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INCREASING RISK: A DEFINTITION AND ITS ECONOMIC CONSEQUENCES*
by

o

M, Rothschild and J.E. Stiglitz

1. Introduction

This paper attempts to answer two questions:
1. Whem is a random vavisble ¥ "more variable® than another random
variable X ?
2, What effect does an increase in variability or uncertaintyl have on
economic behavior; e.g., does an increase in the riskiness of investment

opportunities lead to more or less saving?

There seem to be at least five possible approaches to answering

the first question.

* This i3 a revised versiom of papers presented at the Cowles Symposium on
Capital Theory and Uncertainty {(November, 1968), and at the Chicago
Growth Symposium {November, 1967). The authors are deeply indebted to
the participants in the symposiumsand toD.Ragozin, P. Diamond, D. Wallace,
and D. Grether.

Our problem is not a new one, wor 1s our approach completely novel; cur
result is, we think, new. Our interest im this topic was whetted by
Peter Diamond [3]. R.M. Solow used a device similar to our Mean Preserv-
ing Spread (Section II, below) to compare lag structures in [9]. The
problem of "stochastic dominance®™ is a standard one in the (statistics)
operations research literature. For other approaches to the preoblem, see,
for ingtance, [2}.[ 6 , 8 | have recently provided an alternative proof
to our theorem Z.b and it converse (p.18 below).

The research described in this paper was carried out under grants from
the National Science Foundatiom and the Ford Foundation.

Throughout this paper we shall use the terms more variable, riskier, and
more uncertain synonomously.



1. ¥ isg equal to X plug noige.

If we simply add some uncorrelated "moise" to a2 random variable,
(r.v.) the new r.v. should be "riskier’ than the original. More formally,
suppose Y and X are related as follows:l
(1.1) ¥=X+2

where Z ig a r.v. with the property that
(1.411) E(ZiX) = 0 for all X .

That iz, ¥ 1is equal to X plus an uncorrelated distrubsace term {"noise.”)
If X and Y are discrete r.v's {1} haz another matural interpretation.

Suppose X is a lottery ticket which pays off a, with probability Py s

i

Tp. =1. Then, Y 1s a lottery ticket which pays bi with probability

1
Py where bi ig either a payoff of a, or a lottery ticket whose expected

value iz a; . Note that (1) fmplies that X and Y have the same mean.

2, Every risk averter prefers X to ¥ .

In the theory of expecred ucility maximization; a risk averter is
defined as a person with & concave utility function. If X and Y have

the same mean, but every risk averter prefers X to Y , that ig, if

(2) E U{X) > E U(Y) for ail concave U

, . . 2
then surely it is reasonable to say that X i1s less rlsky than Y .

1 This equation means that the r.,v. Y has the same diztribution ag the
r.v. Y' =X+ 2 where X and Z are jointly distributed r.v's with
digtribution fumction H{X , Z). David Wallace suggested that we invesgti-
gate this concept of greater riskiness.

2 Strictly speaking, we should perhaps limit ourselves to considering concave
functions with non-negative first derivatives. Since little is gained by
thig extra restriction, we shall not impose it. Note that gince
U(X) = X and U{X) = =X are both concave functions, (2) implies that X
and Y have the same mean.



3. Y has more weight in the tailz than X .

If X and Y have devsity functions f and g , and if g was
obtained from f by taking zome of the probability weight from the center
of f and addipg it to each tail of f in such a way as to leave the mean

unichanged, then it seems reagonsble to say that Y is more uncertain than X .

4., X is a mixture of Y and a gure thing.

let Y be r.v. with the mean p and let Y' be the r.v. which
is equal to p with probability 1 . Then if X =AY + (1-2)¥" , 0<A <1,

X 1is less rigky than Y .

5. Y__hasg a greater variance than X .

Comparisons of riskiness or uncertazinty are commonly restricted to
comparigons of variance, largely because of the long history of the use of

the variance ag a meagsure of dizparsion imn statigtical theory.

The major result of this paper is that the firgt four approaches
lead to a single definition of greater riskiness, different from that of
the fifth approach. We shall demonstrate the equivaience as follows., In
section II, it is shown that the third amd fourth approaches lead to a
characterization of increasing uncertainty in terms of the indefinite inte-
grals of differences of cumlative distribution fumctions (c.d.f's). 1Im
section IIT it is shown that this indefinite integral induces a partial
ordering on the set of distributicon funmctions which is equivalent to the

partial ordering induced by the first twe approaches.

In section IV we show that this concept of increasing risk is
not equivalent to that implied by equating the risk of X with the variance

of X . This suggest to us that our concepte lead to a better definition



of increasing risk than the standard one.

It is of courge impossible to prove that one definition is better
than another. This fact is not a license for agnosticism or the suspension
of judgment. Although there seems to us no quastion but that our definition
is more conaistent with the natural meaning of increasing risk than the
variance definition, definitions are chosen for their usefulness as well as
their consistency. As Tobin has argued, critics of the mean variance approach
"owe us more than demonstrations that it rests on restrictive assumptions.
They need to show us how a more general and less vulnerable approach will
yield the kind of comparative static results that economists are interested
in." [ 171 1In section V we show how our definition wmay be applied to

economic and statistical problems.

Before we begin It will be well to establish certain notational
conventions., Throughout this paper X and Y will be r.v's with c.d.f's,
F and G resgpectively. When they exist, we shall write the density functions
of F and G as f and g . In general we shall adhere to the convention

that F 1is less risky than G .

At pregent our results apply only to c.d.f’s whoge points of increase
lie in a bounded interval, and we ghall for conmvenience take that interval
to be [0, 1] ; that is F{0) = G(0) = 0 and F(l) = G(1) =1 . The exten-
sion (and modification) of the results to c.d.f's defined on the whole real
line is an open question whose resolution requires the solution of a host of
delicate convergence problems of little economic interest. H(X, Z) is the »

1
joint digtribution function of the r.v's X and Z defined on™ [0, 1@;@{-1,1}

1 ¢ denotes cartesian product.



We ghall use S to refer to the difference of G and F and let

T be

its indefinite integral, that is, S{x) = G(x) - F(x) and T(y) = foys(x)dx .

II. The integpral conditions.

In this section we give a geometrically motivated definition of

what it means for onme r.v. to have more weight in the tails than another.

(Subsections 1 and 2). A definition of "greater rigk" should be transitive.

An examination of the consequence of thig requirement leads to a more general

definition which, although less intuitive, is analytically more convenient

(subsections 3 and 4).

1. Mean preserving spreads: dengities.

lLet s{x) be a step function defined by:

x>0 for a<x<a+t

~-2< 0 for at+td<x<a+t d+ ¢t

(3.1) 8{x) =4-B <0 for b<x<b<t
i
B>0 for b+e<x<b+tet+t
0 otherwi
se
where

(3.i1) 0 < a < att < atd < atd+t <b < bt < bte < blett < 1
and

(3.iii) Be=0ad
Such a function is pictured in figure 2 . It is easy to verify that

Ii g(x)dx = Ii x8(x) dx = 0 . Thus if f is a demsity function and

if
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' 1 1 1 1
g=f+ 3, then I; g(x)dx = Io f{x)dx + f; s(x)dx = 1 and I; xg (x)dx

= Ii x(f(x) + s(x))dx = fi xf(x)dx . It follows then that if g(x) > o

for all x1 ; £ 1is a density function with the same mean as f . Adding

a function l1ike g to f sghifts probability weight from the center to the
tails. We shall call a function which satisfies (3) a mean preserviug
spread {MPS) and if f and g are densities and g-f is a MPS we shall say

that g differes from f by a single MPS.

2. Mean preserving gpreads: discrete distributions.

We may define a similar concept for the differences between descrete
distributions. Let F and G be the c.d.f's of the discrete r.v's X and

Y . We can describe X and Y completely as follows:

Pr{X = ai) = fi : Pr(Y = ai) =8

-~

where I fi =g

=1, and {313 is an increasing sequence of real numbers
i i

i

bounded by 0 and 1 . Suppose f,6 = éi for all but four i, say 1

i 1’

iz 3 i3 , and i, where ik < i To avoid double subscripts let

£~

k+l ©

a, =a, , £ =1£f, , and B = By and define

k i k ik Kk

Then if

(4.1) 7y = 7,20 and 7y, = -7, 20

1 That is, if f(x) > for a+d<x<a+d+t and £(x) 2B for
b<x<b+ t,



Y has more weight in the tails than X and if

4
(4.11) z
k=1

a T < 0

the means of X and Y will be the same. See Figure 4. If two discrete
r.v's X and Y attribute the same weight to all but four points and if
their differences satisfy (4) we shall say that Y differs from X by

a single MPS.

3. The integral conditions.

If two densities g and f differ by a single MPS, s , the
difference of the corresponding c.d.f's G and F will be the indefinte

integral of s . That is, s =g - £ implies S =G - F where
S{x) = Iﬁ s(u)du . S, which is drawn in figure 5 , has several interesting

properties. The last two of these ((6) and (7) below) will play a

crucial role in this paper, and we will refer to them as the integral condition.
First S(0) = S(1) = 0 . Second, there is a 2z such that

(5) S(x) <0 if x<z and B8(x) <0 if x >z
Finally, if T(y) = !['Z S (x)dx

then

6) T(l) = 0

since T(1) = Ii S(x)dx = xS(x) LI Ii x s(x)dx = 0 .
o

Finally (5) and (6) together imply that

(7 T(y) 20; 0<y<1
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If G and F are discrete digtributiong differing by a single

MPS and if S =G -~ F then S satisfies (5), (6), and (7). See figure 6,

It should be noted that if X and Y are r.v's such that X
is a mixture of Y and a sure thing (see I.4) above, then the difference
of the c.d.f's corresponding to Y and X also satisfies (5), (6) and (7).

See figures 7 and 8.

4, Implications of tramgitivity.

The concept of a MPS is the begining, but only the begining, of a
definition of greater variability, To complete it we need to explore the
implications of transitivity. That is, for our definition to be reasonable

it should be the case that if Xl is riskier than Xz which is in turn

riskier than X, then X, 1is riskier than X, . Thus, if X and Y are

the r.v's with c.d,f's F and G, we need to find a criterion for deciding
whether G could have been obtained from F by a sequence of MPS's. We
demonstrate in this section that the criterion is contained in conditions

{(6) and (7) a‘bovea1

We will proceed by first stating precisely in theorem1l(a)the
obvioug fact that if G is obtained from F by a sequence of MPS's, then
G - F gatisfies the integral conditions ((6) and (7)). Theorem l(b) is

roughly the converse of that statement: That is, we show that if G - F

1 Condition (5) could not be part of such a criterion for it is easy to
congtruct examples of c.d.f's which differ by two MPS's such that their
difference does mot satisfy (5).
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satigsfies the integral conditions, G could have been obtained from F to

any desired degree of approximation by a sequence of MPS's.
Theorem l(a). If (a) there is a sequence of c.d.f's {Fn] converging

(weakly) to G , (written F - G)land (‘b)Fn differs from Fﬂ_,1 by a

n

single MPS, (which implies Fn = Fn-l + Sn = Fo + 151 Sn , Where Fo =F ,
o8

and where each Sn satisfies (6) and (7)), then G =F + L Si = F+ 8
i=1

and S satisfies (6) and (7). The proof, which is obvious, is omitted.

Theorem 1(b). If F - G satisfies the integral conditions (6) and (7)),

then there exist sequences Fn and Gn ; Fn -F, Gn - G, such that
for each n Gn could have been obtained from Fn by a finite number
of MPS's.

The proof is an immediate consequence of the following two lemmas:
the first proves the theorem for step functions with a finite
number of gteps; and the s e c on d states that F and G may be
approximated arbitrarily closely by step functions which satisfy the

integral condtions.

Lenma 1. If X and Y are discrete r.v's whose c.d.f's F and G have a

finite number of points of increase, and if S =G - F satisfies (6) and (7),

i let Efu) = fi ul(x)dG(x) and En(u) = Il u

o (x)dGa(x) . Then Fn - G

if and only if En(u) - E(u) for all continuous functions u on [0, 1].
See Feller II, p. 243.
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then there exists c.d.f’s, F° 5 ceee 5 E sach that Fo =F, F =G,

and Fi differg from Fi-l by a single MPS.

Proof:
§ is a step function with a finite number of steps. Let

11 = (a1 s az) be the first positive step of 8§ . If I1 does not exist

S(x) =0 implying that F = G and the lemma is trivally true. let
12 = (33 s 64) be the first negative step of S{(x) . By (6), a, < ay o

Let 7, be the value of S(x) om I, and -7, be the value of S(x)

1
on 12 .
Either
(8) 7.(8, - a;) 2 72(a4 - a4)
or
(9) 718y = 2)) < 7,{(a, - a3)
If (8) holds, let “&4 =a, . There is an 32 satisfying a, < éz <a,
such that
(10) 71(52 - a;) = 72(54 = a,) .

If (9) holds, let & then there is an 34 satisfying a, < 34 <a,

9 = 8y 5 3

such that (10) holds. Define Sl(x) by

—

7, for a; <=x< 32

Sl(x) = ¢ =y, for a, <=x< a,

0 otherwise

|

Then 1f F, = F + §
1 s )

17 Fi differs from F by a single MPS and
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S(l) = G - F, satisfies (6) and (7) .

1

1)

We uge this technique to congtruct S2 from § and define

F2 by F2 = Fl + 32 « Because S 1is a step function with a finite number
of steps, the procéss terminates after a finite number of iterations.

Lemma 2. Let F and G be c.d.f's defined on [0, 1]. Let T(y) =

ST ex) - F(x))dx. If

(6) T(y) 20, 0<y<1l.
and
(7) T(l) =0

then, for each n , there exists F and G, c.d.f's of discrete r.v's

with a finite number of points of increase, such that if

e = Fl[ = [* 5,0 - FGo)Jax
and 1
e, - ¢l|= [ le 00 - ce)lax ,
(o]
4
(1) g, - Fll + Ilo_-cll <%

then1

and if Tn(y) = OIY (Gn(x) - Fn(x))dx then

(12) T (y) >0

[ |
o

(13) Tn(l)

Proof: We prove this by constructing Fn and Gn for fixed n .

1 Condition (11) implies weak convergence. See Feller II, p. 243,
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i-1 i

i ( n ’ n) Let

For 1i=1, ... , n let I

i — -— —
f F(n) and define Fn by Fn(x) fi for x e 1

i (See figure 9)

i -
Since F is monotonic ?;(x) > F(x) . It follows also from monotonicity

that HFn - F|| 5,§ . If Fn(x) is any step function constant on each

then ||F -I-T||§”l and
n n

I1 such that Fn(x) € F(Ii) for x e I

i

- ~ — — 2
5, - ¥l < |IE_ - FI] + ||F, - 7] < 2

Similarly if Gn(x) is a step function such that =x ¢ Ii implies
¢ (x) ¢ G(I,) then ||G - || <2.
n i n - n

For every i there exigts £, ¢ F(Ii) and gy € G(Ii) such

i

8, = £ ) . _ - _
= II {(G(x) - F(x))dx . Let Fn(x) fi and Gn(x) 84
i

-~

xel We now show that Fn and Gn satisfy (11), (12) and (13). We

i -
have already shown that (l11) is satisfied. Obgerve that

-~

r )= [* (e (0 - F ()

(E (x) - ; {x))dx
11I11 n n

n g n
-x L—1-5 [ G - FE)x
=1 i

=1 0 i

= ofl (G(x) - F(x))dx = T(1) = 0,
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so that (13) is satisfied. It remains to show that Tn(y) >0 . If

CR RN

¥y = for j=0, 1, .c.; n, then Tn(y) o T(E) >0 so we need only

3

-~
examine the case where y = .y +a, 0<ac< % o Then, Tn(x) =

). If g, > f both terms of the sum are positive.

3
Tn(;) + o (sj - ; J

f
3
1

i h 1
1f 8y < f_, then T(E) + Ot(gj - fj) > T(g) + ;(gj - fj) = T(*;*) >0,

i

This completes the proof except for a technical detail. Neither
Fn nor Gn are necessarily ¢.d.f's . We remedy this by defining Fn(x) =
o

Fn(x) for xe¢ (0, 1) and Fn(O) =0 and Fﬂ(l) =1, Gn is defined

gsimilarly and if Fn and Gn satigfy (11), (12), and (13} so do Fn

and G_ .
n

A similar argument, which we omit, can be used to show that the
integral conditions are also implied by defiring Y to be more variable
than X if X 1is a mixture of Y and a sure thing with the same mean
as Y and exploring the implication of tramsitivity. This establishes the
essential equivalence of the third and fourth approaches to the definition

of increasing risk.

III. Partial orderings of distribution functions.
A definition of greater uncertainty is, or should be, a definition
of a partial ordering on a set of distribution functions. In this section

we formally define the three partial orderings corresponding to the first
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four concepts of iancreasing risk set out in Section I and prove their

equivalence.

1. Partial orderings.

<
A partial ordering ;’ on a set ig a2 binary, transitive, reflexive

and antigymmetric relationol The set over which our partial orderings are

defined 1s the set of distribution functions on [0, 1]. We shall uge F E‘G
interchangeably with X %’Y where F and G are the c.d.f's of the
rov's X and Y .

2. Definition of §-,.

Following the discussion of the last section we define a partial

<
ordering — as follows: F S-G if and only if G ~ F satisfies the

I I

integral conditions (6) and (7) .

Lemma 3. is a partial ordering.

<
I

Proof., It is immediate that %‘ is tramgitive and reflexive. We need only

demonstrate antigymmetry. Define S1 and S2 as follows:

S, =G ~=-F and §

1 2=F-Go

Thus S, + §, = 0 , Furthermore, if T (x) = OH['Y 5, (x)dx , then

1 A rélation g' is antisymmetric Iif A § B and B % A implies A =3B,
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< < -y
T (y) 20, since F7G and GTF. Since 0= L['o (5, (x) + §,(x))dx =

Tl(Y) + TZ(Y) =0 and Ti(y) >0, Ti(y) =0 . We shall prove this

implies that Sl(x) =0 a.e. {almost everywhere), or F(x) = G(x) a.e.

This will prove the 1emman1

Since Sl(x) is of bounded variation (it is the difference of

two monotonic functions) its discontinuties form a set of measure zero.
Let us call this gset N . Define

0 for x e N

SI(X) = {

Sl(x) otherwise

A

N

Then [ § (x)dx = i (x)dx = T.(y) . Suppose there is an x such that
o 1 o 1 1

-~ -~ -~

Sl(x) # 0, say Sl(x) >0 ., Then Sl(x) >0 for xe (x~€¢, x+ ¢)

- L3

for some ¢ > 0 (since Sl(x) is continuous at x ) . Then, Tl(x-e)

< Tl(x+e) ., This contradition completes the proof.

3. Definition of § .

We define the partial E- corregponding to the idea that X

1 We shall follow the convention of congidering two distribution functions
to be equal if they differ only on a set of measure zero.
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is less risky than Y if every risk averter prefers X to ¥ as follows.

F E G if and only if for every bounded concave function T, ri U(x)df(x) >

1 <
Io U(x) dG(x) . It is immediate that " is trangitive and reflexive. That

f' is antigymmetric is an immediate consequence of Theorem 2 below.

4., Definiton of f o

Corresponding to the notion that X is less risky than Y if X

the
equals Y plus some uncerrelated noise is/partial ordering f‘ which we

now define. F E G 1if and only if there exists a joint distributien

function H(x , z) of the r.v's X and Z defined on [0, 1}?;&;[-1, 1]
such that if

J(y) =Pr{X+Z<y)

then

(14) F(x) =H(x, 1) ; 0<x<1
(15) G(y) = J(y) 0<y<1
and

(16) E(Z|X =x) =0 for all x .

That f is a partial ordering follows from Theorem 2 . However,

to prove Theorem 2 we shall first need to prove E- is trangitive.

1

lemma 4. If X E'Xz E’XS , then X

1<,3
a
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2 1 1 3 2 2 3 1

Proof. By hypothesis X" =X +2Z° and X =X + 2" . Thus, X =X +

zt 4 22 o It remains to show that E(Zl + Z2 I Xl) =0, But:,1
1, .2, 1,
E(Z +2° | X)=EE @zt + 7? [ e s zly=rg (z? [ xt . zly =
2t 22 2122

EE (z2 [ t+zhy-0 .

2172

= A

5. Equivalence of < =
a u

2 2

We now state and prove the major result of this paper.

Theorem 2. The following statements are equivalent:

<
(a) F;G

<
(B) F7T6G

<
(c) F'a-G

Proof. The proof consists of demonstrating the chain of implications
(c) =>(A) =>(B) —-_—> (C) . Throughout the proof we adhere to the notational

conventions introduced at the end of section I.
< <
a. XZY=>XZY.
By hypothesgis there ig an r.v. 8 such that Y =X+ Z and

E(le) =0 . For every fixed X and concave U we have by Jensen's

inequality

1 1

E (Z2 | X, Zl) iz the expectation with respect to zl of the r.v.

Zl

2 1 1
ez | x,z).
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E UX + 2) < U(E (X + Z) = U(X)
z A

Taking expectations,

EE U(X + 2) <E UX)
Xz X
or
EU®) <EUEX) .
< < 1
= —_— =
b. FZG=>FTG .

If 8= G~-F then F % G implies ofl U(x) d s(x) <0 for
all concave U . Since the identity function and its negative are both
concave we have that Ofl xd S{x) + ofl(- x)d S(x) < 0 or that
Orlx d S{x) = 0 . Integrating by parts we find that T(1) = 0 ., It remains
to show that T(y) >0 for all Y ¢ [0; 1] . For fixed y ; let

by(x) =Max (y ~x, 0) . Then - by(x) is concave and 0 <

ﬁ, by(x) d $(x) = ﬁ; (y - x) d S(x) =

v 8(y) - on x d S(x) . Integrating the last term by parts we find that

'y y
-or xd sk =-x S(xi:] + fz S(x) dx

[+ ]

= -y 8(y) +T({y) -

1 We are indebted to D. Wallace for the present simplified form of the
proof. For continuously differentiable U , the reverse implication may
be proved simply by integration by parts.
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Thus, T(y) = OII by(x) d s(x) >0 .

< <
c. F76 :§;>F S 6.

We prove this implication first for the case where F and G are
discrete r.v's which differ by a single MPS. Using the notation of section

11,2, let F and G attribute the same probability weight to all but four

points a4 < a, < a, < a; o Let Pr(X = ak) = fk and Pr(Y = ak) =g - If
T T 8 ” fk ; then
(4.1) 71=“‘72_>,09 74=“’73..>..0
and
4
(4.i1) Tya =0
k=1 kK k

are the conditions that G differs from F by a single MPS. Define a

r.v. Z conditional on X as follows:

if X # a, or X#a;, Z2=0

B f.+ C

- 2.2 "2 = - = 22
if X = a, Pr(Z = 0) = r f , Pr(Z = a; az) I and
2 2 2
Ca2

Pr(Z = a, - a,) = E;- where 012 and 842 are the solutions to
(17) c12 + 042 == 7

(18) (al - az) 012 + (a4 - az) C42 =0
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g £, +t7 C

3 3 3 13
If X=ay, r(Z2=0)=¢=—F— , Pr(Z=2; -ay)=¢"

3 3 3

Cy3

Pr(Z = a, - a3) = §;- where 013 and 043 are the solutions to
(19) Ci3*C3 =7
(20) (2, - a3) Ciq + (2, - a3)C43 =0

Straightforward algebra will establish that C12 P C42 ’ C13 s 643

are non-negative and these conditions do define a r.v. Z . Conditions
(18) and (20) {mply E(Z|X) = 0 . It remains to show that Y =X+ 2 . If

Yl =X+ 2Z, Y1 is a discrete r.v. which, since E(Z) = 0 , has the same

mean as Y . It can differ from Y only if it attributes different pro-

bability weight to the points a; ,8,, 83, 3, . But Pr(Y1 =a, )=

2
)
Pr(X = a,) . Pr(Z =0 | X = a,) = £, E; =g, = Pr(Y = a,) . Similarly

Pr(Yl = a3) = Pr(Y 33) » Then Y and Y1 can differ in the agsignment

of probability weight in at most two points. But Pr(Y = al) > Pr(Y1 = al)
implies Pr(Y1 = a4) > Pr(Y = aa) which in turn implies that E(Yl) > E(¥) ,

1
a contradiction. Thus, Y=Y =X+ 2 .

Lemma 1 and Lemma &4 allow us to extend this result to all discrete

distributions with a finite number of points of increase. We use Theorem 1,

to extend it to all c¢.d.f's . If F % G , there exists sequences [Fn?
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and {Gn} of discrete distributiongwitha finite number of points of

G+ We have just shown

increase such that Fn = F and Gn -G and F n

n

A

F

<
na

G . Let X and ¥ be the r.v's with distributions F and ¢ .
n n n n n

There ig for each u an Hn(x, z) ;, the joint distribution function of the

r.v's Xn and Zn ,» such that if Jn(y) = Pr(xn + Zn < y) , then

(21) I =6 ()
(22) F&)=H(x, 1)
and

(23) E(X | z)=0.

Since Hn is a digcrete distribution function (23) can be
phrased as
(24) JH oSt emz aH x, 2) =0
for all continuous functions u defined on [0 , 1]. Since Hn is
stochagtically bounded, the sequence {Hn} has a subsequence {Hn.l which

) ,
converges to a distribution function H(x , z) of the r.v's X and 2Z .

Since Hn' (x, 1) = Fn,(x) ~F , Hn,(x s 1) = F , Similarly, Jn' -G .
1 1
Let Mn, = of -1I u{x) z d Hn,(x ; 2) . By the definitions of weak con-

1 1
vergence M , - oI -II u(x)z d H(x , z) . But {Mn,} is a sequence all

1 Feller 1I, pp. 247, 261
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of whose terms are 0 and it must therefore converge to 0 . Therefore

1 1
of -lf u(x)z d H(x , z) = 0, which implies E(Z | X) = 0 . This completes
the proof.

6. TFurther remarks.

We conclude this section with two remarks about these orderings.

(a) Partial vergus Complete Orderings. In the previous gubsection, we

> >
establisghed that a’ 71’ and S define equivalent partial orderings over

digstributions with the same mean. It should be emphagized that thege orderings
are only partial, that is, if F and G have the same mean but rl(F(x) -
[a]

G(x))dx = T(y) changes sign, F and G cannot be ordered. But this means

in turn that there always exists two concave functions, U1 and U2 s+ such
1 1 1
that  [* v,aFG) > [ u) dee) white [' udre) < [M U, deto ;5 Lee.

there 1g some risk averse individual who prefers F to G and another who

prefers G to F . On the other hand, the ordering % associated with

" .
mean-variance analysis (X%Y if EnX=EY andEmggﬁY ) is a complete ordering, i.e.

>

if X and Y have the same wmean, either X% Y er X FX e

<
(b) Concavity. We have already noted that if U is concave, X E-Y

implies EU(X) < EU(Y) . Similarly, given any differentiable function U

‘which over the interval [0 , 1] 1s neither concave nor convex, then there
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> >
--G-—-

exigtg distribution functions ¥ , G, and H, F 167

H , such that
rl U(x) dF < rlU(x)dG : but rl U({x)dg¢ > Il U(x)dH
o - o d o =0 ‘

>
In short, T defines the set of all concave functiong. a function

U is concave if and only if XS Y implies EU(X) < EU(Y) .

IV. Mean-Varisnce Analysisg.,

The method most frequently used for comparing uncertain prospects for
h a s been mean-variance analysis. It is easy to show that such comparisons
may lead to unjustified conclusions. For instance, if X and Y have the same mean
X may have a lower variance and yet Y will be preferred to X by some risk

averse individuals. To see this, all we need observe is that, although F§G=%Ex

F % G (since variance is a convex function), F % G does not imply
F % G . Indeed by arguments closely analogous to those used earlier, it
can be shown that a function U 1is quadratic if and only if X % Y implies

EU(X) > EU(Y) . An immediate consequence of this is that if U(x) 1is any

non-quadratic concave function, then there exists random variables Xi s

but EX2

i=1, 2, 3, all with the same mean such that EX2 < EX2 2

2
>
1 < Xy EX,
while EU(Xl) < EU(XZ) < EU(X3) ; i.e. the ranking by variance and the

ranking by expected utility are different.

Tobin has conjectured that mean-variance analysis may be appropriate

if the class of distributions =- and thus the class of changes in
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distributions -- is restricted. Thig is true but the restrictions required
are, as far as is presently known, very severe. Tobin's proof is -~ as he
implicitly recognizes (in [16], p. 20-21) =- valid only for distributions
which differ only by "location parameters." (See Feller [4], p. 144 for

a discussion of thisclassical concept.) That is, Tobin is only willing to
consider changee in distributions from F to G if there exist a and b
(a > 0) such that F(x) = G(ax + b) . Such changes amount only to & change
in the centering of the distribution and a uniform shrinking or stretching

of the distribution -- equivalent to a change in units.

There has been some needless confusion along these lines aboqt
the concept of a two parameter family of distribution functions. It is
undeniable that all digtributions which differ only by location parameters
forma two parameter family. Ingeneral, what is meant by a "'two parameter
family"? To us a two parameter family of distributions would seem to be
any set of distributions such that one member of the set would be picked
out be selecting two parameters. As Tobin has put it, it is "onme such
that it is necessary to know just two numbers in order to describe the
whole distribution." Technically that is, a two parameter family is a

mapping from E2 into the space of distribtuien functions.1 Tt is clear

1 Or some subset of Ez : we might restrict ome or both of our parameters
to be non-negative.
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that for thig broad definition of two parameter family, Tobin's conjecture

cannot possibly hold, for mothing restricts the range of this mapping.

Other definitions of two paramter family are of course possible,
They involve essentially restrictions to "nice” mappings from E2 to the
space of distribution functiong, e.g. a family of distributions with an

explicit algebraic form containing only two parameters which can vary. It

. . 2
is easy, however, to construct examples where if the wvariance, ¢  changes,

with the mean, ¢ , held congtant, §I£%l changes sign, where T(y, 62, p) =
A

ofy Fix ; 02 s ) 3 1i.e. there exist individuals with concave utility

functions who are better off with an increase in varianceol

V. Applications

1. Chooging probability distributions. There are a number of situations in

which an individual must, in effect, choose, for one purpose or another,

a probability distribution from smong a set of possgible probability distri-

1 Consider, for instance, the family of digtributionsg defined as follows:
{(a, ¢ > 0) . (In this example, for expositional clarity we have abandomned
our usual convention of definity distributions over [0 , 1])

0 x<1- .25/a
ax + .25 - a 1=-.25/a<x<1+ (2c = .5)/(c ~ a)
F(x; a, ¢) { ex + .75 = 3¢ 1+ {2¢ ~ ‘5)/(6 -a)<x <3+ .25/

1 x >3+ .25/¢
L
Two members of the family with the same mean but different variances are
depicted in Figure 10(a). They clearly do not satisfy (6). The density
functions are illustrated in Figure 10({(b).
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F(x)

FIGURE 10(a)

f(x) -

FIGURE 10(b)
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butions. The following examples show how the preceding theorem may be

applied to prove some general theorems about such situations.

1
(a) Divergification Theorem.  Assume an individual can purchase shares

of two2 gecurites whose value next period (per dollar invested) is described
by identical but independent distributions. How should he allocate his given
initial wealth, i,e. how should he choose b to maximize

EU(W) = E‘U((bel + (1-b )ez)Wo)

where U 1is a concave function,3 We prove that independent of the utility

function b gshould be setat 1/2 . We can write
Yy = (be1 + (lmb)ez)wo =Yy/2 " (b—1/2)(e1=e2)w0

Since

Bleg = ey | yyp) =05

Vb < Y1/0 for all b , by Theorem 2,
a

(b). The Rao-Blackwell Theo;gt_n”oh This well-known theorem follows as an

immediate corrollary of our theorem 2 , Let the distribution of X depend
on some unknown parameter 6 , and let S be sufficient statistic for 8 .
let d(X) be any nonrandomized decision rule, and let ; be the decision

rule defined by

ém =E@(X) |s=1t)

1 See [12] for analternative proof and general discussion of this thoerem.
2 The generalization to take case of n securities is straight forward.
3 We assume that E e, exists and is finite so EU exists and is finite.

4 Concepts and notation are borrowed from Ferguson [ 5 ].
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-~

(Because S 1s a sufficient statistic, d is a function of t only.)
Agsume the loss function L(6 , y) (where vy 1is the value of the decision

rule) is convex. Then we wish to show that
E L{® , £> <E LB, d)
Observe that we can, without loss of generality, write
d(X) = ;(t) + Z

with
E@A(X) | t) =d(e) +EZ | t)
By the definition of d{t) ,
E(Z | t) =0 .

The result follows immediately from Theorem 2,
2. Effects of Increasing Variability on Economic Dicisions,

One of the original motivations of this study was to enable us to
examine the effects of an increase in risk on some control parameter Q ,
were O was chosen to maximize

(25) [u(x , a)dFix)

The first order condition for utility maximization is
(26) § & Dirix) = 0

Assume there is a unique solutiom to (26), @* and, that; in the neighbor-

hood of o , Ua is monotone (decreasing) in « .1 Then if Ua(x , Q) is

1 We assume U, g O for all (@, x) 1in the relevant region. In the

examples below we shall have occasion to demonstrate the uniqueness
of o* .,
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a convex (concave) function of X , an increase in riskiness will lead to

an increase (decrease) in EUa(X s &) . But since EUa(X , O%) =0,
before the change, now EUa(X ; O%) >0 (< 0) ., Hence O* 1is increased

(decreased). In any particular problem, the question becomes one of ascer-

taining the conditions under which Ua(x , @) 1s concave (convex) in X .

Earlier gtudies {see, e.g. [9,15) have made comparisons between
perfectly certain and risky situations., In a “certain" situation, we choose
a so that

Ua(X , @y =0

Whether & 2 ok , where O* is the solution to (25) depends simply on

whether

EU,{X , &) 2 u(ex , &)

Jensen's inequality allows us to make unambiguous statements whenever Ua

is concave or convex in X ; but this is the same condition under which

we are able to make unambiguous statements for a wider class of problems.

We examine below five problems of economic interest. Two are
concerned with the consumer's allocation of his portfolio between safe and
rigky assets and of his income between savings and consumption. The remaining
three are production problems involving the choice of technique and level

of output under uncertainty.
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(). Savings and‘uncertgintyol There are at least two stories of how

uncertainty about the rate of return on savings affects the savings rate.
(i) A risk averse individual, in order to ensure his "minimum standard of
living" saves more in the face of uncertainty. (ii) A risk averse indivi-
dual is discouraged from saving by the uncertainty of the return «- ™a bird
in the hand is worth two in the bush." We shall ghow that whether the
savings rate increases or decreases {in our simplified model) depends on

whether relative risk aversion [1,10] is less than or greater than unity,
We consider a risk averse individual who has a given wealth, L

which he wishes to allocate between congsumption today and consumption
tomorrow, What he does not consume today, he invests; at the end of the
period his investment yields the random return e per dollar invested. He
wishes to allocate Wo between the two periods to maximize two period
expected utility,

E{U(Cl) + (1-a)u{c2)} = E[U((1-8)¥ ) + (1-5)U(sW e)]

where s is the savings rate and § the pure rate of time preference,
The necessary and sufficient condition for wtility maximization is that
U ((L-s)W ) = E{[0" (sW_e)] (1-8)e}

Whether s decreases or increases as risk increases depends on whether

U'(Cz)e ig concave or convex in e ; i.e. whether

1 For a fuller discussion of this and related problems, see [7, 11].



30

1 - - 1t 1 <
U (Cz)(l R(Cz)) U <02)(R (02)) >0

where R{C) = - U"({C)C/U'(C) 1is the Arrow-Pratt measure of relative rigk

avergion and C2 = sWoe is consumption in the second period. If relative

rigsk aversion is constant, savings Is unaffected if relative risk aversion
ig unity (the Bermoulli utility function), decreased if it is less than
unity, increased if it is greater. If relative risk aversion is increasing,
but less than or equal to one throughout the relevant range, then savings

are increased.

Note that if we had aggumed that individuals had a quadratic utility

function,

_ =2 =2
U(Cy 5 Cy) = (C; - C) + (1-8)(C, - C)

so that expected utility maximization yields

(1-8)C Ee + w°=E

&= 2
Wo(Ee (1-8) + 1)
then we would have concluded that an increase in variance, with fixed mean,

always lowers savings.

(b). A firm's production problem.l Conzider a firm whose output Q next
period is uncertain {(e.g. & public utility which must meet all demands at a
fixed price). It wishes to minimize the expected cost of producing Q. Q
is produced by a two (for simplicity) factor concave production function,
Q=PXK, L), where K iz, say, capital, a factor which cannot be varied

in the short run, and 1L is, say, labor, the variable factor. What happens

1 See [11] for a more complete analysis of this problem.
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to expected costs as (Q becomes more variable? If r is the cost of

capital, and w that of labor, expected costs are given by
(27) E[rK + wL(K, Q)] = rK + wE[L(K , Q)]

where L(K, Q) 1is the labor required to produce the given output Q with
capital K . Since F is concave, it is easy to show that L(K, Q) is
convex in Q , for any given K . Hence an increase in variability of Q

always leads to an increase in expected cost,

A somewhat more difficult problem ig, what happens to the optimum
level of K ? Not surprisingly, the answer depends on the elasticity of .
subgtitution between K and L . We choose K*¥ to minimize expected

costs. From (27), the first order conditions may be written

oL K
dK

€ i1

= K

i.e., the factor price ratio must be equal to the average marginal rate of
gsubgtitution., Let us assume that the productiom function has constant

elagticity of subgtitution. Then

9= (8 + (1-5)LP)L/P
1l-p
. 1
oL _ s (R\PTh (8 V|- ] ° ppn
K - I-6\1L 1-5 1-5
1 If L>0 2L = 0 otherwise,

3K
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oLy _ | sxt

-2
(1-p)qQ°
3¢ 1-5)°

(1-3p)/p

(P - &) (-0Q° + (1-p)5KP)

A sufficient condition for convexity is that p < 0, i.e. the elasticity
of substitution be less than or equal to unity. Thus, if the elasticity of
substitution is less than or equal to unity, the ¢ptimal level of X iIncreasges

with an increase of variability in Q .

To show that for other production function K may decrease, with
an increase in variability of output congider the extreme cage of a constant

elagticity of szubgtitution production function with infinite elasticity:
QG = bK + alL

If the capital stock is given by K , expected costs are given by

rx+iffm~bmwm)
K

where G(Q) 1is the distribution fumction for Q . Expected cost minimization
requires (for an interior solutiom),
r - ?—(1 - G(bK)) = 0

so that

- ¢t(1 - (arfub))
= .

K*

‘ =1
Whether K increases or devreases depends solely on whether G ~(l-(ar/wb))
increases or decreases, (see figure 11) or, equivalently, whether the
probability that Q will be greater than bX* (the “capacity" of the

original capital stock) increases or decreases.
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1
(¢). A multi-stage planning problem. Consider a simple economy in which

the final consumption good 1s produced by labor and an intermediate commodity

Y
Q=P(L2,Y)

while y 1s produced by labor alomne:
y = M(L,)
The economy faces an overall labor comgtraint L , so

L1+L2=Lo

In the absence of uncertainty, maximization of Q simply requires

= '
P P2M -

Agsume t h # t there is uncertainty associated with the production of y :

v =M(L1)+e

where e has mean zerc and distributfon function F . We wish to maximize

EQ; we require
- L] =
E[P1 P2M ] 0

If e becomes more variable, what happens to L1 (and Lz) ? This

depends on the sign of

- Mt
Pigg = M'Pyyy

1 This problem was poged to us by M. Weitzman.
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Agsume that P is a constant elasticity of substitution production function:
P = (o1, + 1-6)y")P . Then

P, = 2=((1-p)sLY + p(1-8)y")

122 T I, 2 v

A((p-2)8L = (1+p)(1-8)y")

Po22 ~ y

where

A= 6(1=5)(p~1)Lgy°”2(5LP + sty 3o (o

If 1>p >0, i.,e. the elasticity of gubstitution is greater than or

equal to unity, Pl22 < 0 and P222 >0, so L2 decreases, L. increases,

1

i.e. more labor is allocated to the earlier stage of production.

Consider the other extreme case, where Q 1is produced by a fixed

coefficients production function Q = min(L2 s+ ¥) . Then

LZ-H(L

)
£(Q) 1 M(L) + eldF(e) + L,(1 - F(L, - M(L))

1-L -M(L)) - -
=_J (M(L)) + e]dF(e) + (L ~ L)(1 - F(L ~ Ly - ML)

so that maximization of EQ requires

' (L)) + 11F(L - L, - M(L)) = 1

1

The second order conditions are satisfied;, since MUP - £(M' - 1)2 <0,
where f is the density function corresponding to F ; hence there is a

unique maximum. Whether L1 increases or decreases depends solely on
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whether F(L - L, - H(Ll)) increases or decreaseg, i.e. whether the proba-

bility that (at the old allocation) the y constraint will be binding is
increagsed or decreased; either is clearly possible. Note that if y 1is

also produced by a constant returns to scale production function

y =1L

then the optimal value of Ll is simply given by
F(L - 2L,) = 1
1 2

so what happens to L1 depends completely on whether the median of e

increases or decreases.

(d). A portfolio problem. An individual with initial wealth of Wo 5
wishes to allocate a fixed amount of wealth, Wo , between money, which

yields a zero rate of return, and a risky asset which vields a random rate
of return e , so as to maximize the expected utility of his terminsal
wealth:

EUW) = E(@U@ (1 + ae))

where a 1is the fraction of his wealth invested in the risky asset. U
ig assumed to be concave. A necessary and sufficient condition for utility
maximization is

El'e = 0

What happens to a 1if e becomes riskier depends on whether U'e is
concave or convex, i.e. whether

u"(l - R+ WOA) + U'(WOA' = R") 20 ,
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where, as before, R = -U'"W/U' , the Arrow-Pratt measure of relative risk
aversion and A = - U"/U' ; the measure of absolute risk aversion. A suf-
ficient condition for an increase in uncertainty leading to an increase
allocation to the safe asset is that relative risk aversion be 1gss than
or equal to unity, and that absolute risk aversion be non-increasing and
relative risk aversion be non~decreasing. The Bermoulli utility function

clearly satisfies these conditions.

Note that once again if we had begun the analysis by assuming a
quadratic utility function, we would have obtained migleadingly unambiguous
regults: If U' = - BW ,

(@ ~ PW )Ee

g = ——2
2
BWoEe

80

da

dEe2

<0

An increase in variance, with mean fixed, lowers the allocation to the risky

asgget,

Taxation of earnings from investments amounts to a particular
kind of change in the distribution of the payoff from an investment. The
results we obtain here are much weaker than the corresponding results for
the effect of an income tax with full loss offset, but they are identical
to those obtained in [ 14] for an income tax with no loss offset. Such a
tax can be viewed as a mean preserving reduction in risk (F to A in

figure 12) plus a reduction in mean (A to B in figure 12), by shifting
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the distribution to the left. The latter will lead to an increase in the
demand for the safe asset if there is decreasing absolute risk aversion, a
condition already included in the condition for a mean preserving reduction

in risk leading to an increage in the demand for the safe asset.

(e). Choice of output level for a competitive firm. In the examples con-

sidered so far, the conditions we have obtained under which unambiguous
gstatements about the effects of increases in variability have been esgsestially
identical to those obtained eariier in comparisons between safe and risky
situations. There are, however, problems in which the latter comparisons

can be made under weaker conditions than the former. In the following
example, we can for instance make unambiguous statements even when the first

order condition is neither concave nor convex.

Consider a competitive firm which must decide today on the level
of output tomorrow, although the price, p, of output Q is uncertain. It
wishes to maximize expected utility of profits, U(m) , where U 1is con-

cavel and where
m=pQ = C{(Q)
where G{Q) is the cost function and is convex. A necessary and sufficient

condition for an optimum is that

¥

If the producer is risk neutral or if there is no variability in p , profit

1 TFor a discussion of the case of congtant absolute rigk aversion, see [9].
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maximization requires that price equals marginal cost,
Ep = C'(Q) .
' > >
Q as LRI Ep, i.e., as E[((W - EU)( - E(®))] 20 . But since

UM<0, U'(p) S U'E(R)) as p SE(M , so E[(U' - EU')(p - E(p))]

= E[@" - U'EpP))(p - E(P))] <0 . Hence, there iz always less output

under uncertainty than under certainty.
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