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ON THE DEFINITION AND COMPUTATIONR OF
A CAPITAL STOCK INVARIANT UNDER OPTIMIZATION*

by

Ter je Hansen™™ and Tjalling C. Koopmans***

1. Introduction
The objective function (maximand) wost often adopted in the litera-
ture on optimal economic growth is a discounted sum of future utility flows,

of the form

(L.1) o'l , o<ax<i1,
t
t=l
if we assume a discrete time variable t . Here u(y) 18 a concave "single-

period-utility" function of a consumption flow y (scalar or vector), Y.
the flow in period t, and « a discount factor applied to utility flows.
This function is then maxiwmized subject to a specified initial capital stock

z, &and a given technology and resource base. If assumed constant over time,

1

*We are indebted to Herbert Scarf for highly valuable comments,
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technological constraints may be expressed by

(zt, Yo Vo zt+1) e Jf for all ¢,

where L is a scalar or vector resource input in period t , and the
choice of Cf as a closed convex cone expresses the assumption of constant
returns to scale. (Constant resource constraints may be expressed by the

inequalities*

0<w <w for all t .
= ¢t =

In this paper we are not concerned with finding the optimal growth
path corresponding to any initf{al capital stock that is given a priori.
We limit ourselves to the search for a capital stock z that is invariant
under the optimization described. That i8s, we seek a value z, = z for
the initial stock that gives rise to an optimal program (§t, ;t) such
that ;t = ; s ;t = ; for all t .

The simple case in which Y.» 2, are scalar and

7= (o o 2,) 20 [ yptey, S EE

has been extensively explored in the literature, (Here scarcity of the single

resource, labor say, is expressed indirectly by the strict concavity of the

* a > b for vectors a, b, denotes a for all i,
8 >b denotes a>b and a # b,

> bi for all 1 .

12by

a>b denotes ai



"increasing production function £ with £(0) = 0 .) In this case (see,
for instance, Koopmans [1965], where continuous time is used) (;, ;) exists”
and is unique, and also represents the limit
(1.2) lim (yt, zt)
T
for the unique optimal path that starts from any other positive initial
capital stock z, .
Sutherland [1967, 1970] has studied the more general case where Yo o
z_ are vectors. He uses a single-period utility fumction u*(zt, z.,1)

t
that can be related to our u(yt) by

u* (2, z,,,) = sup u(y,) -

t+l 0w <w
m= fm

He finds that the problem of finding an invariant optimal capital stock is
equivalent to a fixed-point problem, and uses Kakutani's fixed-point theorem
to prove the existence of a solution, The solution is no longer necessarily
unique, even if u*(zt, z, ;) 1s strictly concave.

Sutherland also concludes to the near-equivalence of the problem of
finding an invariant optimal capital stock to a single-period problem to be
described below. The present paper utilizes that equivalence for an experi-
ment in computing such a stock, or rather an approximately invariant stock.

Both the equivalence proof and the computation are carried through in terms

Vs lim £'(2) .

-0t

*with z > 0, provided £'(0) >



of a specific model developed, in ignorance of Sutherland's work, by the
second author (see Koopmans [1971]). This model uses a von Neumann type
technology of capital transformation, in which resources and consumption
goods have been incorporated. The method of computation we use is a member
of the class of algorithms for computing an approximately fixed point of
a continuous mapping, recently developed by Scarf and Hansen (Scarf [1967a,b,c,
1969], Hansen {1968, 1969], Scarf [forthcoming], see alsoc Kuhn [1968, 1969]
and Eaves [1970]). The present method was developed and applied by the first
author, The equivalence proof was formulated by the second author.

We shall not be concerned here with the straightforward extension
of the problem to equal exponential rates of exogenous growth applicable
to all resources and to the consuming population.

The starred sections 4%, 7* are devoted to proofs and other technical

observations, and can be skipped without affecting the reading of later sections,

2. The Model

2.1. Technology and resource constraints. In line with our emphasis

on computability, we consider a von Neumann type technology with L capital
goods, M resources other than capital goods, K consumption goods, and
I productive processes that are constant over time, and each of which is
defined by a unit activity.

The following constraints connect the capital input vector
z, = (ztl’ Zogs oo th) of the tth period, the capital output vector

z for that period, the resource availability vector w = (wl, ceey wu)

t+l
which is assumed the same for all periods, and the consumption vector

Ve B (ytl’ reey ytK) for the tth period, with the vector of activity

levels X, = (xtl, vany xtI) applicable to each process, i =1, .,., I, for



that period. All these vectors are nonnegative column® vectors.

-\
((Z.IA) (capital input) -Axt > “Z, »
(2.1B) (capital output) Bx, 2 Zo.q
(2.1) ¢ Y t=1l 2 ...
(2.1c) (resources) -Cx, 2 -w
L(2.1D) (consumption) Dxt > Y. J

The constant coefficients of inputs and outputs of the various com-
modities that characterize the various processes have been assembled in

matrices A, B, C, D of orders (I, I), (L, I), (M I), (K I),

respectively, and are required to satisfy the following sign rules:

(2.2) ali’ bzi’ Cong ? dk1 > 0 for all ¢, m, k, 1,
(2.3 row) E agi’ ? bgi’ by g ? dki >0 for all g, m, Kk,
i
(2.3)
(2.3 col) va, Ye,, b, +7d. >0 for all i .
P JAl n i P fi K ki

The row constraint in (2.3) says that each capital good and each resource
is an input to at least one process, and each capital good and each consump-
tion good is an output of at least one process., The column constraint says
that each process requires the input of at least one capital good and at

least one resource, and produces at least one good, capital or consumption,

*The notation (, ..., ) for a vector will be used without making a dis-
tinction between column and row vectors. The symbol = denotes equality
by definition.



A capital stock 2z > 0 is called reproduceable if (2.1A, B) permit

z; =2, =2. Clearly, the null stock z = 0 is reproduceable. To assure
the existence of a positive reproduceable capital stock, we impose on the

technology the viability condition

(2.4) Bx > Ax > 0 for some x >0 ,

We write > rather than > 1in the first inequality in order that some
positive reproduceable capital stock shall have some capacity to spare for
the production of consumption goods, and, if desired, for further expansion
of the capital stock itself.

For sufficiently small activity levels, this interpretation of the
viability condition is independent of the resource constraints (2.1¢c), be-

cause we require that the resource availability vector w be positive,
(2.5) LA >0 for all m ,

Therefore, the set of vectors x = (xol’ X, ey x.I) > 0 satisfying

2)
just (2,1C) contains a '"chip" of the form

I
(2.6) ) ={xIx20, sx g, >0,
i=1
within which points satisfying the linear-homogeneous condition (2.4) can
also be found,
Depreciation of capital can be represented, &s in the original pre-
sentation by von Neumann [1937, 1945), by treating capital goods in different

states of wear as different capital goods. In that interpretation, the



statement that a process "produces" a capital good also applies to somewhat
worn capital goods provided in that case we interpret "produces" as meaning
“releases from use,"

A z-feasible path, z > 0, 1is now defined as a sequence

{(xt, Y zt), t =1, 2, ...} satisfying (2.1) for all t and such that

Z, =2, The sign restrictions (2.2), (2.3) on the elements of C and

(2.5) on those of w then imply boundedness of the set of all z-feasible

paths,

(2.7) 0§xt5§, 0<y <px=y, 0<z <Bx=2z, t=1 2 ..,

t t

for some x > 0 ,

Here we have imposed on the infitial capital stock z = z. the same constraint,

1

0 gzlﬁ z , found to apply to all z, with t > 1, thus making the bounds
(2.7) uniform for all z, considered. Since the null-path, X, =y, = 0,
t=1 2, ..., , z, = 0, t=2 ..., satisfles (2.1) for any z, 2 0,

the set of z-feasible paths is also nonempty for any 2z > 6.

2.2. The objective function. We adopt an objective function of the

form® (1.1). We require that the single-period utility function u(y),
where vy = (y.l, Yogr +oes y.k) is a consumption flow (colusm) vector, is

defined for all y > 0, is concave, and is continuously differentiable

*ror & discussion deriving this form from postulates about a preference
ordering on the space of consumption programs (yl, Yy ces) Bee
Koopmans [1972].



and increasing with regard to each component y°j of vy . We shall avoid
a specification, often made in optimal growth models, that instead of assuming

differentiability in the origin y = 0 requires that ggl—-u o for all k
-k

as y - 0, and permita u(y) = -» as well, We shall argue at the end
of section 3 below that the simplification bought by avoiding that specifi-
cation causes no loss of generality in the present context,

The assumption that u(y) 18 increasing in each Yie implies global
nonsaturation with regard to all consumption goods. Therefore, no disposal
of any consumption good ever takes place in an optimal path, and we can
eliminate y by defining a utility function in terms of the activity vector

X,

(2.8) v(x) = u(dx) ,

M

> 0.

2. > 0 for all i and all
ax,i =

X i 0 , The row vector of these derivatives will be denoted

Then v(x) 1is again concave, and vi(x)

Ift

vi(x)

fil

CHO NN

2.3, Invariant capital stock. We now formally state two problems

which in combination define the topic of this paper.

Rﬁ(z,a) ¢ @Given a reproduceable initial capital stock =z and a discount

o
fdctor o with O0< ¢ <1, maximize ~ at-lv(xt) on the set of z-feasible
t=1

paths.
A path (Qt, ;t) that solves this problem is called z-optimal.



gnﬁa) : Choose & value z = z of the initial capital stock in

Pm(z,cz) such that there exists a constant path (xt, zt) = (X, z) s

t=1 2 ..., that solves P (z,q) .
A solution z of qn(a) is then what we have already called an

invariant optimal capital stock. By definition, such a capital stock must

be reproduceable. We shall use the expression "solution of gm(a) " also
for the pair (X, z) .
Obviously, 2”03) has for all « one trivial and uninteresting solu-

tion, namely, z =0 y =0 » the null solution.

3. An Equivalent One-Period Problem

In Section 4 we shall prove the near-equivalence between the problem
of finding an invariant capital stock £ with an associated activity vector
%, and a one-period problem now to be defined, likewise in two steps.

The first step is to define the problem

P(z) : Given some reproduceable z , maximize v(x) subject to

~
(3°1A) =Ax z ~Z , q].
(3.1)
(3.1C) 'Cx z -Ww » r
3.1D) x> 0,
L( =

This problem arbitrarily prescribes a reproduceable beginning-of-perfod
capital stock z , and imposes the stationarity requirement that the same
capital stock be reproduced at the end of the single period under consider-

ation,
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By our assumptions the constraint set (3,1) is nonempty, closed and
bounded, the maximand continuous. Hence, for every reproduceable z there
exists a solution X = ﬁ(z) of P(z) . Since v(x) 1is concave, by the
Kuhn-Tucker theorem {1950, Sec. 3] any feasible vector x 1is a solution
if and only if it has associated with it vectors 935 9y T of dual
variables corresponding to the constraints (3.1a, B, C), respectively,

that satisfy the conditions

((3'22) 9r 99 T >0,
(3.2) < (3.29) v - qA +4q,8-rCc<O,
(3.2=) v'(X)x - 9z + gz - T = 0 .

.

The components of 915 9, T can be interpreted as shadow prices, ex-
pressed in terms of "marginal utility productivity," of the initial and
terminal capital goods and of the resource flows, respectively. Since the
timing of availability of these goods differs as between inputs and outputs
it should be clarified that these valuations are all defined as "present
values" as of the same '"present” point in time, say, the beginning of the
period. Then (3.25) says that the marginal shadow profits, associated with
small increases in the level of each activity when starting from =x = x »
are all nonpositive. The scalar condition (3.2=), taken together with
(3.2>), (3.25) and (3.1), then says in a concise implicit way that (i)
marginal profits of all processes in use at x (i.a., with i-i > 0) are
zero, and (ii) there is at X no disposal of any capital good or resource

that has a positive shadow price (see also Tucker [1957]), 1If in addition
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the 9+ 9, s T are uniquely determined by (3.2), they represent deri-
vatives of the maximal attainable utility v(ﬁ) with respect to net increases

in the initial capital availabilities =2z , decreases in the terminal

1
capital requirements Z, =2, and increases in the resource availabilities
w . Finally, independently of the uniqueness of 9 s 9, ¥, anop-
portunity to barter, for immediate or future delivery, any positive or
negative amounts of initial capital goods or resources (delivered prior
to production) at relative prices qt , ¥, and of terminal capital or
consumption goods (delivered after production) at relative "present” prices
q; ; P*, will not make attainment of a higher utility level possible,
if and only if v'(X) = p*p, q3 > qg , r* satisfy the "dual constraints"
(3.2) (see Koopmans [1951], Theorem 5.11, p. 93).

The second step is to define the problem

P(a) : Givenadiscount factor o with 0<a<1, chooseareproduceablevalue

z = 2 of the capital vector =z in P(z) in such a way that there exists

a solution X = Xx(z) of P(z) with associated dual variables 9 5 9,

r which, besides (3.2), alsc satisfy

(3.3) 9, = Oq, -

This cbndition requires that the shadow prices (''present values") of all
capital goods diminish, when one changes availability from the beginning
to the end of the single period considered, in the same proportion « ,
which in turn equals the given discount factor. If we again refer also to

the pair (%, 2) as a solution of P(Q) , we can now state a theorem that
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more fully sets out conditions under which the equivalence of P{x) and
gm(a) has been ascertained,
This theorem utilizes a slightly strengthened concept of reproduce-

ability. A capital stock z i& called more-than-reproduceable if there

exist vectors z' , z" satisfying O <z'<ez<2" with z'<z", and

a z'-feasible path z, of finite length r with terminal capital stock
z 1 > 2" . This conditfon specifies some slack in the reproduceability

of all components of z without prescribing whether the slack for any par-
ticular component can be achieved in the initial or terminal capital stock,
and without placing an a priori limit on the number of steps needed to
achieve the slack. It rules out the case z = 0, and some other cases
where 2z 18 in the boundary of the reproduceabie set. We give more in-
formation on these cases in Section 4*.5 below, from which we infer that

the condition of more-than-reproduceability, applied to an invariant optimal
capital stock, covers all cases of practical interest in applications.

Theorem 1 (Equivalence) For a pair (x, z) to solve gm(a) it is

sufficient that (i, %) solve P(a) . The latter condition is also necessary

”~

f z 1is more-than-reproduceable.

Note that this Theorem allows us without further conditions to com-
pute as many selutions of Qﬁ(a) as we can compute of P(x) . The theorem
also tells us thac all solutions of Rﬂ(a) in which % 1is more~than-repro-
duceable occur as solutions of (o)

The proof of Theorem I is given in Section 4%, 1In the proof of
necessity we first single out the instructive special case in which (3.2)

with z = 2 by itself suffices to determine the prices 9 5 9 uniquely.
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Next we show that a certain boundedness condition on the prices associated
with the constant path (x,, z,) = (X, 2) over any finite period guarantees
the necessity asserted in the Theorem, Finally we show that this boundedness
condition is met if 2 1is more-than-reproduceable.

Theorem 1 specializes two theorems stated by Sutherland [1967, pp.
15, 24 and 1970, pp. 587, 588] to the von Neumann type technology with pro-
vision for resources and for consumption., This specialization reveals inter-
esting connections between the properties of the solution set of P(a) as
a function of « and known properties of the strict von Neumann model,
obtained from the present model by omitting (2.1C), (2.1D) from the con-
straint set. We return to these connections in Appendix B. 1In particular,
Lemma 4 of Appendix B shows that the null solution of gm(a) , valid for
all o, does not solve P(x)} for some values of « .

Finally, we note a property of P(x) that enlarges the range of cases
to which the present model applies., Let (%, z) solve P(x) , and let
(ql’ qp r) be a price vector satisfying (3.2) and (3.3). Now consider
a different problem P*(x) , obtained from P(x) by substituting for

u(y) , v(x) , functions

u*(y) = 8(u(y)) , v¥(x) = 3(v(x)) ,

obtained by an increasing and differentiable transformation &( ) of the
single-period utility scale that preserves the concavity of u(y) , hence
of v(x) . Then, unless 3 is linear, the preference ordering on the
space of consumption programs is no longer the same. However, the set of
solutions (%, z) of P{x) remains unchanged. This 18 so0 because the

vector v'(X) is changed only proportionally,
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v x) = 'y (), where §' =§'(v(x)) >0 .

and (3.2), (3.3) are satisfied again if we change the price vector corres-

pondingly,
(qif: q;) r*) ”'@"(qu 9o r) .

For this reason there is for our present purpose no loss of generality in

the assumption that wu(y) i1is differentiable also in the origin y =0 .

The case referred to in Section 2.2,where lim uﬁ(y) = o , can be generated from
y=0

the present case by an appropriate transformation of the scale for single-

period utility.

4%, Proof and Further Evaluation

&%, 1, Sufficiehcz. Assume first that z solves P(a) . Then there
also exists a solution x of P(2) . Therefore, all the results cited in

Section 3 apply if we substitute in (3.1) and (3.2)

~

(4.1) z2=%, q,=0q, =0q, Say.

Now let (xt, zt) , t=1 2, ..,, be any z-feasible path, and

consider a segment (xl, vy xT) of the path for x, . Then, by multi-

t
T e T 1
plying (3.2<) by T « X, subtracting (3.2=) multiplied by S & ,
- t=l t=1

using (4.1) and rearranging terms we obtain
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T
FS t-1 T had
ql( Axl + g) + tzza‘ ( Axt + th-l) + o (Bx,r - z)] +
(4.2)
T _ N T - " T .
+r = of 1(-Cx +w) < -v'(x) ¥ o»:t l(x ~xXx)y< -9 ot ]'(v(x ) - v(i)) s
g=1 t - t=l ¢ T ot=l t

the second inequality again being due to the concavity of wv(x) . By (3.1),
(4.1), all expressions in parentheses in the left hand member are nonpositive,
except possibly the one occurring in the term an(BxT - z) , which by

(2.2) tends to zero a8 T =w , since 0 < <1l . Therefore

ke -] o
(4.3) T at“LV(xt) <z & vy,
t=1 t=]l

and the constant path (it, Et) = (%, z) for all t solves P (2 @) .
Hence z solves B () .

4*%,2, Necessity if shadow prices are unique. Assume next that

z solves P (@) , and let the comstant path (it, Et) (X, z) be z-optimal,

Then, in particular, for any '1‘1 3 '.l‘2 with 'I'1 < '1‘2 y the path segment

;tt = ;‘ ’ t = Tl, seey T2 » BOIV%.B
-~ 2 -
- E',r (2, &) : Maximize b at 1vf(xt) sub ject to
1 2 t=T
1
-
-Ax > -z, q
Tl Tl
th"]. - Aj‘c 2 0 » t = T1+1., teuy Tz ) qt
(4.4) <
BX, >z, q
T2 T2+1
L xt>°, 'Cth‘w, t =T1, sy Tz . rt
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This 18 s0 for T, = 1 because imposing the additional constraints

1

(xt, zt) - (i, 3) , t=7T4+1, T,+2, ..., 1in the statement of P@(;, o)

2 2
does not constrain the solution (%

T,~1
multiplying the maximand by « 1 one sees readily that the same statement

~N A
e Et)s(x, z), t=1 2, ... . By

holds for any other segment ¢t = Tyy eoer Ty Including those with T, < 1.

1
By the Kuhn-Tucker theorem there now exists for each period [Tl’ T2}
a vector of the form

(4' 5) (qu, rTl, qT1+1’ A | qu, rTz’ qT2+1)

satisfying the dual constraints

9er Ter ey 20
t-1 [
(4.6) a v (x) qA - 1.C+ 9,18 <0 t =Ty, eeey T,y o

at-lv'(ﬁ)ﬁ - qti - T+ qt+12 =0

Consider first the case Ty = 1, T, = 2 . 1If (3.2) determines
9 5 4y uniquely, then the two subsets of the nonhomogeneous linear con-
ditions (4.6) labeled t =1 and t = 2, taken separately, uniquely
determine (ql' q2) and (qz, q3) s, respectively, on the basis of the
only nonhomogeneous terms, the given vectors at-lv'(i) of marginal utilities

for t =1, 2, respectively. It follows that q, = 04, , hence (%, 2z)

solves P(x) .
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4%, 3, Necessity if prices referred to delivery time are uniformly

bounded. We now need to use (4.6) for '1‘1 =1 and all T2 =T>1. It

will help to transform to prices quoted for payment at time of delivery,

- - -4l
(4'7) (qt, rt) =Q (qt, rt) * t 1’ 2’ *re

in terms of which (4.6) becomes

9 Tpr 94y 20
LI - oy oy
(4.8) v (x) th rtC -+ qut_'_lﬂ § 0 t = 1, L T .
L - - - - - =
v (x)x - q.z2 r.w + t+1% 0

We note that the subsystems of (4.8) for specific values of t are all
of the same form, defining congruent closed sets in the spaces of
(q,, L qt+1) for t =1, ..., T, respectively.

Assume now that there exiscs for each T 2 1 a solution

_T

~T =T =T ~T
(4.9) Ty Ap41)

o-—FI'
(ql.v r]_: q2: YY) qTr

of (4.8) such that the component vectors of all these solutions are bounded

uniformly in t anmd T,

T , =T ~ u
(4.10) i(qtz + qt+1’z) +-E Tem S P<e for 1 St<T, T=1, 2, ....

Then the averages
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taken successively in the solutions (4.9) all satisfy (4.8) and (4.10) for
t =1, hence belong to a closed and bounded set, and a subsequence of
these averages converges to a vector (E‘{, ;"{, E';) satisfying (4.8) with
t =1, Finally, since

1 T
lim (3 - 9;) = lim 7 (af,, - 9)) = 0,
Tetn Tosen

we have E; = EI . By (4.7), the limit vector transforms back intc a vector

(4, T}y 9,) satisfying (3.2) with z = z, and g9, =0q .

4% 4, Proof that prices at time of delivery can be bounded uniformly.

We first recall an inequality from concave programming under linear constraints.
Let V(X) be concave, differentiable, and defined for X > 0, X acolum
vector. Let E be a fixed matrix, e a column vector which we may vary,

both of orders such that
(4.11) _ XEO, EXZe,

represents & constraint set for the maximization of V(X) . We say that X
is e-feasible if it satisfies (4.11), e-optimal if it maximizes V(X) under

those constraints. The maximum attained,
V(e) = v(X(e)) = max{V(X)|X 18 e-feasible}

is then defined on the set 8 of all e for which (4.11) is satisfied by
at least one X . With any e-optimal vector X = f{(e) for any e ¢ 6 »

the Kuhn-Tucker theorem associates a price vector Q such that



Q20, V@ +QE<SO0, V' (RX+Qe =0,

Finally, for any e' ¢ & , let x'

using the concavity of V(X),

denote any e'-feasible vector.

(4.12) -A=VE"D - VR SV A" - R) < -QEX' - e) < Qe - e') .

We now return to (4.6), choosing T, = 1=y ,

and specifying

(4.13) X = (xl--r’ ‘eey xT'H') ’

(. Iy ) eer I(x)) ns (xp, )

-A
-C
B -A
-C
B -A

(4.14) E =

t=

Leexy

-

cee O

[=]

-w

19

Then,

T>1,

©C © O rrr O O

Here 1, 2', z" are the quantities appearing in the definition of the

more-than-reproduceability of Z .

Therefore there exists a path segment
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{x;]t = 1-7; «vsy 01 satisfying those of the constraints (4.11), with e'
replacing e, that refer to the time periods it covers, and delivering

a capital stock Bx& 2 z" > z at the beginning of the period t =1 .

By extending this path with the constant segment [x; =x | t=l, ..., T4}
we obtain an e'-feasible path. Hence e' ¢ E? , and (4,12) applies if

for ¥ we choose the e-optimal constant path x = X, t=l-r, ..., T+r.

Therefore
-A < -ql,T(i -2') - q(2" - 2),
and, since z' < z < z" an# 9 2 0, we have
qul_%z(iz-z;), AZay,(zy=2), =1 ..., L.

Let &£', of" denote the subsets of &£ = {1, ..., L} in which Ez - z;
1)

and zz - EL are positive, respectively, Then each ¢ belonge to at least

one of o', ", and, if we let

L] "-1 ~ -1
A= Almin(z, - 2] A" = Al min (2% - 2,01 *,
P ol b ’ Led! 4 4

we have
< ] 1 < " lt.
Gy, g S8° 4 gell,  q) SA" Af 1 el

For each t = 2, ,,,, T+r+l , we repeat the above reasoning with

e' changed to
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The only difference 18 that the segment of the e;-feasible path xé on
which x; differs from the e-optimal path i is deferred by one period,
without other change, whenever t {ncreases by one. Because of the form

(4.13) of V(X) , this leads to

L)
ey, S A5 ted

-1 t=1, ..., THrtl .
S fo A" s z Gcz"

qt,z

Note that the ranges of both t-+ and t, as t ranges from 1 to
T+r+l , include the values t =1, ..., T+l . Therefore, returning by

(4.7) to prices timed at delivery, we have

0<a, , Smax{a’s’, A <a, pedf, 1SEgTH,

showing that in any sequence of solutions of (4.8) with T = 1, 2, ...,
q; 1s bounded uniformly in t and T, where 1<t < T+ . Since
=T

w >0, the equality in (4.8) then implies that r, is likewise uniformly

bounded.

4*,5, Evaluation. In conclusion, we prove a lemma indicating that
the requirement that a reproduceable capital stock z be more-than-repro-
duceable is not very restrictive. We shall call a capital stock z >0
prolific* if either z >0, or z } 0 and there exists a feasible path
leading from the initial stock z to a stock z' >0 in a finite number

of periods. (learly the null stock is not prolific. Also, if =z 1is prolific

*Sutherland uses the term "sufficient” for this concept.
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so i8 Az for all A >0 . Therefore, the resource constraints (2.1C)--
refer also to (2.6)--do not enter into whether a given 2z is prolific.

Lemma 1., For a reproduceable capital stock 2z to be more-than-
EERNEENEEER KNS -

reproduceable, it is necessary that z be prolific. If that condition

is met, either of the following additional conditions is sufficient:

(i) TIhere exists x>0 with Bx>z>Ax, Cx<w,

(11) There exists x > 0 with Bx >z >Ax, Cx<w.

The necessary condition is obviocus.

The sufficient condition (1) requires some slack in reproduceability
but not necessarily in resource use, The sufficiency is obvious, because
the one-period feasible path given by x; = x leads from z = z' = Ax
to z, =z, where z' < z . The interpretation is that z can be pro-
duced from a smaller z' by devoting all resources, or as much as.proves
necessary, to capital formation.

Condition (ii) places the slack in resource use, leaving a margin
of the scarce resources for the production of consumption goods. To prove
its sufficiency we set aside (l-y)z , where 0< g<1, to be reproduced
through the process vector (l-¢)x as often as necessary. We use g2
to produce g¢z' > 0 after a nonnegative number of periods, choosing e
small enough to stay within the available resource margin w - (l-¢)Cx
throughout the path. If necessary, we diminish ¢z'" by some disposal to

obtain gz' > 0 where z' satisfies the viability condition

Bx' > z' = Ax' >0 for some x' >0 .

We then have
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(Bx"')

ax") >1,

p = min
4 [}

and it is technologically possible to increase ez' by a factor p as

often as needed (using disposal as needed), with a claim on resources given
by

n
ep cx!

in the nth round, However, the number of rounds required to attain the

target

epnz' > ez, hence z'" = (l-g)z + gpnz' >z,

is independent of ¢ . Therefore, the claim on resources can be kept within
the positive initial resource margin w - Cx until the target is attained,
by choosing ¢ small enough.

Obviously, there is a great deal of overlap between cases (i) and (i1).
Presumably, one could find a more general thiid sufficient cendition allowing
the required slack to be distributed in a coordinated manmner between resource
availability and reproduceability., However, the lemma goes far enough to
indicate that there are at most two ways (that may occur separately or perhaps
in combination) in which a reproduceable capital stock z can fail to be
more-than-reproduceable. In one case, z would have a zero component or
subvector which, given the technology and the other components of =z , cannot
be made positive. In the other, =z would have a component or subvector
which can be reproduced but not incressed under the resource comstraints,

and also cannot be reached starting from a lower level, Both cases lack
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relevance for any applications in which a model with constant technology
and constant resource availabilities constitutes a tclerable simplification.
In the former case, what is the point of putting capital goods in the model
which historically could not, even with present technology, have been pro-
duced from an earlier initial state in which they were absent? Likewise,

in the latter case, how could the capital goods in question have originally
been brought up to the levels of which the reproduceability is resource-
constrained, if present technolegy and resource constraints do not make
this possible? We conclude that, in applications of the present model,

it would not hurt us if we should be unable to compute some weird solutions

of P;(a) that are not solutions of P(x) .

5. A Combinatorial Theorem Due to Scarf

For our purposes, the importance of the Equivalence Theorem resides
in that P(ca) 18 a much more suitable starting point for the computation
of an approximately invariant capital stock than gﬂ(a) . At first sight,
P(x) looks very similar to an ordinary nonlinear programming problem.
There is one crucial characteristic of the problem, however, that distinguishes
it from all ordinary non-linear programming problems, This is the require-
ment that the vectors of Lagrangean multipliers 9, and q, have to satisfy
the additional linear constraint q, = aqy - This places the problem in
the category of fixed point problems for a continucus mapping. One of us
[Koopmans, 1971] has indicated two alternative, equivalent and still more
condensed formulations of P{x) that explicitly have the form of fixed

point problems, one in the space of activity levels, the other in the space
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of prices, The former of these equivalent formulations alsc provides a
convenient basis for a proof of the existence of a solution of P(q) .

In the present section we state a combinatorial theorem due to Scarf
[1967a,b], which has provided the starting point for the algorithms for
computing an approximate competitive equilibrium mentioned in Section 1.
Section 6 describes the application of this theorem to the computation of
an approximately invariant optimal capital stock. As a byproduct, this
application alse provides a direct and constructive proof for the existence
of an invariant optimal capital stock.

The combinatorial theorem 1s expressed in terms of the concept of

a primitive set of vectors selected from a larger set. 1In order to review

that concept, let T[] = (nl, pery ﬂJ) be a collection of (column) vectors
in s-dimensional Euclidean space. The first s vectors of T are assumed

to have the form

(1
m = (0, Ml’ sevy Ml)
th = (sz 0, Mz’ seey MZ)
(5.1) . where Hl > M2 P o > HE >1.

8
T = (MS; Ms: veey 0)
.

and will be called the slack vectors. The remaining, nonslack, vectors

lie on the unit simplex, i.e.

mmlal, and 0<m)<1 foraml .

(5.2) for all j>s,
: i=l
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Finally, we make the nondegeneracy assumption that no two distinct

vectors in T have the same ith coordinate for any 1 .

Before defining a primitive set, we define and denote the vector minimum

for any set & = qu]j =1 ..., 8} of 8 vectors in an é-dimensional

vector space by

min[cpl, ceaey (ps1 = (gii, aeey 28) s, where 9; = min[q)i[jtl, ceesBY , Lm=1, ..., 8,

] ] |
Aget 11={n 1, casy T s} of 8 distinct vectors of 11 i3 now

defined to be a primitive set if there is no vector nj in 11 for which

I

(5.3) m Sminfn L, e, w oY

FIGURE 1
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Figure 1 illustrates this concept. The large triangle encloses the
simplex (5.2) in the space of s = 3 dimensions. The nonslack vectors
nj » J >3 are represented by dots, the three slack vectors ﬂj s
=1, 2, 3, by the sides of the large triangle on which ﬂg =0 . The
three small triangles identify primitive sets with zero, one and two slack
vectors, respectively, Each side of the triangle identifying a primitive
set must contain a different one of the vectors ﬁj (if j 4is nonslack)
or be contained in the large side representing ﬁj (if j is slack).
The condition (5.3) specifies that the small triangle shall contain mno
nons lack point nj in icts interior. (Because of the nondegeneracy assump-
tion, it can have no other such point in its boundary,) For further discus-
sion, see Scarf [1967b].

Finally, we recall from linear programming the definition of a fea-
sible basis for a set of linear constraints on a set of nonnegative variables.

Given a matrix F of order (s8,)) , 8 <J and a column vector g of

order 8 , & submatrix F* consisting of s linearly independent columns

3 3
£ 1

8
;) ...’ f

of F 18 called a feasible basis for the system of equations

Fn =g 1if that system has a solution 7 in which nj 2 0 for = jl""’ js s
and nj = 0 for all other 1§ .
The combinatorial theorem (Scarf [1967a], Theorem 2) may now be stated:

Theorem 2. (Combinatorial Theorem) Let [| be a matrix of order

(8,J) as described above, and let
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s+1 J
1 0 .evaees DO fl “es f1
8+l J
0 1 LR N K B N I ) 0 f2 [ ¥ ) f2
F?—': L) [ ) L] - »
8+l J
0 0 L BN BB BN BE 3N ] 1 f. L 3 IR 4 fa
u J

be a matrix and g = (gl, erey gs) a non-negative column vector such that

the set of nonnegative vectors 1 satisfying Fn = g is bounded. Then
i iq

there exists a primitive set + °, ..., m , 8o that the corresponding

] \

columms £ °, ..., f

of F form a feasible basis for Fy = g .
The proof of the above theorem also provides us with an algorithm
for finding a primitive set whose associated columns in F form a feasible

basis for FN =g .

6. Design for an Algorithm for Approximate Solutiem of P(Qt)

In this section we shall show how the combinatorial theorem stated
in the preceding section may be used to compute an approximate solution of
P(x) . We use the expression "approximate solution" rather than "approxi-
mation to a solution" since the algorithm is designed to compute vectors
X, 2z, 4, 4, = aqy 5 T satisfying to a high degree of accuracy the

conditions (3.2), (3.3) for a solution of P(x) (with x substituted for

~
X ).

Since time subscripts on the vector x are no longer needed, we shall

change the notation for its components to x = (El, ceny gI) .
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We shall make two additional stimpulations about the model stated
in Section 2. First, because of (2.5), suitable choices of the unit leveis

of activity for all processes will insure that

=]

(6.1) cCx <Sw, x2 0 implies T gy <7<1 for some 7> c.
i=1

The second stipulation is indeed a new assumption, to be called the

growth capability condition. It implies and strengthens the viability con-

dition by introducing the discount factor into it:
(6.2) theré exists x > 0 such that (A - oB)x < O .

This says that, disregarding consumption, the capital stock can be made
to grow at a rate at least slightly higher than P = a’l per period, where

of course 8 > 1 . If we define

E = sup[ﬁI(A - B-IB)x < 0 for some x > 0,

then the viability condition (2.4) assures us that £ 1 < 1, hence that

there is a nonempty open interval

(6.3) plecax<t

on which « satisfies both (1.1) and (6.2).

The growth capability condition derives additional plausibility
from a study of the connections between the solution set of P(x¥) and the
characteristics of the strict von Neumann model obtained if we delete all

consumption goods and all resources from the present model. Some results
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of this kind are assembled in Appendix II. 1In any case, the growth capability
condition simplifies matters by rendering services analogous to those of
the constraint qualification in ordinary nonlinear programming.

Because of (2.6), we can also find an x satisfying both (6.2) and

- 1_
(6.4) Cx<w, hence w2, <7<1
* =1 * =

by (6.1)., This helps because the concept of a primitive set will now be
applied to the space of vectors x of activity levels gi . In order to
overcome the difficulty that the activity levels bear no natural relation

to the simplex {xlgi 20, 8 + ... +8 =1} we introduce an additional

coordinate
I
(6.5) §=1'EE,
0 1ol i

which by (6.4) is positive for all feasible vectors x . We can therefore

now define primitive sets in relation to the simplex of dimensionality n+l ,
(6.6) m={g=(8p 2y ooy gI)|g1 20 for i=0, ..., n, we =11,

Thus € differs from x only by the presence of an additional component
Bo + A primitive set will consequently consist of I+l vectors with I+l
components each. A collection .= = [go, 51, crey §J1 of (I+l)-dimensional

vectors is selected, where J >1 . The I+l slack vectors are given by
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0
E = (0, My Mg -ers My) )

1
g = (Ml, 0, Ml, resy M].)

(6.7)

? where M, > Ml b R ¢ MI >1,

I
g = <MI’ MI’ HI’ vy 0).J

while the J-I nonslack vectors are selected so as to have a rather even

distribution over T , and again such that no two vectors have identical

ith coordinates for any 1 .

" is

Each vector gj in & assoclated with the corresponding column

fj in a matrix F, as follows:

] g0 E1 52 ﬁ1 EI+-1 gj !J
1 o0 0 ... © fg"']'...fg...f‘éw

o 1 o ... o £ g

€8 F=| o o 1 ... o v .. &g . ...8
0 0 0 ... 1 f§+1...f%...ng

We define the columns fj , §=0, ..., J, of F as functions of the
gj = (g%, xj) by considering an exhaustive succession of cases, to be

labeled Oj s, 1, 2 3m where 1 =0, ..., I, ¢2=1, ..., L,

£ >
and m =1, ..., M. The case that applies to a particular g_j with :j>1 1is deter-
mined on the basis of which, if any, of the following set of LiM constraints

h|

are violated by =x- ,
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(A - B)x § o,

Cx < w .
=

These constraints have been obtained from the primal constraint set of

P(¢) by elimination of Z ,

Oj.

1'

(6.9)

(6.10)

(6.11)

L th j

Ag indicated, for j<1I, £l = ej is the unit vector with
ei =1, All remaining cases refer to j >1 ,
If (A - B)xj <0 and ij < w, then with gj we associate

-, viaha, ., e .

If one or more of the constraints (A - B)x < 0 are violated
h|

for x =x’, and if the first of these constraints to be vio-

lated is the zth s 8ay, then with Ej we associate

fj L (1, -a "‘"db "l"']-’ teey -azI'*’thI"'l) .

217721

It is this stipulation that introduces the parameter « char-
acterizing P(¢) dinto the algorithm,

If (A - B)xj < 0, but one or more of the constraints Cx W
are violated for x = xj , the first that is violated being the

» then with £° we associate

fj = (1, - m1+1’ s oy "ch+1) .

Finally, we select g = (1, ..., 1), and note that the constraint

set H= {nlFm =g, M > 0} is bounded because 1 ¢H 1implies
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- J
(6.12) Ognj, =0 ..., J; M+ & My =1;
jaI+1 )
>
and M, =1- % f£n,, i=1 ..., I.
. jeT41 + S

Theorem 1 consequntly applies, and there exists a primitive set

3
:E:* = {g 0, recy B I? whose associated columns form a feasible basis
h| 3
F* = {f 0, ceey £ I} for FQ =g . Hence
— = — -
jo h| (- ]
I
fo f0 1
Jo I
f1 f1 1
(6.13) 'nj + .0 F ﬂj = s
* 0 L I *
h| i
0 I
fI fI | 1 1
- - b - j/r
Iy

with the £, 1i=0, ..., I, linearly independent and with nji >0
for all i .

In the next section we show

Theorem 3. (Convergence) For any sequence { =, (n)|n =1, 2, ...}

j

of matrices |-, of which the nonslack vectors £~ , j = I+l, ..., I

are scattered with indefinitely increasing and rather uniform density over

¥ , there exists a subsequence [:Ej(nh)Ih =1, 2, ...} with a corresponding

(a4

sequence { - (nh)} of primitive sets of which all nonslack vectors con-

» - -~
verge to a vector # = (€ X) . Moreover, if for any such vector Xx we

define 2z = Aﬁ s then (ﬁ, 2) is a solution of P(a) .
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Clearly, Theorem 3 also establishes the existence of a solution
(;c, E) to P() wunder the assumptions made.

It is not difficult to construct examples with only a few commodities
and processes, for which more than one solution exists. 1In that case, the
solution obtained may depend on the way in which the algorithm is started up.

Now that the construction of the matrix F has been fully specified
in terms of particulars of the present problem, the steps carried out for
any given pair ('-!, F) to find a primitive set satisfying (6.13) can be
laid out according to any version of the general procedure for problems of
this kind, For the published versions, see Scarf [1967a,b] and Hansen [1968].

7*. Proof of Convergence of the Algorithm

We proceed from the relation (6.13) characterizing the pair ("2*, F*)
of a primitive set '=* and an associated feasible basis F* for the
equation F) =g .

Note first that the index set [jili =0, ..., I} labeling the terms
of (6.13) partitions in a unique way into Fhe I+2+L+M cases Oj s

]
1, Zz 3 3m describing the choice of f i (each case assignment depending

3 0
on £ ' only). Observe also that the set =0 = {e7, voes r-;I'f is not a
primitive set, and hence each primitive set E‘* contains at least one
i

vector - with j > 1.



35

We note for later use that the definitions of the columns of F*

allow us to write (6.13) in the form

(7.1) N + h + 7 =1
0" iyt gt
(72)'n+27~(1+\r'(xji))+$' (L-a,,  +0b, )+ A8 (L-¢c ., )=1
TN T et ] el 23770 T Ly mj ’

j=1 ..., I, where njz-o for j£8,,.

Here a s sz » c:mj (j=1 ..., 1) are as given in (3.1), and % ’ K9
of »’( are index sets corresponding to those of the cases 0 ' 1,
2 4 ? 3m , respectively, in the definition of F that have found their

way into F* ., Each of the I+l coefficients in (6.13) recurs in

‘ﬂji

(7.1) and (7.2) as one of the ‘nj (for ji < 1), or one of the A‘i ’

€y s 5m (for ji>I) . We now have

(7.3a) T]j, Ai’ ez, 5m?=’0 for jﬁg- P 16\9 ) »ecol\f: mgf)')?,
{7.3) (7.3b) j é?, for at least one j ¢ {0, 1, ..., 11,

0 ied 1 Ee?i'ﬁ mem

The equality in (7.3c) arises from (7.1). The inequality arises from (7.3b)

and (7.2). Finally, the number of elements in
(7.4) F=gududuim

ie precisely I+1 .
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If the number J of vectors in |=) is large, and if the nonslack

3

vectors g° are distributed rather everly throughout ¥ , then, as Figure 1

3

h| i ]
suggests, the nonslack vectors in the primitive set E 0, £ I’, sosy E I

(those for which ji > 1) must be close to each other. Likewise, for any
h|

slack member ¢
3
hence gji must be close to zero for all nonslack members (ji >1) .
jl

For otherwise, vectors ¥ could be found in E that have the relation

of the primitive set (j < I) we have g:; =0, and

(5.3) to = * that is excluded by the definition of a primitive set.

Consider now an infinite sequence { - '(n)|n =1, 2, ,..1 of sets
=, (n) in which the "density" of nonslack vectors gj (those with § > I)
increases indefinitely in all parts of % . From each [-'(n) we select
a primitive set '=.*(n) such that its associated submatrix F¥*(n) of
F(n) , determined as before, satisfies the relations (6,13) and therefore
(7.1), (7.2), (7.3). without continually changing notation, we select a
finite sequence of subsequences of { - (n)} , each subsequence being
selected from the preceding sequence or subsequence, such that the following
conditions are successively met:

(1) the (nonempty) sets of the nonslack vectors gj(n) s J>1,

of E*(n) converge, 48 n — o , to Some single vector

Y

E = (EO’ X) , say, where EeT,

(i1) the set of vectors v"(xj(n)) for 3 labeling the nonslack
vectors gj(n) of '='*(n) converges to v'(x),

(i11i) the index sets 3(11) , oLm) l)n(n) specifying the types of

columns of F(n) , corresponding to cases 0 3 v incor-

j’ 22’
porated in F*(n) » éare independent of n (and will again be

denoted 9— s L ,%) s
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(iv) the coefficients nj{n) 5 ez(n) ; 5m(n) occurring in the analogues

Y

of (7.1), (7.2) for each n converge to ﬁj ;e gm s Trespec-

z 2

tively, where i eg s 2 eqf ; m gm « The sum &9&;‘ )Ai(n)
iad(n

of the coefficients Ai(n) converges to A .,
The compactness sufficient for convergence under (i) follows
from (4.6)., Convergence under (ii) then follows from the continuity of
v'(x) . The stabilization of the index sets in (iii) is made possible by
the finiteness of the set Gf in (7.4) and of the larger set of 2I + 2 + L + M
"cases' (column types of F(n) ) from which F*(n) 1is selected. The com-
pactness sufficient for convergence under (iv) follows from (7.1), (7.2),
(7.3a).

We have defined and define

Ao

(7.5) A=lm £ 2@, &= Te,,
o 169(n) ted,

85 »

8,
me)y]
with the understanding that, if any of the index sets \9 5 QZ R m is empty,

L

the corresponding sum N s € 3 equals zero. We now list some properties

of % s ﬁj s ii s €y Sm that follow directly from the construction.

From (7.3) we have, in the limit for n—-+ =,

(7.6a) ﬁjy ‘é,ﬂ, 3m, x’ & 320 for je&; ﬂeOZf: mem:

where ﬁjﬁo if 349-’
(7.6b) j éé}. for at least one j e {0, 1, ..., I},

(7.6)

[3

(7.6¢) ﬁo+k+2+3-1 .

If }§ gé}-, we have gg(n) =0 for all n, hence Ej = 0, for the reason
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stated in the paragraph following (7.4). Therefore,

(7.7) for j =0, ..., 1, Ej >0 implies ﬁj =0,

From the definitions of the columns of F,

A>0 implies (A - B)x <O and cx < w,

(7.8)
£ - o~ I -~
7.9 >0 impl a ~b = ¥ (a,, - b, >0
& A X : 7
{(7.10) m g7y, S > 0 imply S i:lcmjf_‘fj >V
Before we can bring these relations to fruition, we must show that

A>0., To that end, we rewrite the limiting form of (7.2) as

) =1 »

(7.11) ﬂj + AL + Vj(x)) + Ezzfﬁtl - aﬂj + szj) + mgn;m(l - cmj

and subtract (7.6¢) from (7.11), obtaining

) ~ LS A ~
(7.12) N, - N, +*v!x) + s ¢,(-a,, +0b, ) - nhc, =

] 0 j zexz ﬁj JZJ memm mj
Finally, let X = (Ei, “hap Ei) >0 be a column vector satisfying
(6.2) and (6.4), and write E = (EO, X) ¢ ¥ . Multiplying (7.12) by
Ej - Ej and summing for j =1, ..., I we have, since
I -~ — - A
==,1([-;j - gj) =€g " &g rearranging terms,

]

.
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L I - I
2.1 . bRy L& - - I3
(7.13) jzonjgj A ﬂjEj + ijzlvj(x)(sj €y + z:gf”jzl( 2,y +ob O,
I I - -
+ Eézj:l(azj zﬁE mm j'f my(E5 = 8y =0 -

The first term vanishes by (7.7). The second, fourth, fifth and sixth terms

are nonpositive, the fourth because, by (7.9),

I I I
gz >0 implies j=1 z gj j=1 zjgj > aj:1b£j§j

the fifth by (6.2), the sixth by (7.10) and (6.4). 1In particular, the fifth

term is negative if >0 for some g, the sixth if Sm > 0 for some

“
“2
m , Therefore,

I
(7.14) AeviEye, - ) 0 if &+ 3} 0.

av

~

Now suppose A =0 . Then, by (7.14), ¢ + § = 0, hence, by (7.6¢c),
ﬁo =1, and, by (7.11), ﬂj =1 for j=1, ..., I, contradicting (7.6b),
(7.6a), Therefore R >0,

If follows by (7.8) that, if we define 2 = AX, the pair (%, %)
satisfies the constraints (3.1A,B,C) for P(a) . 1In particular, from (7.9),

(7.10),
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f‘
1 1
2 >0 impli £, = = P = ceo
€y mplies j'flﬂ“&’j zi jzlbz'}aj, g =1 s Ly
(7.15) {
I -
gm > 0 implies jzlcmjgj =w o, m=l, ..., M,
.

&

because 3‘.2.——_ 0 for géo‘f;, 8 = 0 for mé»?. Moreover, (3.1C)

for x = % implies 20 >0 by (7.1), hence, by (7.7) and (7.6c),

1f, at last, we define row vectors q, r of orders L, M, respectively,

with the components

-1“ =LA
(7.17) =8l , 4=L .., L, r =4 15m , m=1 ..., M,

q;z z’

‘m

then (7.12) and (7.16) yield the Kuhn-Tucker conditions (7.18§) y (7.7)
and (7.15) the conditions (7.18s),

(7.18<) vi(X) - qA + QqB - rC <0,
(7.18)

(7.18=) vi(x)x - (1-a)q% - rw = 0 ,

The proof of the Convergence Theorem 3 is thereby complete.

8. A Numerical Exampie

We congider an economy with 3 consumption goods, 2 capital goods,
and 2 resources other than capital goods (e.g., skilled and unskilled labor).
Each good can be produced by 2 alternative processes. Thus, of the total

of 10 processes, proceases 1 through 6 produce consumption goods.
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The matrices A, B, C and D are given by

2a Zo 20 2. 2& 2:- 29 20 2- 2-
A=
3. 3. 2, 2. i. 1. 1, «5 1. .3
i 1.5 1.5 1.5 1,5 1.5 1.5 4. 3. 1.5 1.5
B =
2.7 2.7 1.8 1.8 .9 .9 .9 Na 2. 1.5
- T
1. 10 I.m 1- ln la 1. 1. 1o 1-
C =
¢ 5 1.5 1.5 +3 +5 1.5 1.5 5 .5 1.5
1. 2-5 0- 0- 00 oa Oo 0. 00 0-
D = 0. 0. 2I5 1' 0. 0. 00 0. 0. 00
06 0. O- 09 25 30 Ol Oo 00 ol

and the resource availabilities by
w= (0,8 0,8).
The utility functions uy), v(x) are

0.2 0.2 0.2

uly) = Y.1Y.2Y.4 » 80 vi(x) = (g1+2.5§2 0.2

10205, 5534{4)0.2(2%”%) ,

The nonslack vectors gn, veuy gJ in =] are selected to be all

vectors of the form

my m, ™o 10
160 7 700’ "*°» 100/ ¢+ oW =100, m strictly positive integers.
i=]
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This particular choice of ;he grid has substantial appeal since it provides
a uniform density throughout the simplex, and need not be stored explicitly
in the memory units of the computer. It does violate the non-degeneracy
assumption required in the definition of primitive sets and in the descrip-
tion of the algorithm. However, in the presence of degeneracy the algorithm
can readily be made to retain its validity by a suitable tie breaking rule.
We have used a specific tie breaking procedure which has its origins in
Hansan's thesis [1968], and which has other computational advantages besides
the saving on memory use already mentioned, 1Its relationship to primitive
sets 15 explained in Scarf (forthcoming).

The algorithm has been run for 3 diiferent values of « , namely
o= 0.7, 0,8 and 0.9, The terminal primitive sets, the number of iterations
for each « and the total computing time for the three a's taken together

are shown in Table 1. A preliminary approximation x* of X was obtained

3

from the vectors ¢ i , 1i=0 ..., T, of the terminal primitive set

]
as follows. If ¢ 1 is a slack member, we write E? = 0 . The other com-
i

ponents of x* are arithmetic averages of the corresponding components

]

of the nonslack vectors ¢ L in the set. A preliminary approximation

q* , r* of the shadow prices is obtained by:

1. calculating the nj of (6.13) and the sum A= ¥ of those
i i

R

nj , denoted A, in (7.1), that correspond to the partial de-

1 1
rivatives of v(x) ,

8, in (7.1)

2, dividing the other 7. , denoted T,, e,
iy L RRY)

by Ao
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If, for example, nj for some i is equal to 0.2 and A = 0.4 and if
i :

i
l B = i £
further f = = (1, aﬁ1+ob21+1g soey agn*abg

preliminary approximation for the ﬁth component qlz of 9 is given

n+1) » this means that a

by qlg = 0.2/0.4 = 0.5 and for that of 4, by q2£ = Oﬂlg = 0.50 .

If some £ does not occur in aﬁ‘; we put q, =0, and similarly

2 Y2
for r_ .
m

Finally, the function v(x) was locally linearized and a set of
specific linear programming problems were solved to yield the final approxi-
mation ¥ , which is given in Table 2. Details of this computation are
given in an Appendix.

Note that in this example, as @ dincreases, utility attained, the

optimal capital stock and, to the extent possible, resource use increase,

and that such shifts in processes as occur all economize on resource use.



Table 1. Terminal Primitive Sets {eg i|i =0, ..., 101 for & Constructed Example.

Discount factor « 0.7 0.8 0.9
Number of iterations
intreducing nonslack
vectors 335 420 721
Labels ji jof slack
vectors g & 1 4 5 8 9 1 4 5 8 10 1 & 6 10
35
Compontents giﬁ ofj
nonslack vectors ¢
i =0 43 44 44 44 44 44 26 39 39 39 39 39 19 20 20 20 20 20 20
1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 i
2 g9 8 8 9 g 9 10 ¢ 10 10 10 190 12 11 11 12 12 12 12
Ki 10 10 11 10 10 10 12 12 11 12 12 32 13 13 14 13 13 13 13
4 1 i 3 1 1 1 1 1 1 1 1 i i 1 1 1 1 1 i
5 1 1 1 1 1 1 1 1 1 1 1 1 23 23 22 22 22 23 23
6 15 15 14 14 15 15 15 15 15 14 15 15 i 1 1 i 1 1 1
7 11 11 11 11 10 i1 12 12 12 12 11 12 13 13 13 13 14 13 13
8 1 1 1 1 6 6 6 6 5 5 6
9 1 1 8 8 g8 8 7 i0 10 10 10 10 10
10 7 7 7 7 6 1 1 1 1 1 1 1 i 1 1

Computing Time

14 minutes on IBM-1130, equivalent to about one minute on I[BM 369-50

Vi)
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Table 2. Approximately Invariant Optimal Capital Steck

Discount factor o 0.7 0.8 0.9
One-pericd utility attained v{¥) 0.48855 0.52216 0.55935
Activity levels for producing
consumption good 1 Ei 0. 0. 0,
’E-_:z 0.08615 0.10528 0.12621
2 ’EB 0.11086 0,12581 0.13986
Ez 0. 0. 0.
3 [ 0. 0. 0. 24817
Eg 0.15544 0.15630 0.
capital good 1 '?7 0,10667 0.11789 0.13393
L 0. 0. 0.04345
2 Eg 0. 0.08416 0,10839
EIO 0.07423 0. 0.

capital stock % &(Aﬁ)l 1.06667 1.17889  1.60000

E(Aﬁ)z 0.77937 0.92581  1.17055

Unused rescurces (3 = C‘?)1 0.26667 0.21056 0.
{w = G§)2 0. 0. 0.
Shadow prices; capital goods | q , 0.35921 0.33408 0.31705
9,9 0,68327 0.57821 0.45534
Resources | r , 0. 0, 0.02690
T, 0,02304 0,15933  0.26258

Notes: 1. All subscripts refer to processes or commodities, none to time.
2. The numbers given satisfy (A - B)X = 0 and (7.18).

3. An expression iz interpreted as O if it differs from O by

less than 10“7 in absolute wvalue.
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APPENDIX I. Final Approximation Procedure

The purpose of this appendix is to describe the sequence of linear
programming problems used in obtaining the final approximation ¥ =
(El, ..;,'EI) given in Table 2,

Let x*(O) denote the preliminary approximation of X and
q*(O)sz(qfl(O), cosy q;(O)) , 0q¥(0) and r*(0) the preliminary ap-
proximations of the shadow price vectors. let s =1, ..., § label the
programming problem within the sequence and let x*(s) denote the approxi-
mation of X resulting from the sth programming problem, Finally let
q*(s8) , 0q*(s) and r*(s) denote the associated approximations to the
shadow price vectors resulting from the sth procromming problem,

Define the linear functions Vi(x, q r)y, i=1, ..., I, as follows:

L M I

Vi(x) q)r) = Vi(x*(s'l)) = zzque'(afei = ab_ﬂi) -mzlrmcmi‘ + jEIVI:}(X*(B“I))(ﬁj'g’;(s'l)) E

where the v;:j(x*) denote second derivatives of v(x) at x* . The sth

programming problem is then given by:

Minimize u by choice of x = (51, vy EI) s, 9@, r, subject to
X, g r >0 and

[Vi(x,q,r)| <u for all i with g?(s-l) >0,

V,(%,q,t) <0 for all i with g‘;(s-L) = 0,
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|§(azi = b,)g;[ Su for all 4 with q‘f"(s-l) >0,
E(azi - bzi)gi < 0 for all 4 with qu(s-l) =0,

Igcmigi - wm| <u for all m with g;(s-l) >0,

§°m151 -w, <0 for all m with th(s-1) =0,

,gi - 5:(3'1)| <0.1 gi(s-l) for all 1,
IQ.z - q;(s-l)l < 0.1 qu(a-l) for all j,

]r.m - g;(s-1)| < 0.1 1:;(3-1) for all i .

where all summations extend from i =1 to I.

The optimal solution of the ath linear programming problem is de-
noted x*(s) R q*(s) B r¥(s) . Observe that if an activity is operated
at a zero level in the preliminary approximation x*(0) it stays at a zero
level through the sequence of linear programming problems., Similarly if
a shadow price is 0 in the preliminary approximation it is not changed
through the linear programming problems.

The reader should have no difficulty in convincing himself that if
the value of the objective function of the linear programming problem at
the Sth iteration is O and in addition x*(S) = x*(8-1) then the de-
sired final approximation is obtained by setting (X, ¥, %, 4, T, ¢,) =
(x*(s), Dx*(s), Ax*(8), q*(8), r*(s), oq*(s)) .

For each of the problems described in Section 8 the linear pro-

gramming problem above needed to be applied 3 times.
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To illustrate the approximation the preliminary as well as the final

approximation for « = 0,7 is given in the table below.

Table 3. Preliminary and Final Approximation of an Invariant Optimal Capital
Stock for the Case o = 0.7,

Preliminary Final
(=*) &)
One Period
Utility Attained v{x) 0.47520 0.48855
Activity levels for
producing
Consumption Good 1 Eq 0. 0.
Ey 0.08666 0.08615
2 €y 0.10166 0.11086
g, 0. 0.
3 €5 0. 0.
g 0.14666 0.15544
Capital Good 1 §7 0.10833 0.10667
23 0. 0.
2 g 0. 0.
10 0.06833 0.07423
Capital Stock zq= (Ax)l 1.02333 1,06667
z .= (Ax)2 0.75250 0.77937
Unused Resourced (w - Cw)1 0,28834 0.26667
(w - Cw)2 0.03251 0.
Shadow Prices,
Capital Goods q°1 0.36271 0.35921
9.4 0.68995 0.68327
Resources LI 0. 0.
T,9 0.02326 0.02304
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APPENDIX IT. (Connections with the von Neumann Model.

If we delete resources and consumption goods from the present model,
we are left with a technological constraint set which, for a single period,

takes the form

p-
(I1.1A) -Ax = -z, , (capital input)
>
(11.1) { @I.1B) BX = 2, ,
> (capital output)
(Il.1x ) x=0.

In this Appendix we trace some connections between the solution sets
of P(c) and known properties of vectors x achieving fastest proportional
capital growth under these constraints. We first summarize these properties.

A growth factor B > 0 1is achievable if there exist vectors Xy 215 2Zg

satisfying (II.1) with z, > Bz 2 0 . Eliminating Z); Z,s the problem of

2 1
fastest growth is

- >
P : Maximize P subject to (B - BA)x = 0 for some x > 0 .

1f E; X solve P then there exists a vector E such that

(II.22) (B -BAXZ0, x>0,
<
(11.2) { (1I.2b) q(B - BA)Y = 0, q>0,

(11.2¢) q(B - BAYx = 0,

holds with B =B ; X = X, q-= ; . One can interpret H’ as a price vector
Et referred to time t of avallability, which in the present model happens
to be independent of t . Then p = B - 1 becomes an interest rate to be
used in adding p E-A to the cost vector E A of capital inputs for the unit

of activity of each process at the beginning of the period before subtracting
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it from the vector of E B of proceeds from capital outputs at the end of

the period. The unit profit vector then is E(B = EA) , and (II.2b) says
that no process yields a positive profit. Furthermore, the addition of
(IT.2c) to the other constraints forces a zero rate of profit on all processes
in use (;i > 0) , and a zero price on all capital goods produced in excess,
i.e., for which

(BE)E > _B-(A;)ﬂ.

Dual to P is the problem

P: Minimize £ subject to q(B-BA) < O for some q > 0.

if B, g solve P then there exists a vector x such that (II.2) holds
with =B, x=x, q=g.

Clearly, B<P . Onehas B =P if the model is regular, that is
fcale, 1956], if Bx >0 for all x such that B, x solve P . This is
the case, in particular, if the indefinitely continued production of each
good in the model requires, either as a direct imput, or (indirectly) as an
input to the production of a direct or indirect input, the continued production
of every good in the model.

For simplicity we state the connections between the solution set of

P() , the growth capability conditiom, and the critical growth rates £,

B solving P s P, respectively, only for the case B = B = B* s 8ay.

Lemma 2. The growth capability condition (6.2) is satisfied if and

only if o > B*'l .

Lemma 3. If (% 2) solves P() with Ck <w, then a< g1,

—aEnERET

Lemma 4. The solution set of P(x) contains (does not contain) the

origin (%, 3) = (0, 0) if a< () B* 1.
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The proofs are written so that a determined reader can lift from them
generalizations of Lemmas 2; 3, 4 to the case where B < F) s by ignoring
all references to B* .

Proof of Lemma 2: Let {(6.2) hold. Then there exists x < 0 such

that (B - & "A)X > O . hence (B - (& !+ eJA)x > 0 for some ¢ >0 ,

Therefore (using P) Ctmli +e<P 80 a> EQI“ B*ml .

Assume now that {6.2) does not hold, Then, for all x > 0 we must

1]

have (B - o 'A)x $ 0 . This means that the cone ¥3°(c"1) = {(B - o lA)x|x > 0}
in L-dimensional space, spanned by the columns of (B - a-lA) does not
intersect the interior Z; = {z | z >0} of the positive orthant of that

space, and, by the separation theorem for convex sets, there exists a vector

q # 0 with

q(B-a'lA)x§0 for all x>0, gz >0 for all z >0.

Therefore q(B - amiA) <0, 920, and, using P, awl > B ; hence

o g Qll , Therefore o > 9.1( = B*Ql implies (6.2).

Proof of lemma 3: If (X <w, where (X, 2z) solves P(Q), (3.2=)

implies r = O . Thenby (3.3), (3.2<), q(0B - A) < =v'(X) < 0 for some q >0,

and; since q = 0 would not do, for some q > 0 . Hence, using P,
=1 -1 =1
a 2B, and 0<p =8 »

Proof of Lemma &: First let o > B*ml = ﬁ_l . Then Lemma 3 excludes

cx < w, and, in particular, x =0 .

1 ; hence a-1>5 « Then, using F, there

Next let o < B*mI =B
exists no x >0 with (B - amlA)x >0, and, as in the proof of Lemma 2,

the (this time clecsed} cone

(B - o x| x > 0}

Ba

Hl
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intersects the (closed) positive orthant J‘i‘L = {z|z > 0} only in the origin.
We use the theory of polar cones (we shall cite theorems from Gerstenhaber
[1951]) to obtain a somewhat stronger separation statement for this case. If
in Gerstenhaber's theorem 12(1l)(e) we substitute our i’L for his A, and

our -B(a’l) for his B, we obtain that the vector sum of the positive polar

gz = {q|qz 20 for all =z 331} fqlq > 0}

of ‘;I"L and the negative polar

& (o:”l)

{afqz < 0 for all z ¢ (awl)]

of ‘(B(a-l) is the entire L~dimensional space, IRL s, say,

2B R .

Now ii’: is L-dimensional. To show that the same holds for ® (a™ 1)

we use P once more, writing x = x' +x", to conclude that there exist

no x' >0, x">0, such that
-1 L] -1 "
(B~ A)x' ==(B~0 A" £0 .,

Therefore IB(OL"]') does not contain an entire line, hence, by theorem 12(2),
@- (Ct-l) is L=dimensional.

Finally, substituting in Gerstenhaber's theorem 13 our 5{': for his
A and our Bn(ofl) for his B, we obtain that the intersection of the

interiors of &I and @‘(a-l) is not empty. Therefore, there exists ¢

such that

q>0, qB-aA)x<0 for all x>0,
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hence q(B - @ YA) < 0 . This allows (3.2), (3.3) to be satisfied for
%=0, 2z =0, bychoosing r =0, q, = A q, = chNqg with A\ suf-

ficiently large to have
v'(0) < Aq(A - 0B) .

We believe that further results along these lines can be obtained
if we impose additional restrictions on the signs of the elements of A,

B, C, D, which are plausible for many applications,

% -1

In the example of Section 8, £ =P = " = 1,468 , o = p* =~ = ,6812,
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