~ P-I(t) . Suppose p-X(t) 3 P-I(t) and p-I(t) 70~

Then X(t) maximal with respect to >>  in Eﬁ(t) . K>1 implies that

n
R( ¢ 13(e))e 5 1(e) since Ve g1, 1) 30 . 31 such that pl 30
j=1
n j _ . _ n _
and K( s I (t))ei Xl(t) . Because if not p-R( % Ij(t))e ~ P»X(t) which
j=1 j=1

n _ -
contradicts ¥( % IJ(t))e }f I(t) . Therefore d¢ i 0 such that pie < p«I(t)
3=1 ~
a— n 3 i w— —
= peX{t) and ¢ <K( ¥ IJ(t)) - X'(t) . Consider X(t) + ce, , where e,

has a 1 in the ith place and O elsewhere, then p-(X(t) + egi) < p.I(t)

and X(t) + ee, < K{ ¥ I7(t))e . But X(t) + eZi e ?;'E(t) , and

i se1
X{t) + eEi >>_ X(t) vhich contradicts the maximality of X(t) . Therefore
we have shown that ‘f)--x(t) ~ ;.I(t) .

Let b =;1- % X(t) -+ £ I(t), then P-bm 0. Now by the definition

Y teT Y teT
of §, (YdaeP)0npb>q.b. Let 'é[='€i, then 0 >e .b =b",
i

ie. (Yiwl<o, 1£ b §0, then p' L0 ; since if (1) such

i

that b, § 0 and p 70 this would imply that p.b5 0, a contradiction.

For each i s8uch that bi i 0, let S: = {t]Ii(t) - Xi(t) > ;1]-'-1 and

n
s, = 18 .

ngN

Suppose (Vn ¢ N)[S?I/m ~ 0, then (3 n, ¢ N) such that except

1

for at most a negligible set of t ¢ T, Ii(t) - Xi(t) < ;—2 '-bi . Hence
0
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Loty - tteeyy > - nii pl, bur bl =l pxle) -1ty , tee.
L teT ~ 0 w CeT
i i n n+l m ,
b” 3 b7, a contradiction. Since 5;c 8, forall ng¢ N and |81/ £ 0

for some m ¢ N, it follows that there exists o ¢ *N - N such that

Ve v v
Sil = [tht(t) - Xi(t) > -\;]-”- } , where Sii internal, lSii]/w £ 0,
i
- Vi Vi i 1 i 1
Pri(t) ~ 0 for all teS,~, and S, 28,7 . Let ¢ = v (I (t) - X(t))
' b
i
thi
aow bT =% ¢ (xteey - they $ 0 implies that bl = -bt . Bur
W oteT
[
b=y @ -Xen i s dtw-xenLt o tte oo =
’ Vi ’ Vi ’ Vi
tesi th/Si tesi
Therefore fbi[ ~ ¢t
: bt i i vy
X(e) + 4575 (17(8) - XN(E)) , te s,
c . 3
Let Yi(t) = : vley = x3(e) for 141
Y]
x*(t) , edst

Since p ~ 0, it follows that p-Y(t) o P°X(t) ~ P-I(t) . Hence

i

T(t) ¢ iﬁ(t) . |bij ~ ¢ implies that [bi'[j.::i ~ 1 and therefore

n o3

vhe) o 1He) $RCSTIIE)) . Hence ¥(t) ¢ T(r) . Simee I v(e) y
j=1 W
X $ I(t) , we see that Y(t) is a competitive allocation.
wt T
€
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In order to apply our fixed-point theorem, Theorem II.4, we must
show that T x ¥ 1is S-convex, S-closed, and S-bounded; and that § is
S-closed, S-convex, and nonvoid. That ¥, ¥ are S-convex, S-closed, and
S-bounded is immediate, hence their product has the required properties.

It is sufficient to show that 7% and 7§ separately satisfy the conditions
of Theorem II.4.

From transfer it follows that (p(;) is nonvoid not only for all
X ¢ M but also fer all x in ¥ . Since m(;:-) c_:EE(E) y we see that
EE(;E) ig nonvoid. The S-convexity of ?5(3?) is obvious. We now show
that Gy 1is S-closed. Suppose <§:'n, §n>e Gy, and <k, 5n>
UL BN

Suppose p § H(x) , then Jq ¢ T such that  p.(x -'-'1;- T I(t))

- o~ 1 - - 1 teT
q {x - = v I(t)) . Hence = ¢ N such that p .(x_ - = § I{t))
" motm oy
" tegT ¥ teT
i Eo (E - L T I(t)) which contradicts the definition of the sequence
i ) teT

Lemma 1, (¥t ¢ T)p-I(t) 30=> "ﬁ.ﬁ(t) £ 0.

Proof: If S.I(t) i 0 then DE(t) # 9 by transfer. But D-ﬁ(t) g;_'ﬁ-ﬁ(t) .

Consequently 'f)'-ﬁ(t) £#0 .

Lemma 2. nﬁ-ﬁ(t) is S~closed.
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E-Lim o <p,x>, X ¢ 35 (t) . Therefore ;n e ?3'3 )

Proof: let <; R x>
n n

which implies that x e 'EE(E) . If E-I(t) ~ 0, then x e ﬂl%.(t) . 8o
suppose E-I(t) i 0 . Hence (EI N, e N)(Vn e N)n > n, implies that

Sn-]:(t) i 0 which implies that Qn is maximal in Ef(t) . Suppose

(35; e Eﬁ(t});>>t; , then (Jz ¢ *Qn);>>t X AE-;i P-I(t) . Sc there

is an n; e N such that n > n, implies that En-;s ;n-]‘.{t) and there

is an ny, ¢ N such that n > n, implies Z>>t ;;n . Let m= max{no, n, n21 s

then ;{—m cannot be maximal in E’p’ (t) , a contradiction.
m

Lemma 3, E(B) #P and "!;(E) is S-convex.
Proof. W(E;) =r-:'; b 'Bﬁ(t) » hence T;;’(E) is S-convex by Thecrem IT.2.
teT

11;(5) is defined for 5 e 'E and 1],('5) c_:_?ﬁ‘(i;) for all 5 P P . Since

% (5) is nonvoid by TheoremII,3, hence '\I{(E) F0.

lemma 4. F(p) is S-closed.

s

where x_ ¢ 4() =< v B= (t), {i.e.,
n n !

Proof: Given {<pn, xn>'}
teT 'n

neN ’

o

(Vn e N);n ~ L by Xn(t) . By Theorem II.5 without loss of generality we
=
teT

may assume that Yn e N, Xn(t) e C‘ﬁ (t} , the internal set of internal

X
N n
teT

selections from the C5 (t) . Extending the sequence {<5n, Xn(t)>1n€N
n

to ['<-1;n’ xn(t)y‘ne*N , there exists a vy € *N - N such that (Vm e "Ny

- = =Lim - -
S.Ul => X (t) e XS Ci(t) . Now suppose that <pn, xn> -:-F;--w-—-—»> <p, x>,

teT
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then (v, ¢ *N-M(Vpe™-NMp<Sv, =>F 7 Xal Tx(0).
P 9 teT

Let vy = min{vi, vz} and ¢ : *N - (*N), where op(n) = {o e *Nlp < vy

FteDl(Iye csp(tmvE e Sy AYZ e 5 (R (N> ZAD ()

> 1/n] . This is an internal mapping, hence § : *N - *N where @(n) =
min{y|y e w(n)} 15 an intermal mapping. Finally consider g : *N - *Nn,
where g(n) = 1/8(n) . Since (¥ n ¢ N)g(n) ~ 0, there exists a
£ e *N - N such that (Yy ¢ *N)y < ¢ => g(y) ~ 0 . That is @¢(n) ¢ *N - N
for ali n<e . Hence {(Jdg, ge *N - MVt e DYy e 'E% (t))

p
3v e slé,g(irf')/\ dz ¢ Sl/g(xp(t))); $ 2V Ep»x(c) < 1/g] . 1In addition

P ~Ps E.:l ™ Xp(t) , and Xo(t) e X C_ (t) . Clearly

o W ¢eT teT 'p

Xp(t) ¢ XD- (t) . But by Lemma 2, (Vte T)EE {t) 1is S-closed. There-
teT "o e

1 o
- 5 D(t) .
€ ) P()

"l

fore E z; implies that X {t) ¢ xs—(t) s i.e.

P o teT ¥ " oteT
Theorem. Under the assumptions of Section III, 8, has a competitive
- "

equilibrium,
- n
Proof: P ={p ¢ *in % Py = 1} is S-closed and S-bounded, hence every
i=1

sequence {;k.‘keN in P has a subsequence which F-converges to some point
in P . In particular consider [<pk, Yk>7keN, K> »  where <p,, ¥, > is
a k=bounded partial competitive equilibrium, Since Ek ¢ T for each %k,

we can without loss of generality assume that E‘k —F-:-Ei-’ﬂ-> E , where P e P .

a - - - - - -
Let Ak = ft ¢ T|3z & CFk(t))(VW € Slln(z)AVz € Sl/n(Yk(t)))w >t z

A 3k-1(t) > 1/n} . Then (Vk, n g N} A: is internal, A.zc: Aknﬂ , and



v
AQ negiigible. Therefore (Vk e (3 vy € *N - N)Akk is negligible.

o v
Let Bn e !JA_kk s then (Vn e N)Bn is internal, Bn < Bn"‘1 s and B

k=2
o5 o
negiigible. Hence there exists an internal B such that ] lJA.lr: <« B
k=1 n=1

and |B|/ya~ 0. Let V=T/B.
Progf: Ilet 5, = ft ¢ V|P-I(t) >1/n} for n ¢ N . Suppose s, is negligible

for all n g N, then Jy ¢ *N - N, rjsnc_:sv and |sv[/,,,,,:0, There-~

ngN
fore L ¢ PI(L) =% 3 PICEY +% v PoI ~ 0, which contradicts
W oteT P teS " oteT/S
v v
L T OI(t) “;E 0 . Consequently (3 n, e N)(Vn e Mn > n, => Is_| /1w i 0.
e teT ' ) n

n

2 j =~ % T om

Let o =ygoT X S {TINt)), A={x¢ qQ|x<ael . Let
in teT j=1 Qn

A, = {t e SnolYk(t) 4 AY, then A, 1is internal, since A and Y (f)

[ -] [ -]
are internal entities. Suppose M ] Ak =@ . This implies that
371 k=]

(Ve e S, y¢3 kt e N(Vk ¢ Wk > kt == Y‘k(t) 4 A . Counsider the map
1]
w : Tx N= *Qn , Wwhere gp(t, k) = Yk(t) . Extend ¢ to an internal map

g from T x N - *Qn . Since (Vn e N)-]* s alnt) ~ L T I{t) there
" teT " oteT |
e [ .

exists a y e *N - N such that for all £ e *N if g <v , then

1
L% a(et) T ICE)
W oteT Y
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a(n,t) if n <y
Let {(n,t) = . For each ¢t ¢ Sn ; let
8(v,t) 1if n >y 0

2 s * .
j, =minfj ¢ N §(i,t) e A, > K.} . Then {]t}tesn is a star finite

0
internal set and hence has a smallest element, call if vog+1l . Note that

gi{n,t) for n< v
votle *N - N. Let X (t) = . X, (t) § A implies
#lugp t) for n >y,
i
that ¢ Xn(t) > ¢ . Since for each ¢t ¢ Sn ;s there exists kt e N such
i=1 0

that for all k ¢ *N, 4if k> k, then X, (t) 44 ; let g =maxfk |t ¢S )
0

m c
then we see that min by xl(t) >a for all t ¢ Sn « Therefore

-

,GSPSNO =1 " 0
1 i IS’“o’ 1 i
" VN min (% Xn{t)) > " Q. But " < min ¥ Xn(t) =
teS_  g<n<y, i=1 teS.  p<n<y, i=l
L ] g V]

min L 5 (pxf@)N < min L s (wxi(e))~ min o5 (r i)

Hd

<n<yn ¥ teS i=1 © ~ oSSy, P teT i=1 U <oy, W teT i=t
="Vg n ="V ~"=vp
0 als_ |
-1 v(y Il(t)) = 9 . Hence L > 1 which contradicts our assumption
L o 2y 25
eT 1=l
o o - -} o -
that M 1JA =9 . So suppose t, ¢ M I|JA , then {¥ (t,)} has a
. . k 0 k k' 0
j=L k:J j=1 k=j

F-limit point in A , where A= {; € *le < cx'g? ; S8ince 2 is F-seguentially
compact, <Call the limit point Yo °

By Theorem III.5, without loss of generality, we may assume that
Yn ¢ N, Yn(t) exycﬁn(t) s the internal set of internal selections from

the C.ﬁn(t) . Extending the sequence {<pn, Yn(t)>‘}neN to {<Pn, Yn(tnne*N

the following conditions hold:
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W) Fy, e *N - (Ve e "M S v =>7,(t) e X C5 (F)
3 Py

2 (Fv, e *n-M(VE e ME <y, =>= sy (t) o= 7 ICE)
2 , ¢ ' 2 Mogop S W ey

(3) (Jug e *N - M(VE ¢ "N - Mg Sy =>py =P

@ Py pe -V e ME Sy, => (Vee DIVy e G ED
3

(Av ¢ sl,gG)a 3z ¢ sl,g@ﬁ 3z Ai‘ga:(t) < 1/p

5) (Vees My, e* - M e "We Svy =D Po¥, (8D & PeI(E)
0 0

EE T8

Let y+l = min{vl, Vos Vg Vg vto} and consider <p, Yv> . Suppose for

some j that p'] ~ 0, then (Vm g TN - Ny < v+l => pg ~ 0 . Alsc
'

BN - . . 5 .
(e ¢ *N ME < vl => p Y(to).-..p I(t)iO. P, = B,y Limplies

g
that Y\)(te) ¢ Cm (to) , since Yt e T, T (t) is S-closed. Let
Pys1 Pys1
m
Y o= Y r ® = J
z(t@, Y”(to) +E5ej , then z(to) e CF (to) , where P v 1 (t Y} .
v+l =1
Z(tﬁﬁ)>>t@ Yv(tO) , and pv+1-I(t0) -~ P-I(to) i 0, imply that

IS Eﬁ\,ﬂ(to) such that w>> QY (tg) « But Yv(tﬂ) ~ Vg Ywi(t@)

which contradicts condition (4) above. Hence P ?:E 0.

Therefore there is a § i 0 such that for K sufficiently large,

say K>K0, we have plizs, i=1 2, ..., n . For sucha K, for
i i_= = o i
each x e B—- (t) we have 5x < pK-x < Pox <P °I(t) < 5 I (t) ==>x
Px ~ ™~ i=l
I ] i Py
E v I(t) . Choose K>1/4 and K > Ky then x” <K P I (t) ==>
= EE

i=1 ~od
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n n
x<K(¥ Ii(t))e > Bs () fx e Qn]x <K(T Ii(t))?t . We claim that
~ =l K ~ o i=l

<pK, YK> is a competitive equilibrium. Suppose pK-I(t} i 0, then YK(t)

is maximal with respect to >>t in Eﬁ (t) , according to the definition
K .

of K-bounded partial competitive equiiibrium. But we showed above that

EﬁK(t) =E§K(t) . If EK-I(c) ~0 and P, > 0 then I(t)~ O and so

B (t) iz u(0) . Hence Dm (t) =4 (0) and Y, (t) =0 . Since 0 1is
pK PK K

maximal with respect to >>t: in {0}, the proof of the Theorem is complete.
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