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A FIXED POINT ALGORITHM FOR APPROXIMATING THE OPTIMAL SOLUTION
OF A CONCAVE PROGRAMMING PROBLEM*
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Ter je Hansen™™

Introduction

In a series of papers Hansen [1], Kuhn [3] and Scarf [5, 6, 7]
have described some applications of a combinatorial algorithm, including
the approximation of a fixed point of a continuous mapping. A survey of
applications has been given in {2]. The purpose of the present paper is
to present and illustrate by numerical examples the application of this
combinatorial algorithm to the approximation of the optimal solution of

a concave programming problem.

The algorithm is based upon the technique devised by Lemke and
Howson [4] for the numerical calculation of a Nash equilibrium point for

a two person non-zero sum game and on the concept of a primitive set,

*1 #m indebted to Herbert Scarf for reading a preliminary draft of this

paper and making valuable comments. The research described in this paper

was carried out under grants from the National Science Foundation and
from the Ford Foundation.

**Norwegian School of Economics and Business Administration.



The Concept of a Primitive Set

In order to review the definition of a primitive set,1 let

1 d
T={n" ceay M}

comprise all vectors of the form (klfD, “oa knlD)“ , such that the k's

and D are integers and -1 <k, <D+l with the k's summing to D .

Definition: Let =x = (xl, ose xn) and y = (yl, se yn) . We

define x_, to be larger than y, , =, >vy. , 1if and only if
i i i i i

(xi, ooy Ky Kyp soey xi_i) is lexicographically larger than

(yi’ TS VD STRRTRY yi-l) . Observe that for Xy to equal Yy by

this ordering we must have x =y .
In formulating the definition of a primitive set it is convenient
tc adopt the convention that if x, y, ... 2z are vectors, then by

min(xi, Yis u.o,zi)

we understand the smallest ith coordinate according to the above ordering.
jl jn
Definition: A set of n distinct vectors mw °, ..., in

NI is defined to be a primitive set if there are no vectors nj ¢ I wich

1Thq_definition of a primitive set that is used in this paper differs some-
what from the one used in [2].
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for all 1 .

Given any n vectors in T let us form a matrix K whose columns

are the numerators of these vectors

Kll klz oo kh
K = .

k k . .. k

nl ne nn

We may prove the following theorem1 which gives necessary and sufficient

conditions for such a matrix to represent a primitive set.

Theorem 1, JTet K be an n x n matrix with integral entries and such

that -1 g’kij <D+l for all 1 and j and Ekij =D for all j . The
i

columns represent the vectors of a primitive set, if and only if there is

a permutation 1I{j) of the integers (%, 2, ..., n) , and a rearrangement
of the columns of K such that the jth column of K is identical with
column  j=1 , excepting the entry in row 1{j} which is one unit smaller
than the entry in row I{(j) - 1 which is one unit larger., If j =1,

j-1 1is to be interpreted as n , and similariy for TI{j) .

As an example of columns of

1The proof of this theorem follows from the preoof of Theorem 3 in [2].



10 10 10 11 llh
20 20 21 20 20
30 31 30 30 30
16 9 9 9 10
_30 30 30 30 29__

with D = 100 satisfy the conditions of the theorem if the permutation

is given by
3 I{3)
1 1
2 4
3 3
4 2
5 5

The basic combinatorial theorem to be applied in this raper and whose proof

follows from the discussion in [1] and [2] may now be stated.

Theorem 2, ILet

vcoe Q.

1V id

be a matrix and b = by, «.. l::n)[t a non-negative vector, such that the

jth column of A 1is associated with the jth vector in 11 . Specificalily

we assume that if ni <0 for some i ; say the first coordinate that

. . h R .
is strictly negative is the pt s then the j h column of A consists



of n=l zeros, and a single I, with the entry | located in the pth rOW.

Assume that the set of non-negative vectors =x satisfying, Ax =b , 1is

iy j

bounded. Then there exists a primitive set 1 ", .co 1 o s 80 that the

columns jj, 000 jn form a feasible hasis for Ax =k .

The proof of Theorem 2 also prowides ws with an algorithm szpplying
iy 3

a primitive set w , ..o w , 80 that the columns g veo jn torm a

feasible basis for Ax = b .

The Optimal Solution of a Concave Programming Probiem

Consider the concave programming problem piven by

max giz)

subject to fk(z) < C k

4]
et
o

sooy M

z >0

giz} 1s agsumed to be concave and the functiomg fk{z) are assumed to be

convex. A1l functions are assumed to be twice differentiable. For techni-
cal reasons that will become apparent later z, is a dumwy wvariable such

that

for any =z .



We shall assume that the feasibie regicn ia bounded in the sense

that nc non-negative vector z with 2z, = 0 and whose coordinates sum

1
to q, with g a positive number, is in the feasible region. Further-

more we assume that there exists a non-negative vector z0 whose cocordinates
sum te ¢ satisfying fk(zo) <0 for all k. This is the familiar con-

straint qualification typically assumed in non-linear programming problews.

Now a necessary and sufficient condition for 2z* to represent

the optimal solution of the above programming problem is that there exists

a non-negative vector A¥ such that

af
88 . *'_..,..k<0
3z} e 3z¥
i i
with equality if z? >0, and
£,(2"1 <0

with equality if h: >0,

By an approximaticon of the optimal solution of a concave programaing
A &y
problem we shall understand a pair of non-negative vectoers (z, A) such
that
. af
28 5k
z

>z ,
zZ. o
1 a 1

il

is "close" to O if ;i > 0 and is nom-positive if 2z ¢, and
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is "close" to O if ik >0 and is non-positive if i".,k -

A survey of non-linear programming algorithms is given in [87.
One can describe the present state of non-linear programming succinctly
by saying that no efficient aligorithm exists for general concave programming
problems, As far as the gradient method is concerned the presence of non-
linear constraints considerably complicates the algorithm as well as reducing
its efficiency. The decomposition procedure requires the mawimization of

functions of the form

glz} = uy - Tu £, {2}
k

(k

with u 0, ... m) non-negative numbers, which may itself be diffi-

cult.

A Fixed Point Algorithm for Approximating the Opiimal Soiution of a3 Concave
Programming Problem

In order to apply Theorem 2 to approximate the sptimal soiution
of a concave pregramming problem, we zhall define a correspondence between
the vectors in T and the columns of A . We shail distinguish betwzen

3 cases.

Case 1. w§ < 0 for some 1 . 1If the first coordinate that is strictly

. . th . _ ,th .
negative is the p coordinate then the j column of A con-

sists of n~l zeros, and a single 1, with the entrv cne located

in the pth TOW.



Case 2. wi >0 for all i and fk(zj) >0, with zj = q°w3 for some

2

k . If the first constraint that is violated is the pth then

3f
-5+
2

QF

A, = ;
J -
df

- mu% + 1
azn

Case 3. ﬁi >0 for all i and fk(zl) <0, with ) = q°ﬁJ 5 for all

k . Then

If the vector b = (1, ... 1}' , the hypotheses of Theorem 2 are cleariy

satisfied since by assumption

2w 20 %
- o ® o - e ’
3z; 9%y 3z

implying that all the columns associated with the derivatives of the func-

tions g{z) and fk(z) have an entry 1 in the first row.



i, J
We therefore conclude that there exists a primitive set £ n "

? o6 0 F)

such that the columns jl’ 6as jn form a feasible basis for Ax =b . The

algorithm underlying Theorem 2 will therefore provide us with a non-negative

solution to the equations Ax = b which we may write

28 I
ui +-Zyj 7 + 1 + ngaij i
azi

with aj 2 columm of A associated with the derivatives of the £ func-
tions and yj and xj > 0 only for the columns corresponding to the non-

negative vectors in the primitive set, Finally uy >0 only if

jl jn

i 8 o0 ) ( O o
mn{wi 5 L )

Suppose that Exj + Zyj =1, which is true unless u1 >0, and also
that gyj >0 . Let n be a convex combination of the non-negative vec-

&y

tors in the final primitive set such that the vector, z = q-.1r, satisfies

the constraints.l Further let xi(k) refer to that X, associated with

the derivatives of fk(zl) . Define a vector % with

1One such convex combination, which is used in the subsequent numerical
examples, is given by
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Then 2z and & may be taken as an approximation to the optimal solution

of the concave programming problem.

Rather than providing precise bounds for the degrse of approxi-
mation we shall show that as D passes to the limit a subsequence may be

selected with the above equations reducing to the Kuhn-Tucker conditicns.

We therefore let D pass to the limit and select a subsequence
with the ui's ; the ¥ ¥ and zxi(k) and the non-negative vectors
. . . . ‘ % P |
in the primitive set all converging to s ¥ x, and mn" respectively,

The above equations then reduce to

N>
E
s ]
-
(o}
Hﬂ
3

i1:m 720

with the aias the optimal solution of the linear programming probiem

I
max D L ACE
i
i;n’iEO
I3
subject to b Oﬁfk(QBW ) <0, k=1, ...
I3
iz ™20
T oa, =1
i 1
ism ?20
Q>0 i
The problem obviously has a feasible solution since for sume 1, =2 =

J
q-T 1 s satisfies all the constraints. From the convexity assumption we

finally have that fk(E) < 0 for all k .

lAn implication of the definition of a primitive set is that the difference
between the smallest and largest ith coordinate of the w© vectors in
the primitive set is equal to 1/D, for all i, i.e. as D tends to
infinity the vectors in any primitive set all converge to a common vector.
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af

u, + vy —-a-g--i-l +i::xk ‘——k-i-l = 1
L * *
azi azi

where 2% = g.w*, and y is the limit of © yj
If we recall the construction of the matrix A we have that

y > 0 implies that the vector z* satisfies all the constraints and that

%y > 0 implies that fk(z*) 20 ., We shall argue that v > 0 and that

y Exk = 1 ; the desired result will then follow, By assumption the
0 . . .
vector z  whose coordinates sum to ¢, satisfies ail the constraints.

Now if y = 0 and we multiply the ith equation by z? - z? » and sum,

we obtain

afk 0 *
N .

0 oo 0 * Tk _
Eui(zi - zi) +’2xk2(zi - zi) - = 7(z

-
Z,
a 1

This will lead to a contradiction if we can show that both terms

on the left hand side are non-negative, with the second strictly positive.

* #*

But the first term is surely non-negative, since if w, > ¢ then n° =2z = 0 .

i i i

In order to see that the second term is positive, we observe that if Xy >0

(which must be true for at least one k ), then £ (z*) >0, and from

k

the convexity assumption

af
0 whe 0 - F-3 k
0> £,(z) - £(z%) > T(z, zi) —

azl
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This demonstrates that y > 0, and as a consequence, that all of the con-

straints are satisfied by z* .

To complete the argument observe that Zxk +v =1 unless uy >0,
If uy >0, however, “T = z? = 0 and by assumption z¥ does not satisfy

all of the constraints, a comtradiction.

1f we define k; = xk/y , then

af
-1 m.: k<o
Bz* dz¥
i i
with equality if 2; >0 and
fk(z*) <0

with equality if hﬁ >0.

A Numerical Example

To illustrate the working of the algorithm and to compare the
approximation with the optimal solution we chose the quadratic programming

problem

max g(z) = -z'Bz
subject to fk(z) <0 k=1, ... m

z

v
o

with B a positive semidefinite matrix
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0.0 6.0 0.0 0.0 0.0 0.0 0,0_-
0.0 1.0 0.5 0.3 0.7 0.6 0.8
0.0 0.5 2.0 1.0 1.5 0.8 1.2
B=140.0 0.3 1.0 3.0 2.0 1.0 0.5
0.0 0.7 1.5 2.0 4.0 0.2 3.1
0.0 0.6 0.8 1.0 0.2 5.0 2.6

| 0.0 0.8 1.2 0.5 3.1 2.6 6.0 |

and fk(z) linear functions of z such that

fl(z) = Zy - Z2y - z, - zg - Zg - 25 + 1

fz(z) = Z, - z2g - Zg - 25 + G.5

f3(z) = 0.222 + G.3z3 + 0.424 + O.6z5 + 0'226 +-0.Sz7 - 0.5
= z - 0.1

fa(z) =

g(z) and fk(z) (k =1, ... 4) obviously satisfy all the con~
ditions of the algorithm.

The algorithm was run with 3 different values of D, namely
D =100, D =300 and finally D =500 , The columns of the matrices

K and K represent the numerators of the vectors in the

Kioo» %300 500

final primitive set and are given below
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B 50 50 51 50 | 50 50 50—1
6 é 5 5 5 5 5
19 20 20 20 20 20 20
KlOO = 16 15 15 15 15 16 16
0 6 0 0 0 -1 0
6 6 6 6 7 7 6
3 3 3 4 3 3 3
—150 151 150 150 150 150 15().-.|
16 15 15 15 15 15 16
60 60 60 60 60 60 59
K300 = 45 45 45 45 46 46 46
0 0 0 0 -1 0 0
18 18 18 19 19 18 18
11 11 12 11 11 11 11
L -
—251 250 250 250 250 250 250_
25 25 25 25 25 26 26
100 100 100 100 100 99 100
KSDO = 75 75 75 76 76 76 75
0 0 0 -1 0 0 0
30 30 31 31 30 30 30
19 20 19 19 19 19 19_

2z and A were then calculated as indicated above. The results are gilven

below.
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Comparison of the Optimal Solution
and the Approximation for Different Values of D

Approximation Approximation Approximation
True Value D = 100 D = 300 D = 500
0.10600 0,1000 0.1000 0.1000
0.4000 0.4000 0.4000 0.4000
0.3005 0.3000 0.3000 0.3000
0. 0. 0. 0.
0.1221 0, 1200 0.1200 0.1240
0.0774 0,0800 0,0800 0,0760
2,6821 2.6821 2,6821 2.6821
0.3024 0.3024 0.3024 0,3024
0. 0. 0. 0.
1.6315 1.6315 1.6315 1.6315
-1.33506 -1.33512 -1.33512 -1.33510
0. 0. 0. Q.
0. 0. 0. g.
-0.1535 -0.1520 -0.1520 -0.1544
0. 0. 0, G.
0. -0.0013 0.0013 0.0003
0. -0.0019 -0.0019 0.0013
0. 0.0045 0.0045 0.0005
-0.0863 -0.0995 -0.0995 -0.0763
0. 0.0085 0.0085 -0.0107
0. -0.0195 -0,0195 0.0077
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hi ig defined as

= 28 . Kk
hl azi txk azi

Some observations on D and ¢ . Sometimes it may be difficult

to tell a priori the values of g that should be used. If Uy >0 this

suggests that g has been selected too small and should be increased.
Similarly if D 1is specified too small the algorithm may terminate with

M yj =0 , D should then be increased and the algorithm rerun.

Finally some observations on computer time and number of itera-
tiong. The examples above were run on an IBM 1130 as well as on an IBM
360-50 computer. In the table below the number of vectorsl in T for the
three examples and the number of iterations required for the algorithm to
terminate are given.

Number of Vectors in 1[I and Number of Iterations
for Different Values of D

D
100 300 500
Number of Vectors in 1] 0n2526°1010 0,1245=1013 0.2459°1014
Number of Iteratioms 820 2491 4121

Observe that the number of iterations required for the algorithms
to terminate is approximately linearly related to D . The algorithm did
approximately 300 iterations a minute on the IBM 1130 and 5000 iteratioms

a minute on the IBM 360-50.

1'J.‘he number of vectors in T is equal to

D+ 2n = 2n - 4
n-=-1 n - 3
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