COWLES FOUNDATION FOR RESEARCH IN ECONGMICS
AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Connecticut

COWLES FOUNDATION DISCUSSION PAPER NO. 317

Hote: Cewles Peundation Piscussion Papers are preliminary
materials circulated te stimulete discussion and
critical comment. Requests for single copies of a
Paper will be filled by the Cowles Foundation within
the limits of the supply. References in publications
te Discussion Papers (other than mere ackmowledgment
by & writer that he has access to such unpublished
material) should be cleared with the auther te protect
the tentative character of these papers.

DUALITY THEORY OF CONVEX PROGRAMMING FOR INFINITE NORIZON ECONOMIC MODELS
Martin L. Weltzman

September 27, 1971



DUALITY THEORY OF CONVEX PROGRAMMING FOR INFINLTE HORIZON ECONOMIC MODELS*

by

Martin L. Weltzman

Summary

The present state of convex programming theery for infinite horizon
free endpoint economic models is not entirely satisfactory. Roughly speaking,
classical duality principles can be shown to apply to finite subsections
of an optimal trajectory and this avoids classical inefficiencies of the
finite horizon variety. But it has never been completely clear how to avoid
the kind of non-optimality which results from piling up too much “left over"™
capital in the limit. wWhile certain rule of thumb "transversality conditions"
have been proposed by amalogy with finite horizon models, they have not in
general been put on a rigorous footing and it ie mot clear which of them
are valid under what circumstances. In this paper a rigorous treatment
of the subject is undertaken. TUinder a set of general axioms, a certain
limiting trangversality condition in conjunction with other duaiity condi-=
tions iz shown to be necessary and sufficient for infinite horizon opti-

MIityo
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Introduction

An important subclags of convex programming models of spectal interest
to mathematical economists and operations researchers can be characterized
by the Markovian property: the choice of options available at any parti-
cular time depends only on the values of the state variables at that time,
In other words, all of the influence of past history on the present is sum-
marized by current state variable levels.

With such programming models, it is often not clear how to appro-
priately fashion an "end” to the underlying economic procesg. For concrete-
ness, this dilemma is illustrated by means of the standard model of optimal
economic growth (although all remarks could be given a more general char-
acter). Any attempt to maximize “utility" ("gain™) on an arbitrary finite
interval collides with the problem of evaluating the capital stock (state
variables) at the end of that interval. Imnsofar as the worth of capital
is defined by the utility of consumption to which it gives rise, precise
evaluation ef this sort must await the solution of an analogous problem
on a second interval. Repeated application of this reasoning leads to an
infinite regress. The only way out of this regress would seem to be in
recognizing that the future does not have a definite and forseeable end,
and consequently optimization must be undertaken ever an infinite horizon.
Paradoxically, it is often easier to Solve an optimization problem modeled
on an infinite interval of time than it is to solve the corresponding prob-
lem on a finite interval with arbitrary end conditions,

Unfortunately, infinite herizon convex programming models with a

free endpoint introduce some new headaches which are not present in their



finite dimensional counterparts. For example, the very notion of an "op-
timal solution™ for the infinite horizon case is somewhat vague and must

be carefully and precisely defined. For this purpogse we use a2 “classical™
generalization of the usual finite dimensional criterien based on comparing
convergent infinite sums. The chief headache in the iufinite horizon case
corcerns the existence and form of strong (necessary and sufficient) duality
relations. Duality is of course extremely useful, even essential, for char-
acterizing an optimal solutien. For finite dimensional convex programming
models, as is well known, strong duality relations can be derived. Expressed
with the aid of efficiency prices, the dvality theorem in the finite Mar-
kovian case takes tha form of an intemporal profit maximization condition
betwezan perieds plua a specific type of transversality condition on stocks
left over after the last peried. As we shall see, analogou® necessary and
gufficient conditions can be derived for the infinite horizom case, with

a transversality condition in the limit at infinity playing a key roleel

1me a technical point eof view, showing that a certain transversality
condition at infinity is a necessary optimality condition is perhaps the
bagic contribution of this papér. Roughly speaking, it has been more or
less well known that intertemporal profit maximization plus a certain type
of transversality condition at infinity are sufficient for an optimum,

It is alse more or lesa well known that intertemporal profit maximization
i# a necessary condition, but not sufficient by itself. What is not yet
known, so far as I am aware, is how to state the appropriate transversality
conditions at infinity (whether or net one or another form is a necessary
condition under which circumstances). In many cases of interest in econo-
mics, all of the proposed tramsversality conditions turm out in fact to be
valid, but so far it has been necessary to verify this separately in each
cdase., In the present paper it is established under fairly genmeral assump-
tions that the specific transversality condition which along with inter-
temporal profit maximization is sufficient, is also necessary. Heopefully
this will help to clear the mystery about the role of transversality con-
ditions at infinity.



Definitions and Assumptions

In what follows the index t , a positive integer, will denote the
period of time from imstant t-1 to t . The phase vector X..q € E"
is an n component column vector demoting the state of the system during

period t . At the beginning, x, is considered given and denoted by

0

Eb . In many economic applications, x is understood as a vector whose

t-1
ith component represents the amount of capital of type i available for
use at time t-1 and throughout the ¢Eh period. The "gain” in period
t is denoted by u . By Ygain" might be understood “utility," "profit, "

" etc. depending on the specific features of the problem under con-

"income,
gideration. @Gains in each period are expressed in comparable units, In
other words, all gains are measured as payout values discounted back to
the first period. This is important because economic performance will be
evaluated by the sum of single period gainms.

The amount of gain u, attainable in period t naturally depends
on the initial and terminal states for that period, X .1 and X o The
2n+1 dimensional set of "transition possibilities™ for period t , denoted
Q, » consists of all realizable triples of the form (xt=1’ u xt) .

In other words a transition which yields gain u, can be made from state

at the beginning of period t to state x_ at the end of that

-1 t

period if and only 1if
(xt-l’ ut’ xt) € Qt o (1)

A program [“t’ xt1 is called feasible if for each t it satisfies

(1) and



Xg = X5 - (2)

It is supposed that for all t the set Qt obeys the following
stipulations,
1 1f (x,uvy) th, then x>0, y>2o0.
2 If (x,u,y) e Q, end if x' >x, then (x",u;y) € Q -
3 If (xuy)eQq, and (x', v’y ¥') ¢ Q. , then
Ox + (1=-A)x", M+ (1=Mu', dy + (I-M)y') ¢ Q, for all &,
0<A<1,

04 (030:0) e Qt .

These four conditions are reasonably standard. The first requires
that the state variables (capital) be non-negative., The second is a free
disposal type proposition. Condition °3 is the usual convexity assumption.
The fourth condition is a "nothing ventured nothing gained” statement that
it is possible to start with no capital, do nothing, gain nothing, and end

up once again with no capitaluz

2In cases where the level of gain is arbitrary, condition %% amounts to
a normalization convention under which zero gain is always attainable in
any state. For the utility function in the theory of optimal growth, this
means shifting its level so that zero utility is an absclute floor. 1In
such cases %4 is not necessarily an empty condition because in order for
(.-}
the theory developed in this paper to be applicable, Y u
t=1
tampering with the level of utility can in theory alter the convergence pro-

t must converge,;

o
perties of ¢ u . In the standard case of discounting the same utility
t=l

function by a constant rate (i.e. u = atu(c) where @ <1, U 1is a concave

utility functionand ¢ {8 the consumption vector) it is easy to see that
-]

maximizing g-at[U(c) -~ U{0)] gives the same gsolution as maximizing
tel



A fifth condition will guarantee that a strictly positive state vector
is always "reachable" at any time. This kind of a productivity stipluation
is needed as & means of insuring encugh regularity so that meaningful dual
prices can be formed.

°5 For each t there exists an it > 0 with corresponding
t t
fxfr v}

. satisfying
T 1<t

t t _t
(x-r“'l’ “_r: xT) € QT 1<r<t

Let S be the class of all summable infinite sequences ([st} e S

T
iff lim ¥ 8, existe). A program {“c’ xt} is said to be allowable if
T t=l

-

T atU(C) and that one sum converges if and only if the other does, This

t=l

trick of taking first differences with the worst possible utility level

in order to satisfy ©4 will not work for the Ramsey case of no discounting

(cx = 1) because shifting utility to the form u = u(c) -~ v(0) will in
[}

general result in an unbounded objective function ( ¥ u, does not con-
t=l

verge). In such cases the theory developed in this paper is irrelevant

and although a pricing theory can be worked out by other means, the trans-

versality condition may mot hold.



it 18 feasible (satisfies (1), (2)) and if {ut'} ¢ S . The effect of limiting
attention te programs with summable gains is to introduce a complete pre-

* x*
ference ordering on programs. A program {ut, xt] is called optimal if

it 18 allowable and if for any other allowable program {Et,'it} ,

ﬂ* o
T ut 2 T, .
tal ™ tml ©

It is typically much more difficult to prove that in theory an op-
timal program must exist for an infinite horizon model than it is for its
finite horizon counterpnrt.3 Nevertheless, it seems to be empirically true
that the definition of optimality usad here is broad enough so that optimal

programs turn up for a great many infinite herizon models of interest.

Duality Theory
Under the five axioms listed in the last section, the following du-~

ality theorem holds.

‘Theorem: For the allowable program {u:, x:] to be optimal, it is neces-
sary and sufficient that there exist a sequence of non-negative n-dimensional
price row vectors [pt} satisfying

1° for t =1,

anoughly speaking, the inherent discount rate used to discount (undiscounted)
payouts into (discounted) gains must be at least as high as the inherent
potentisl growth rate of (undiscounted) payouts. Otherwise the sum of one
period gains (each one of which is normalized so that zero gain is always
attainable in any state) may not converge.



E ] *
uy + Pxy 24y + X
(;o’ ul) xl) 4 QI

@

2° for t>2,
& * . & -
up FPXL T Peoq®ea1 2 Y PR T Pe1®eng
(xt_ll ut’ xt) Qt
3o for t = o

tf: ptx: =0 .

Conditions 1° and 2° have the obvious interpretation that an optimal
transition maximizes imputed profit.s..4 The transversality condition 3°
is a special feature of infinite horizon programming models with a free
endpoint. It can be interpreted as saying that in an optimal program the
present value of "left over™ capital wmust eventually go to zero. This
limitation on the rate &t which capital ought tc be accumulated is very
important in problem solving applications. 1In order to specially emphasize
the non-trivial character of 3° and to examine some other issues, the fol-

lowing artificial problem is proposed.

4There are various other equivalent ways of writing the optimality condi-
tions 1°, 29, For example, they could be expressed as a discrete version
of the so-called Maximum Principle (c¢f. Weitzman and Schmidt). The pre-
sent formulation is chosen because it seems the simplest,



An Exampie
Suppose it is desired to maximize

-] ct
z t
t=1 (148)

under the conditions

¢, +z, < (1+B)zt_1

for B> ~1 ., 1In this problem z 18 a kind of fictitious circulating
capital and ¢ 1is consumption. The coefficient P 1is simultaneously
& discount facter on consumption and the capital rate of reproduction (de-
cay if B<0) . Gain in period t 1is u = ct/(1+B)t . The set of tran-

sition possibilities for peried t 1is
= - t
Q, = [zt_l, . zt|nt ctl(l-l-B) s e, +2, S (lw)zt_l, ct_>_'0, zt_1_>_0, ztzﬂ} .

It is easy to verify that conditions °1-°5 are fulfilled. Let q_2>0

be the dual "price" of z, - Applying 1° and 2°, an optimal progrem if it

exists must for all ¢t

maximize +q.2 - 4q.q%,. (3)

(148)°

under the constraints
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e, +z, < (MB)z,_; (%)
e o 2.y > 0 (5)

and the additional constraint

zg =1 (6)

for t =1,
It follows immediately that for an optimal solution inequality (4)

can be replaced for all t by the strict equality
c, tz, = (1+ﬁ)zt_1 R (7

If an optimal solution of (3)-(6) is to exist, it must be true for

all t that
Q. yy S 9/ (148) (8)

(if not, "blowing up” Zo1 and z, leads to an unbounded objective func=-

tio‘ﬂ)e

It is easy to verify that

1
a+)t

9, 2 (9)

1f (9) does not hold, an optimal solution of (3)-(6) will not exist ("blowing
up" ¢ and z_ would lead to an unbounded objective).

t+l t
Now suppose that (8) does not hold for all t with full equality.
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Let <+ be the first time that (8) holds with strict inequality. That is,

Gy = 9,/(148) 1<t<q

91 < q,r/(l-m) . (10)

From (9), 941 > 1/(1+B)T+1 + In conjunction with (10), this implies

that

q > , (11)
T
Inducting (11) backward on (8),
¢ >——7 1<ts<r.
(148)

The corresponding optimal solution of (3)-(6) is e, = 0, z = (1+B)zt_1

(ie. z = (48)°) for L<t<r. Hovever, from (9) and (10),

1

H;;m Sq.4 < qu(1+6)

to which the corresponding optimal solution of (3)-(6) is 0 = ¢ LI

S R |

=z . This contradicts z = (148)T . It follows that
ey = q./(14p) (12)

which has the solution

99
= - (13)
(1+8)

9
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vith qq > 1 (from (9)).
Suppose now that 9 >1. With (13) holding, the corresponding
solution of (3)-(6) is ¢ =@, z = (LiB)z,_; (l.e. 2z = (48t )y,

veing (13),
U = 99

which, in the limit as t -« , is 2 direct violatiom of 3°.
It has been shown that if an optimal program exists, the dual prices

must have the form

= —--—]'—-aau- . (14)

q
£t

Actually this result is intuitively obvious from some simple considerations
of capital theory.

With the prices (14), a solution of (3)-(6) would be any solution
of (4)«(6) which satisfies (7). But this does not mean that any solution
of {5)-(7) is an optimal program because it would only be satisfying 1°

and 2°. For example, the program c_ =0, z, = (1+B)t is hardly optimal

t
--it satisfies 1° and 20, but not 3°. Anm optimal program can be completely

characterized as follows. A program satisfying (5)~(7) will be optimal

if and only if it satisfies 3°, i.e. iff

e
1lim r
tws (148)

‘00
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Further attention will now be restricted to paths where consumption

and new circulating capital are split in the proportions (l-c)/x. That is,

z, = a(1+ﬁ)zt_1

cg = (1) (148)z,

for 9<a<1l. It follows from z, = 1 that

z, = (148)° (15)

e ™ (l-a)at(lw)t .

As was indicated, such a program satisfies 1° and 2° for any a, 0<a<l.
But from q.z, = at it will only be optimal for @ < 1 since otherwise
32 will be violated. It can be seen directly that ; u, = 1 fer
0<a<1l, but that ;ut-o for a=1., el
t=l
The above example with 0 < o < 1 1is uwseful in showing the wide variety
of optimal limiting behavior which can be handled by the theory developed

here., For B >0 and a(l4B) > 1, from (14), (15) in the limit as t w e

z =, q =0, (1)

z =1, q-!-ﬁ. (i)

z =0, q =0, (ii1)
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For B =0, a(l48) 1is necessarily < 1 implying

z =0, q =1, (iv)
For ~-1<pBp<0, a(l+#) is necessarily < 1 implying

z =0, q =o. (v)

A8 is obvious from this set of examples, either quantities or prices
can go to infinity in the limit without in any way impairing the theory
developed in this paper. The common aspect of these five different optimal
programs is the limit of zero for pexu . Note that (iv) and (v) definitely
contradict the notion that

lim P, = 0

Lotces

18 any kind of a generally valid transversality conditiom.

Proof of the puality Theorem

Sufficiency:

let {Ti't, ':‘:'t] be any allowable program.

T T T
* ~ o tu* dy %
T U tEIut _(ul + plxl) (t‘:'l + pli’l) + tgz[(mt + p

* o *x
A A L

~ *
- (ﬁt PR pt-l‘itml)] + pra'r xp)

2 P&, - i'*T) (from 1° and 2°)

Passing to the limit a8 T ww , from 3° and the fact that p X, > 0 it
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follows that
o * [}
TuE> Tu .
tal © ™ ¢l ©

Necessity:

Let E:_ be the n-dimensional Euclidean non-~negative orthant, i.e.
n n
E+a='{x|er, x>0},
Consider for each t the following improper function @, which maps

Ei into the extended real halfline [0, 4=]

@
@ ,(x) =s8up 3 wu (16)
r=t4l T
subject to {u ) e S (17)
T a>t+l
(x'r“'l’ u'r: xT) e QT T2t (18)
x, = x. (19)

For each x ¢ E: s cpt(x) is well defined and non-negative (although it
might be infinite) because from %2 and % the following is a solution of
(17)=(19): X "X, x'r -0, w - 0 for s 2> t+l .

From °2, :pt(x) is non-decreaging in x . From 03, it is easy to
verify that cpt(x) is an (improper) concave function of x . (cpt(x) is
improper concave if for any x', x" ¢ E: s 0<A<1, (a) Qt(x’),

0, (x") <o implies o (Ax' + (1-M)x") 2 dp (x') + (1-N)p, (x") ,
(b) @t(x') = o or cpt(x") = o implies th(k' + (1=A)x") =w .) 1In

addition, it is not difficult to verify that the function sequence [wt(x)‘}
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must satisfy the following fundamental equation of dynamic programming

sup
q’t(x) - u

y f{u+aq, ). (20)
(x: u, Y§8Qt+1 t+1

(If not, there is an immediate contradiction with the definition (16)-(19).)

*

Note that for x = x_ the operator max can replace the operator Bsup

t
in (20) and a solution is (u* , x*. .)
S t+l’ Tt4l” °
From the fact that ;‘t is attainable in period t (cf. °5) it fol-

lows that cpt(;: t) <ew . {(Otherwige there is a contradiction with optimality
of th§ progtu{ {u‘:, x’:‘] .) Let x' be any vector satisfying x’ > 0,

x' # ;t . From ;‘t >0, it follows that there exists a , , O <L; <1,
such that ;‘t >px" . Then it = px' + (l=3)x" , where x" E(§t=uz°)/(i-u)

> 0 . From the (improper) concavity of th(x) it follows that
o &) > up, (x') + (1, (x") .

(Here pw = (ly)e = o, rie meir mo for any real r, owinm = o, and
o
®>n ,) From q,t_(x") >0 and gpt(xt) <ew it follows that qpt(x“) <.
In other words cpt(x) is an ordinary (proper = finite) comcave function
n

on E +°

A slight detour is now taken in order to prove a set of lemmas which
will culminate in allowing the construction of duality prices for the func-
tions {op (x)} .

pefinition: Let £(y) be a function defined on Ei . let y*
be any point of E: . The function f£(y) is said to have finite steepness

at the point y* if
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[E£(y) - £G)]
T My T S
YeE+_

yhy*
Here and in what follows the norm ||.|| 1is understood to be Euclidean.

The lemmas will end up proving that ¢t(x) is of finite steepness
at x: . As Gale has shown (cf. Gale) this concept ies of basic importance
becauge it can be used to justify the use of dual Kuhn-Tucker prices with
the usual desirable separation properties.

Lemma 1: Let f(y) be a concave function defined on E: #&nd bounded
from below. Let y* be any poimt of E: . Then there exists a number
7 such that [£(y) - £(y*W|y - v*]| > 7 for all y E: , yEyY* .

Proof: Without loss of generality we take zero as the lower bound
on f(y), ve Ef_ + In this proof, vector superscripts denote vector com-

ponents.

Define 8 > @ as follows:

1 if y* =0

8= 9 minfo™Y) 1f y* s
ot >0

If 0<g<|ly - ¥l ,

£(y) - £y7) o _ £G%) |
ly - y*| = &

Define ; by the following equation
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Note that ; 2> 0 . (Examine the above definition component by component;
15 Y =0, wivial; 1f N >0, then [yl - By - v > -1
and 7 - 5300

Suppese 8 > ||y - y*|| . From the identity
y =y lL:_G.ztU_ + ,*( - ll.r_;a_r.ﬂl)
and concavity of £(-) it follows that
i) 2 =l Gy 4 <1 - Jiz—-a—ﬂﬂ) £

which implies

£y) - £G7) o _ £G™)
[y = y*l| = 8

Setting 7 = -£(y*)/8 concludes the lemma.

Lemma 2: If in addition to the hypotheses of lemma 1 there exists

a strictly pesitive vector § >0 and a number M such that

£OF + (1=-My™) - £(7%)
A

<M
-

for all A obeying 0<A <1, then £(y) has finite steepness at the
point y* »

Proof: If y* =%, then y° 1is interior to E:_ and the result
is immediate, Suppose y* £y . From lemma 1, [£(y) - £(3" ¥y - v*I
has a lower bound. We must now prove it has an upper bound as well. Sup~

pose by contradiction that there is an infinite sequence [yk] where
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Y ¢ E:_s Yy ¥ y* such that [£(y) - f(y*ﬂVI]yk - y*]| >k . without loss

of generality we take Hyk - y¥| €1 for all k . (If Hyk - yxll > 1

we can in place of ¥, use ?& = y* 4 (yk- *)/Hyk-y*u since by con-

cavity of £(y) , (£Gy) - £G"N/IF -y*|l 2 (EG) - £*N /iy, - v+
Define the set R = {y|y ¢ E, |ly-y*|| = 1} . Since R 1s compact

and y* + (yk-y*)/Hyk-y*l[ e R, there must exist a subsequence of [yk1 ,

denoted {yj? and a limit point y ¢ R Such that

- y*

y o1 fop - fOm
= --’ > o
W‘J—Tryj-y* PYReY R Ty, - v =
Defining v, by the equation
Yooy _
ET AT T
we have
Y=+ ly G-y + v iy, -yl (21)
where ||v.|| < L,
i =3

Because ; >0, there must exist a ,, , 0<y <1, such that

y' = Ll—_l:‘i >0, (22)
Define
§j =y* + 1y g = v+l (¥ - y*) (23)
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. 71 = uY!
vy® i (24)
=y
=y -y =D+ llyy -y (v' - = ) - (25)

The expression (25) comes from substituting (21)-(23) in (24). Since
0< ||y:l -v*|| <1, ;Tj and the first term of (25) eare non-negative. The
second term of (25) is non-negstive for j > some J because y' >0 and
[|vj|] gjl. Thus y; >0 for j2>J.

From (24), 93 -uy, + (1=',_.)y-°1 where 95’ vy y; e E: for §>J.

Applying concavity,
£G) 2uf(ry) + (-w)EG)) -
This implies (for jJ > J)

£(r,) - £
Ty, = v*

EG) - EOM  EOY - £

755 I 75

<i . (26)
=0

By the hypothesis of this lemma, [f(s‘rj) - f(y*)!/n;j ~y*|| <M.

;*y*H . Combining,

From (23), |3, -vy*Il = [ly;-y*

L1509 O g
) ”yj -Y*” - u

(27)

Due te lemma 1, [f(y;) - f(y*,‘]f”y;«-y*H > 7. Since

Iy =yl G-y*) - uGyy-7*)
= l-u

yy - y*

2

we have
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lyy=v*ll < llyy-*l <ﬂ5—'-z£il—+—‘*> :

If follows that

CGa FOP O e e
"I ] ”

Combining the above and (27) with (26),

109 " 2O vyl (L3l 4y
'Iyd -Y*Il = i o
which is a contradiction with [f(yj) - f(y*ﬂVHyj«=y*” >1.
Lemma 3: There 18 a number Ht such that
[0, %, + (1-M)x*) - o (x*WA <M for 0<AZ1,

Proof: Let

where u: 18 defined in axiom °5.
Suppose (by contradiction) that there exists a value of A, O0<AL<1,

such that

fd - * - *
cot(kxt + (1 k)xt) '”t("t) S
A Mt *

This would mean that

t t t
t - * A - * % *
AT u_ + (1-2) ¢ ul + o, Ox, + (1-M)x() > % u + o, (x,)
1-’!1 ‘r"l =]
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or that
t t x " a
- & - *
Tgl(kuT + (1 k)uT) +»¢t(kxt + (1 L)xt) > tzlut °

Vaing °3 and equation (20), this is a contradictiom with optimality of the

*

*
program {ut, xt'! .

Since the functions {mt(x)} satisfy all the prerequisites of lemmas

1 and 2 under the correspondence x <>y, o (X)<>£(y), x’:@y* ,

;Efv"?; , we can conclude that mt(x) has finite steepness at x’: . The

conclusion (cf. Gale) is that wt(x) must have a supporting hyperplane
at x: with the usual separating properties familiar to the theory of con-
vex programming.

By the definition of ml(x) ((16)=(19)), it is clear that

%* * max
uy + “’l(xl) - “bx:IE ) [“1 + @1(::1)1
(xoiuli 1 GQI
From the theory of convex programming there must exist an n-dimensional

row price vector Pl satisfying

*y ¥ -
21 (%1) = PXy 20, (xy) - Py (27)
X 20
o
u, +Pyxy > uy +Pyx (28)

(;0) ul’ xl.) 4 Ql

Because wl(x) i8 non-decreasing in x , from (27) Py must be non-

negative.
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Now suppose (by induction) that for a givem t there exist non-nega-

tive price vectors {p } satisfying
T 1<t

a) for 1l <<t x*) - x* > x - x
(a) g o, () P-r-r-q’-r(-r) L

x >0
Tﬂ

= e * *
(b) for ~« | B uy + plxl a ¥y + M=y

(;0, ulr xl) € Ql

r<tz: u+px*-p .x*

£ 2 >
or r T r-1%r=1 =

tA

Ye TP T Pret®e1
v %y x)eQ
From (27) and (28), (a) and (b) are satisfied for t = 1 . We must
show that Lf (a), (b) are valid for arbitrary t , they must also hold
for t+l .
Combining (a) for 1 =t with equation (20),

m(xz) - Ptx: - ::3 fmt(x) = P X}

[ 57 (u + o, DV - pxt = max([ SuP fu+g, (7)Y - p.x}
(xt,u;Y)th+1 et et x>0 (x,u,yﬁzqt+1 t+l ¢
“: +wt+1(x:+1) - Ptx': = max {u +q;t+1(§) - px} . (29)
(x, v, Y)th_'_l

Using the theory of convex programming applied to Qt+1(x) in (29),

there must exist an n-dimensional row price vector L which satisfies

* L] * -
Op 01 Fes1) ~ Peai®e4l = Pl ®) T Py (30)

x 2 0
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* * * -
Ye FPraTeql T P¥e 2 U F Py T PeX (31)
(x: u, Y)th_H_
From ‘30), pt+1 must be non-negative because ¢t+1(x) is non-decreasing
in x.

Thus (30) and (31) show that (a) and (b) hold for t+l . This proves
1° and 20.

To prove the transversality condition set x, = 0 in (a), yielding
khy _ *
o (xe) - 0.(0 2 px, .

From q,t(@) 20, ptx: >0, and

[ ]
lim gpt(x:) =lim ¥ u =0,
tveo tewo rut+l T

condition 3° directly follows. This concludes the proof.



[1}

[2]
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