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by
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Summary

A wide variety of economic models includes expectational
variables among the liat of variables determining behavior. Im this
paper it is shown that for a large class of time series, expectations
about the future of observed series or about unobserved components of
economic time series may lead to rational lag distributions. Speci-
fically it is shown that rational distributed lags arise whenever
the series (or the pth differences of the series) have auto-
regressive, moving average representations and linear lesst squares
forecasts are calculated. The orders of the lag distributions are
also given. In Section 4 an example {s given that shows the applica-

tion of these results to an inventery adjustment model.,

* The research described in this paper was carried out under granuts
from the National Science Foundation and from the Ford Foundation,
I am indebted to Marc Nerlove and Joseph Stiglitz for helpful
comments., They should not be held responsible for errors.



One of the difficulties with distributed lag models with a
rational function of the lag operator is that the order of the oper-
ator is frequently not known g priori, though in some cases one may
need this information in order to identify the structural parameters
of interest. The regsults presented here show that the orders of the
operators depend in a simple way upon the structure of the series
being forecast or estimated, and, thus, the results should be ugeful

in the formulation and estimation of digtributed lag models.

Section 1, Background

It is commonly assumed that the behavior of economic agents
depends upon expectstional variables. Typical examples of these kinds
of variables are forecasts of prices, orders placed etc., and normal
levels of interest rates, permanent income and so on. Since the
expectational variables are seldom directly observed, models which
include variables of this type are often made empirically teatable by

specifying the way in which expectations are adjusted.
The simplest model of the type considered is

= "
(1.1) Y, = 8, +a; xk 4+ u,

where Ye is the level of some economic variable, xz ig an expec~
tational variable, and u, is a stochastic disturbance. A common

assumption is

(1.2) ¥k - xk o= (1o B)x,_ g - oxk_ ]



Equations (1.1) and (1.2) give

(1.3) Yt = Byt_l + a0(1 - )+ 31(1 - B) .Ixt-l 4+ u, - Bu

t t-1

The model (1.1 - 1.2) was used by Nerlove [5] to explain the

acreage (yt) that farmers alloted to a given crop xﬁ was the

expected "mnormal" price for that crop. The basic idea was that farmers
determined acreage allocation not on the basis of the price expected
next year, but rather considered an average of expected prices over

future periods. Equation (1.2) implies that

(1.4) ¥k =(1-8) LB x

so that xt may be thought of as being a weighted average of all

past values of the observed series x_ . More generally, xﬁ may be

t
written as
(1.5) x, = jEobjxt_j = B(L)xt where
= 1
B(z) = jiobjz and Lth = xt»j .

This representation is obviougly intractable for estimation purposes,
s0o one gpecifies a gimpler form such as (1.2) before proceeding with
estimation. While (1.2) is probably the most commonly used specification

it is clear that a wide variety of other specifications could serve

as well,



Suppose that
(1.6) B(z) = P(z}/Q(z)

where P(z) and Q(z) are polynomials of degree p and q

respectively. That is, B(L) 1is a so-called rational

lag distribution (Jorgenson [3]). The example given above corresponds
to choosing P(z)}) =1 -8 and Q(z) =1 - B£ . Asgsuming that B(L)
is a rational lag distribution allows onme to transform(l.1) which in
principle involves all the past values of X, into an equation such

as (1.3) which includes only a finite number of past xt“s and
a finite number of lagged yt“s . Without further a priori specifi-

cation there is no way to choose among a variety of lag distributions

except on statistical grounds.

The following model also leads to (1.3) as the equation to

be estimated (Muth [4], Nerlove [6])

a

=a+ a.x¥ _+
yo =2 a,

0 "17t,e~1
2
(1.7) x, == EM) =0 EMN) =8, o
ok =wk +e. E(s) =0 Elee) =35 A
t t-1 "t t t s t,s
E(stﬂs) =0
where & ig the Kronecker delta, and x* is the linear
t,B t,t’l

wminimum mean square error forecast of x§ made at time t-1 using

past values of the observed series {xt} . In this case B is



given by

(1.8) B = At - /{;TI—ESE_:_Z

2

Now A 1s equal to Uez/on2 so when A 1s small any given observation
on X gives little new information about xt , and, therefore,

expectations are revigsed only glightly. Conversely, whem A is

large 1 - B iz close to one and X % is nearly equal to x .
t,t=1 t=1
U2
This type of behavior is clearly sensible, since when —% is big
o
1

most of the observed change in X, will on the average be due

to changes in xi . Identifying ﬁg with expected normal prices
2

t-1

makes sense since

(1.9) R = ﬁg j=1, 2, 3,...

t+j, t-l yt-1

Another model which differs only slightly from the one given

in equations (1.7) also leads to the estimating equatiom {(1.3).

o~

yt = a, + al xt,t=1+'ut
10 X " Fel T 8 T Perg E(e) = 0 [B[ <1
E(etes) = 5t,802
where ;t,t-l is the least squares forecast of X, calculated

at time t-1 .



The models given by equations (1.7) and equations (1.10)
lead to the same egtimating equations as obtained from equations
{1.1-1,2). However, they differ in one important aspect: the
assumption about the lag distribution {(1.2) has been replaced by
two alternative assumptions, one, a behavioral assumption, is that
expectations are formed according to a wminimum mear square error
criterion, The other agsumption which could be tested using data om

X, gspecifies the stochastic structure of the observed series.

In model {1.7) the variabla being forecast was unobgervable;,
while in (1.10) the expectational varisble was the forecasted value
of the observed series; yet in both cases the calculatiom of the
expectational variable by least squares led to a form of a rational
digtributed lag. In the next section it will be ghown that these

results generalize to a very wide class of stochastic gpecifications.

Section 2. Prediction
In what follows it is assumed that the stochastic processes
are mean zero covariafnce stationary processes of the moving average,

auto-regressive type. That is,
¢ -
E\xt) 0

(2.1) E(xt xt-k) = y{k)
2
E(xt) = y(0) < w

- th
The results presented below can be exfended to processes whoae ¢~
differences satisfy (2.1), but for ease of exposition equations (2.1}

1
will be assumed to hold throughout.



The covariance generating fumection of {xt? ig defined as

2 k
(2.2) g, (2) = T 7(k)z
BN . )
® i
If H{z) = T h,z is the Laurent expansion of a function which

i

-0

converges in an annulus containing the unit circle, then

o St
[H(z)]+ = g hiz
(2.3)
-1 s
[H(z)]_ = T 'hiz
[H(z)]k =7 hiz also converge.
k

Any covariance stationary time series may be represented

as (Wold [10])

(2.4) =x_ =T+  vhere [ﬂt1 and [gt} are mutually uncorrelated

t
and

o i?_\ujt

M = ije
j=0
=]

§=Ebc_ -

t oo it-i E(e ) =0



[ﬂt3: is called the linearly deterministic part of the series and
{gt] is called the non-deterministic part. Throughout this paper it

is agsumed that all processes are purely non-deterministic, that is,
they are representable as a one-sided moving average with white

noise inputs:

@ o0
i
(2,5) x_ = T b,e ., = B(L)e where B(z) = T b_ =z
t 1=0 i“t-1 t 1=0 i

and L is the lag operator. For any such process {xt} it can

be shown (Whittle [9]) that the least squares forecast of Xty

calculated at time t is given by

2.6 & =
(2.6) iyt 7(L)xt where

1 B(z
7)) = 553 J;lJ .
z +

where B(z) 1is the canomical factorization of the

covariance generating function i.e.

(2.7) gxx(z) = czB(z)B(zml), and all the roots of B(z) lie

outgide the unit circle. By convention 02 is chosen so that

b,=1.

0

The following theorem due to Whittle [9, p. 93] will be

used often in the analysis below:



Theorem: Let Q( ) be a function of 2z analytic in & < |z| < 51
and 6 a number such that |8| < 1 . Then R(z) = (1-6z)° _(z) |
(1-82)P

+

= [Q(z)]+ + ﬂp(z) where

-1 i a2
0 (o) =z d1e@] - -8
P i=0 dz | -1 :
z=0
The gecond example in Section 1 showed that the adaptive
expectations model could be rationalized as a least squares forecast

of a certain type of time series. The generalization of that example

is contained in the following.

Theorem: Let N( ) and D( ) be polynomials of degreee n and

= = N(L)
d respectively, and let X, B(L) ¢ = B(L) €, be a covariance

stationary time series. Then the least squares forecast of LS.

made at time t is given by X ¢ = 7(L)xt , where 7¥(2) =

t+v,
%%5% and M( ) 1s a polynomial of degree Max [n - v, d -1, 0] .

Proof:

@8 7@ =55 E-(_Z{I
2 Js+
_D(z) |N(z z *
T N(z) p{z)
+
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i r———

- ‘——l'
pegy [N@2), | IN@)Z),
=Nz o) | @
| 1+
(NG)z '], . D) [N(z)z""]_
N{z) N(z) L_ D(z)
i

Assume that agll the roots of D( ) are distinct (this is not necessary
as will become clear, but merely facilitates the exposition) and denote

them by xi ,1 =12, ..., 4d . Expanding

1
D¢ ) by partial

fractions ylelds

NGz "), ppy 4 |8 INE)ET ]

(2.9) (@)= =) + ¥ G 151 T
— +
- [ -
N2 "1, ey & [ NEZT
- N(z) + N(z) 15161 1~ hiz
— +
where 4
§
1 _ 1
D(z) L 1 - A,2

Applying Whittle's theorem to each term in the summation gives

[N(z)z "), (N(z)z™"]_ |, = 37t

=\
(2.9) §, |m———=| =8, ——— "M
1|1~ 0z 11 - Az

So on combining terms

-V
(N(z)z 1, E(z) _ M(z)

(2.10) 7 = @y TNz T N @)
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Now E( ) 1is a polymomial of order e = d-1, s0¢ m = max [a-v, d-1, 0].
In general 7?( ) 1is a rational function whose denominator is the
numerator of B{ )} [i.e. the moving average part] and the numerator

of which ig of order max [n-v, d-1] . The presence of multiple

roots in D( ) does not alter the conclusion in any way. If A

i
th 51[N(Z)z-v]_
isa p order root, then instead of ~ 1 -z in (2.9) one
i
+.

j -y
8;[N(z)z "1_ The theorm of Whittle can now

p
would have z

j=1

hj
(L - N\,2z)
(- 1 +

be applied to each term in this latter sum and on combining terms
this will give
5,(2)
—3 where the order of Si( Y} is p-1 .
(1 - N\,2z)
i
In either case the statement about the order of the polynomials in

y( ) 1is still true.

To illustrate the various procedures and the general nature

of the calculations the following example will be treated in some detail,

(2.11) white noise

(- o)1 - BL) 2
X T Q- sL)( - AL St LS

2 2
E(et) o
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The generating function for a wv-step predictor is

(2.12) y(z) =

T (1-o=)(1-Bz) (1-82) (1-2z)z’

The first step in obtaining the predictor is to calculate the value

of the expression under the [ operator. Now

1

2.13) 1 1 |8 A ]
* (1-3z)(1-Xz)  &-M\ |1-8z luéfl

So

.14y (=0 - 5’-)—J — 8(1-02) (1-Bz)z  _ 7\(1-0&)(1-52)2-:]
(1 - 62)(1 - rz)z® - A 1- 52z 1 - Az ,
+ L
[ —
_ 5 (L - az)(1 - Bz)z "
6= A, (1 - 8z)
— —+
- (1 - ox)(1 - Bzdz "
8 = A (1 - A2)
o —+
For v =1
..1 -
(1 - az)(1 - Bz)z _ =(x+ B) + 0Pz T
(2.15) S = Byt oz, T
+

_n-(@+p) + oBz
1l - mz
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from Whittle's theorem. Here (1 - cz)(1l - Bra)z"1 plays the role
of Q(z) 1in the statement of the theorem. Using the above relation

and combining terms gives
(2.16) - oz)(1 - 322 _ {8+ AN - (@+PB)+ (0B - A8)z
‘ (1 §z)(1 - (1 - 82)(1 - A\z)

For v =2

.17y [z - 5=>=%f] - o8- (a+B)m
+

{1 = mz) 1. - mnz

which gives

(1 - O?)(} - B?)
(1 - ﬂz)(l - ka)z

(2.18)

(3 + 7\)2 - @+ BN+ §) ~ (OB - N8) - AB(A+S - O+ Bz
(1 - 82)(1 - Az)

In general for v greater than two

(1 - o2)(1 - Bz) ‘
(L - 82)(L - Az)z’

(2.19)

+

Cv - (@ B)Cv-l_+ Oﬁcv-z - 7"z‘:'[c'\r-l - @+ B)CV-Z + OBCV=3]z
(1 - 8z)(L = Az)

where the sequence {011 is defined by

© o o
(2.20) T Cizi = 5 sid 5ok
1=0 j=0 k=0
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If the pair (&, B) and the pair (8, A) are the same,
then all expressions vanish. If this were the case then the process

{xt] would simply be white noise and its forecast values would be

zero. The generating functions for the forecasts are

O+ 8) - (a+ B) -~ (8\ - Of)z

71(®) - T - o=)( - F2)
(2.21)
ey = LN - Ot )@+ B (B - MBI MBSO 8 - (it B
2 (1 - o) - B2)

and in general

) (2 = C, - (@+p)c, , + chv_g- refc _, - @+ B)cv_.g + 0BC_ 4]z
v (1 - oz)(1 - Pz)

As is alwayas the case except when {xtl is an auto-

regression, the generating functiong are infinite series. However, if

§t+v ¢ appears as an explanatory variable in an equation the form
’ .

of the lag distribution is such that the equation can be transformed
into an equation containing two lagged values of the dependent

variable and the current and lagged values of {xt] . Note that the

transformation will, in general, introduce serial correlation among

the disturbances of the equation to be éstimated.

Section 3. Signal Extraction

Recently Nerlove [6] considered the derivation of distributed
lags in situvations gimilar to the first example given in section 1.

Specifically he assumed that economic agents reacted to estimates of
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of unobserved components of economic time series. Nerlove treated
several examples and derived the lag distributions. TIn thisg section
it is shown that Nerlove's results generalize to all covariance
stationary processes of the mixed moving average, auto-regressive
type. In addition an example is given which leads to a lag dig~

tribution of the Pascal type.
Assume that {xt, yt} are jointly covariance statiomary

non-deterministic time series. The cross covariance generating
function is defined by

(3.1) Byg(Z) = T ryx(k)zk

|- 2. - ]

where ryx(k) = E(y.x, )

If gxx(z) = UZB(z)B(z-l) , then the least squares estimate of Y,

ig given by

-

(3.2) y = 7(L)xt where

t,t

1 %yx(z) ~QJ

®8(z) | Bz D)
: —l+

y(z) =

The case to be considered here is
. = +
(3.3) % =y, * N,

where X, is the observed series, yt is the signal, and ﬂt is

the noise, Asgsuming that
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(3.4) E(ytﬂt-k) = 0 k = 0, i 1, e

equation (3.2) reduces to

ey, ¢ = 7%,
7o (2)
- L Cyy
(3.5) 7{z) = wzn(z) B(z'l)zv
Theorem: Let Ve = g%%% €. nt g%f% g

and let x =y, + ﬂt . Tat? , {§t1 are mutually uncorrelated

white noise sequences, and P( ), Q( ), R{ ), and S( )
are polynomials of degree p, q, r , and s resgpectively. The
least squares estimate of Y ety made at time t is given by

A

Yew, 7 (L)x,

(3.6)
S(z)N(z)

7(2) = T(z)

where GZT(Z)T(Z_l) = cZP(z)S(z)P(Z-l)S(z-I) + 02

02 being chogen that L 1 . The order of the polynomial

N( ) is n=max {P~v, q-1, 0} .
Proof:
First note that

g (z) = 62 _Sﬁlzlimml and
® qz)a(z” )

R(z)Q(z)R(z" 1))

a
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2 -1
gxx(z) - g T{z)T(z ) .

Q(z)5(2)Q(z"1ys(z"1y

Thus from (3.5)

(a5 | p@ype s ot
1) e@)E HrE e

(3.7) y(z) =

“1
Q(é)S(_l o P(z)P(z )S(z )

o*T(z) Tz~ 1270(z)

.

+
The expression under the [ ]+ operator can be evaluated using Whittle's

theorem. To see this imagine expanding 1/Q(z) by partial fractions
and applying Whittle's theorem to each term inthe resulting sum. In this

p()Pz Dsi ™)

case, O =
€ T(z l)zv

plays the role of Q(z) 1in the statement

of the theorem. These calculations give

2 -1 =] 2 -1 -1
Sﬁ?(z)P(z IS(z ) o P(z)P(z ")S5(z —;] +.X§zl

(3.8) — - -
1@ @ |, ey ], @

Q(z)

z)

)
—~

where the order of V( ) 1s ¢q - 1 and the order of N( ) is

max [p~v, q=-1, 0],
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As wap the case with predictions, the result allows for

recursive calculation of Y ety t and for the derivation of dig-
b

Ll

tributed lags in models using ¥ as an exogenous variable.

t+v, t
Again the orders of the lag operators are simple functions of the
prediction period and of the orders of the operators in the two
components.
Example.

Suppose one wishes to predict

¢

(3.9) ¢ T - e - L)

where Y, is observed with an error, i.e. one observes
=y +
(3.10) X, =Y, ﬂt

e, {et} y {ﬂt} white noise

*a-wa-m T

2
uncorrelated with E(et)

E(T2) =
Then
e, + (1 - L) - o)W,
(3.11) x = T D
80
i Ha - 02"Hy
(3.12) g_(z) = CLLE R0 - 02)(1 - p2)( - 0x )(1 - o2
= (1 - 82)(1 - pz)(L - 6z )1 - pz )

L1 - )1 - B2)(L - =™H)(L - B2TH))
1 - 62)(L - p2)
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where O, B are the roots of 1+ A(1 - 62)(1 - ez-l)(l ~ pz)(1l - pzul)

Y

that lie ingide the unit circle. To obtain Vi, t
2

(3.13) 7(z) = (1-2)(1-p2) 02(1-92-1)(1-pz~1) ——W
o} (1-0z) (1-Bz) (1-ez)(1-92‘1)(1_92,(1_92-1)(1_02»1)(1_62_1)ii1

- g_ {1~ Gz)fl-o_l 1 _1
f (1-0z) (1-Pz) (1-8z) (1-pz) (1-Cz )(1 Bz )_I
) |

_ g% __(1-82) (1-pz) 8 -
-o-:lz (1-02) (1-B2) (8-0) | (1 0,y (1-0~ Ly (1-Bz" 1)a"

p
(1-pz) (1-02~ 1y (1-82"1)2"

+

_ & (1-82)(-pz) f-
oF  (1-0m)(1- BZ)(9=p) (1- ez><1 a1y (1-pz" 1)z’

e 1>fj{:}r

-V

s

Letting 1 play the role of Q(z) in Whittle's

(1-0z ) (1-Bz )

theorem and noting that for v positive [Q(z)]+ vanishes:
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no

(l-apg)ey'"l
(1-02)(1-Bz) (8-p) (1-a8) (1-B6)

e

(3.14) 7(z) =

L]

(1-02)p"!
(T-0% ) (1-Bz) (9-p) (1-0p ) (1-BP)

1
Sl

This somewhat unlovely expression is clearly of the form

§ + kz

(3.15) 72 =TT @A - fe)

Now & and k can be calculated by combining terms as in the earlier

example. There is, however, another approach available which for

numerical calculations should be relatively simple. If =z = 9“1

the the second term in (3.14) iz zero and

2 1

(1-p0~1ye""
(1-00" 1) (1-0m) (1-B8 1) (1-B8) (8-p)

,Q

]

(3.16) (™)

el ]

o

n

ev

(1-08) (1-08" 1) (1-8) (1-80™ 1)

IQ

ag

=

<

as

P11 + M(1-62) (1-82"1) (1-p2) (1-p2z™ )] = 021 (1-02) (1-02" ) (1-B2) (1-B2" )]

S0

[ =)

{(3.17) = (1-ae)(1-ae'l)(1-{39)(1—59‘1)

g
2
o

= (1-0p)(1-0p~ 1) (1-Bp) (1-Bp 1)
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By a similar argument using the second equétion In (3,17) 1t is

eagily seen that

(3.18) r{p

These two restrictions are sufficient to determine &
and k . The form of 7y( ) as determined ylelds the following

recurgive scheme

G19) Yo, @F B eryer,e-1 F BY pye2, -z = O tRE, )

Nerlove [6] considered examples which produced distributed
lag patterns which closely resembled the so-~called Pascal distributed
lag (i.e. a convolution of several Koyck-Nerlove lag distributions
all with the same parameter). No example in which the lag distribution
was exactly of this type was given, however. Using the results

presented above examples can be easily generated. For instance,

P(L R(L 2 2
X = G%f% e * E%f% M E(e,) = B
= (L)%, + (L) (-7l () = A’F F >0

where

(1-02) (1-02 "1y + 22(1-82) (1-B2 1) = F(1-y2) (172" .
Then

o?1(2)T(z" 1) = B2(1-2)2(1-B2 )% + AZr(l-0z)(1-cz" 1) (1-y2) (1-yz" 1)

= Bz(l-BZ)z(l-Bz-l)2 + Az(l-az)(l-oz'l)((l-az)(l-ozhl)

+ 21-p2) (1-p2"1y)
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= 32(1-p2)2 (1-z" )2 + 2aB(1-0%) (1-02" 1) (1-Bz) (1-Bz" 1)
+ Az(1-aoz)2(1---czzz"1)2
= [B(1-Bz)(1-Bz"1) + A(l-0w)(1-cz"1)1?

= (D(1-82)(1-§2" 1))°

= D2 (1-82)2 (1-82"1)2

So T(z) = (1-52)2

From (3.6)

r(z) = SEME) - gax {2y, 01, 0

In this example

I
[

S(z)
T(z)

P=2

(1,52)2

Q=0
So for v = 2 the solution is a second order Pascal type distributed lag.

Section 4, Other Applications.

The results presented in Section 2 and 3 can be extended
to a wider class of problems. In gemeral if the exogenous variables
have rational spectral densities (are of the moving average, auto-
regressive type) or if their pth differences have rational spectra,
then maximizing (minimizing) a quadratic objective function leads to
a rational distributed lag. Further, estimating the stochastic

properties of the exogenous variables provides information about the



23

lag distribution and may aid in the identification of the structural
parameters. To illustrate these points an example of a inventory

ad justment, production smoothing model will be considered.

Agssume that a firm's cost in period t are given by

-~

»~ Ll 2 -~ . 2 ~ -~
(4.1) C =M =B )+ )“Z(It\' a =05 + MP o+ NI
where

P = production in period t

w
ft

sales in period t

inventories at the end of the tth period

L
1l

At time t-1 the firm is assumed to choose the level of production
for period t 1in order to minimize
o

v
(4.2) V= E{vzop Copyd O<p <l

Given the accounting identies between production sales, and the change
in inventories it sufficies to determine either production or imven-
tories. While formally it makes little difference which quantity is
get it seems more natural to view the firm as determining the level
of production directly rather than the level of inventories. Partly
this is because determining production levels seems the more

basic decision, but also the choice of which variable to determine
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implies different reasons for the holding of inventories. The point
is that the decision as to the level of produétion ot inventories

for period t mwust be made before the tth period, based upon

sales expected in period t and in subsequent periods. In fact,
these expectations will not be fulfilled exactly so that all plans
will not be carried out. If the firm sets the level of production
then forecasting errors will show up in differences between actual
end of period inventories and the planned level of inventories. On
the other hand, if inventories are treated as being determined, then
forecasting errors will cause unintended fluctuations in the level

of production, This latter case seems implausible in that one of

the reasons for holding inventories is presumably to protect against
errors in forecasting sales, and, also, production plans are more
likely to be somewhat inflexible. Furthermore, if the forecast error
made in the tth period partially determines the tth period’s
production, it is no longer so clear why one agsumes that production
plans for period t must be made prior to knowing period t's sales.
For this example it is assumed that production is the control
variable, though one could as easily take it to be inventories.

Let

§ =8 + St E(St) =0 S a constant

—
=~
[ ]
~
>

ind

fl
o |
+
1=l
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Then (4.2) may be written as

2

_ o v 2
(4.4) v=E{Top (7&1(9t+v - Pt_ﬁlw) + M (T, - 08..)

v=0

}

-+ v - - — -
+ p (AP -+ NI+ (I - a - a3))
A L TR

The second term 1s easily minimized, so the problem reduces to

w0

min E{ ¥ pPOMP, ., -
v=0

2

2
Peag-1) T - DTy - 08,07

where Pt = St + It ~ I 1 and all series have mean zero. Substituting

t-
P -85
t t

(4.3) k=11

inte (4.4) the problem becomes

- P, -8
2 + 2
min E{ T pv(?\(PHv- Pory-1) T (=N tﬁ{ - 1,t = - O‘Stw) !

wrt. {Pt+v} v=0

0<A<1
The meaning of the expression (4.5) is simply that inventdries at any
time are _ the sum of past discrepancies between production and

=R

sales plus any initial stoc

Differentiating the objective. function with respect to

Pt+v gives the following first order conditions:

6.6) ovi-1)2 (1o H2 + 1-MB - (1-7&.)(1+a(1-L)j£+v't_l) o
(L= L) - oL ™h

v=20,1, 2, ...
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In (4.6) st+v has been replaced by its certainty equivalent

-~

St+v,t—1 (see Theil [ 7])

Now

4.7) M1-z)(-pz D% + (1-0)

L}

22 (2-B) @B (-2) (-8
B.

[}

A8 % z-22) -2y -2 Hy (-2 7Ty
g2 (1= 2) (g 5

R(z)Q(z" )

where

R(z) = fx|a|(1--éz><1-£z>
B

ozl = Alsl - ha-&™h
2

By inspection it 1s seen that if B 1is a root of (4.7), then 2

B

is also a root. Next it will be shown that there is always a root

Bwith [B] >1.

If z, is a root of (4.7) then (M # 0)

4.8) (1-2g) (1-pzg") =21 [L2

* 1+p-1\/{—§_-’*;t/¢{+p-i L2924
2

From (4.7) it is easily seen that for any A in (0, 1) there must

or z =

be at least one root outside the unit circle if p =0 or if p =1,
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Furtier, it is clear that for any value of p in (0, 1) there can
be no roots on the unit circle, But for any fixed X the roots are
bounded continuous functions of p , so there must be at least one

6]

root outside the unit circle, i.e., [B] > 1 .

The preceding argument implies that (4.6) may be written as:

-1 -
gy NGB, - (L WA A0 S1S

«]
(1-L)(1-pL )
v=0,1, 2, ...

where the roots of R{z) 1lie outside the unit circle, and the roots

of Q(z) 1lie inside the unit circle.

Now -1 -
R(L)Q(L )P;+v - (1 - A1+ al - L))St+v.t—1 )
(4.10) -1 =
(L - L} - pL ™)
RELQEL™Y) - (1 - VA + a(l - LS, 4
1-1L +
-1 » ~
. R(z)Q(L ™) - (1 - A1 + o - L)St+v+1, t-1
-1
(1 - LY(L - oL )
But the second term is zero so one may write
R(L)Pt -
(4.11) To L (1 - DA + ol « L))St}}tm1
~ st:+v t-1
where S = ——t=—= jg g weighted average of all sales
ttv,t-1 Q(L-l)

expected in future periods.
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Now
(Ha1-1))s, . : .
. = .+ + 73 +3 L+
T const ast’t_l St,t'l St,t §;:”1, t+
(4,12)
1+a(1-L)S . ’
t-1,t-2 _ 75 g + 8
ot =comst. + 08, ;v 2t S et Sy g2t or
80

(4.13) R(L)P, = (1-h)a(st’t_1 - St-l,t~2) + (1-M 'St,t_l

+ (8

o . - %"
§=0 t=1l=j,t~1 t-l-j,t-z)

The last steps in the derivation of (4.13) assumed that
the firm has been running optimally in previous periods. The purpose
of examining the solution of the problem is to illustrate the deriva-
tion of distributed lag models consistent with optimizing behavior.
When the econometrician estimates the parameters of such a model
he will typically have to use data on firms (or more likely indus-
tries) over a relatively short period of time. In general there
will be no reason to assume that the optimlzation began with the first
observation the investigator has; rather it seemg more natural to
assume a long (but unobserved) history of optimal running and that
the initial conditions are sufficiently far in the past so that

their influence on the observesd behavior is negligible.
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To gain gsome understanding of the preceding equation
congider the case in which changing the level of production is

~

-1 _
costless., If A =0, R(LQ(L ")=1 so §;+v,t-1 = St+v,t~1

and the solution is

~ ” o~

(4.14) P =06, 17 See1,e-2) T S T

,t=1 Ye-1 St-l,th)

In this case production ig simply set equal to expected sales plus
the expected change in the desired level of inventories plus a
correction factor for the error in forecasting the sales of the

current period.

If one assumes that St = B(L) ¢ that is, S, 1is a

t t
non-deterministic covariance stationary time series and that fore-
casts are calculated according to (2.6) i.e., least squares fore-

casts, then
R(L)P, = 7(L)S__;

(4.15) where

1-8z {B(z)(1-A)(1+x(1-82))
v(z) = limit =
571 B2 ) (1-s230:"Y)2
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Proof:
1-5z | B(z)(1-M) (+a(1-82))|
B2) | (1-82)0¢z" 1)z
(4.16) +
(1-Ma(l-8z) | _B(z) , | B
B(z) az™yz “”‘SﬁnMJHz
+ A+

Now B(z) {: B(z) ig the generating function of the operator
Q(z

that estimates 1 « Thus as & goes to one the first term

QL)

- ~ - ~ ) '
will give (1-A\) Ol(St’tm1 Stwl,t-2) Applying Whittle's theorem

to the second term gives

(1-)) (1-82) B | . | B

- = +
B(2) (1-82)Q(z l{fl B(z) |2
(4.17) _ + +
(1-: Q(an)z z = E
T B{z)

The first term clearly gives (1-A) s

1 th ing to
€, t-1 g0 all that remains

be gshown ig that the second term leads to E(gt-j-l,t-l - g;-j,t-Z) .
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Now
-~ o "~
4,18 = T h
(4.18) St-3, kZO 9 5 j-ltk,t-1  TEFE
1 - -k
ST
Q(z ) k=0
0 k <'j
(4.19) = ..__ B(z)|] _ =z _|B(z) =< b
k~j B(z) k-j+ k-4
z B(Z) k 2 j
+
So the generating function for
m -~ ~ -~} o -~
(4.20) T s__,_ - 8 = I Zz q(S
§=0 t-j-1,t-1 t-j-1,t~2 4=0 k=0 k t-j+k-1,t-1
B St-j+k-—1,t-2)
is given by
B!z!
[z =1
1 o0 o@©
(4.21) Lz
B2 j2p ko0 ) B("')
Q.E.D.,
Suppose that St is 2 moving average, auto-regressive
process e.g. let
= 8(z)
(4.22) B(z) D(z)
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where C( ) and D( ) are polynomials of order ¢ and d

respectively., Then

—
.23y LE o gy (182)D() | Cz)(Ia(1-52))
A g1 C®) [peayeE Hz(1-s2)
—_ +
Let
(4.24) S(z) = C{z) (1+0(1l-82))

Qtz" e

using the same type of argument as was used in Sections 2 and 3, it

follows that

[8¢=)],
(4'25) Z.(_Z_l - - Lo 1(5)-

Tox . é(_z)_ C(z) where T(z) is of order d .

[S(z)]+ is obviously of order c¢ 8o

(4.26) ¥(z) = (1-h)%§§% vhere V(z) 1is of order max (¢, d, 0],

This gives

(4.27) R(L)C(L)Pt = V(L)St_1 a rational lag distribution. Thus as
is the case with the expectational models treated above; adjustment

models of thisg type reduce to forms suitable for éstimation.

Certain features of the distribution that differ from lag
patterns used in practice should be noted. First, except for the
possibility of fortuitous cancelation, the distributed lag is never
of the geometric type so commonly used. If, for example, the sales
geries is auto-regressive then (4.27) becomes

P V(L)

(4.28) ¢ = R@) Se-1
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where the order of V{ ) is the order of the auto-regression and
R( ) 13 of order two. Introducing a moving average part into the
structure of the sales series increases the order of the operator
in the denominator, In dealing with distributed lags it is common
to assume that the weights sum to one, are all posgitive, and that
all the roots of the polynomial in the denominator are real., The
example given here patisfies only the first of these conditions.

Thus the calculation of mean lags would be meaningless.

The lag distribution depends not only upon the parameters
of the cost function but also upon the nataxe of the sales series.
Two firms with identical cost functions may appear to adjust at
different rates because of the differences in the sales series they
face., Without some knowledge of the way in which observed adjustment
patterns depend on the sales series, one could not tell whether or
not the firms had the same cost of adjustment. Simply looking at
the first few terms in the lag distribution could be seriously

misleading,

Figure 1 illustrates this point dramatically. The graph
shows the first eighteen terms in the lag distributions for two firms
with A equal to 0.3, Q equal to 0.3, and p one. Note that
when p 1is one the firm is minimizing average cost over the future
rather than discounting future costs. In both cases the sales series
is assumed to be an auto-regression so that the coefficients of
lagged production (which depends only on A in this case) are the

same, though as noted above these coefficients would also change if
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{1 - 0.75L) St =€

(1 - 0.75L)¢1 = 0.31°)¢1 - 0.2t°3a1 - 0.811%) 5, = ¢,

} /\ | _F/\ T 1
6 8 10 12 14 16 18
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the sales series was of the moving average, auto-regresaive type.
The example thus illustrates the general point that is not possible
to digentangle the formation of expectations from adjustment without
an adequate understanding of the way expectations are formed and

what they depend upon., Given a specification of the series St s

the parameters of the model (@, p, A) could be estimated non-linearly

from the coefficients of the lag distribution.

It is not being suggested that choosing and fitting a model
for a time series is an easy task. Nevertheless, the structure of
the variables used in the forecasting procedure clearly influences
the nature of the equation to be estimated and ought to be congidered

i

in the formulation of a structural equation;
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FOOTNOTES

See Whittle ([92] Ch. 8). The twe examples covered in Section 1
illugtrate this point, as in each case the process has an infinite

. = + =
variance, If one congiders x = 0% , + e Poe..q

laf, |B] <1 and derives the least squares forecast of x ., ,

then letting « tend towards unity from below, the result will
agree with that given above.

For a proof see Whittle [9].

See Whittle [9]. Note that if Vo = Bpgy 7 then gyx(z) =

czz’vB(z)B(zml) s0 the result agrees with that given in equation (2.6},

This model and/or more complicated forms of it have been treated
a number of times. See, for instance, Holt, Modigliani;, Muth,
and Simon [2], Childs [1]. The method of solution given here
closeiy follows that used by Whittle [9, Ch. 10j.

In certain of the calculations an extra parameter & , |8 <1
will be introduced, and then limits will be taken as § tends
up to one. It would be possible to consgider the related problem

where Pt = St + It - 6It~1 , obtain its solution and then let

5 approach one. For ease of exposition this device will omnly
be used in calculating the transforms needed to obtain the fore-

cagtg of the series St o

The cases A equal to one or zero are not very interesting. If
A =1, all the firm wishes to do is maintain a steady rate of
production, and the solution is obviously ?b+v =85 . In the
cagse A = 0 the firm merely sets production on the basgis of the
saleg expected next period.

For an example of choosing the form of an estimating equation
uging the structure of the variable being forecast see Wallis [87.
For a discussion of the estimation problems involved szee Nerlove [6].
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