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OPTIMAL GROWTH WITH SCALE ECONOMIES IN QVERHEAD CAPITAL

by

Martia L. Weitzman*

1. Summary

Following closely the approach to optimal economic growth taken
in the work of Frank Ramsey [1928], a highly simplified two-sector model
is presented in which the “overhead capital” sectof exhibits increasing
returns to scale. Basic properties of the optimal growth path are discussed
and the optimal policy is explicitly demonstrated for a special case.
From an economic standpoint, the model might be relevant in bearing on
some issues of development programming. Mathematically, this kind of a
model has an interesting structure because it is a combination of convex

and concave sub-probleﬁs.

2. Introduction

in the context of development economics it is useful to distin-
guish two types of capital according to how round-about a role each plays

in producing output. One type, denoted Ka , 1s the ordinary directly

productive, quick-yielding capital which, when it is combined with labor,

*The research deseribed in this paper was carried out under grants from
the National Science Foundation and from the Ford Foundation.



creates output according to classical laws of production. A second kind

of capital, K 1s the indirectly productive infrastructure which lays

B 2
down the basic framework within which directly productive economic activi-
ties can function. Capital of this variety has come in for increased scru-
tiny by development economists. At least in part this is due to the growing
suspicion that & capital, comprising those essential services without

which ordinary production cannot operate, plays an especially important

role in the early stages of economic growth.

For the purposes of this paper the total capital stock of the

economy is thought of as being partitioned between two sectors == Ka

belonging to the « sector and K.[3 te the B sector, This being the

case, it becomes a fair question to ask for operational criteria which can
be used te distinguish « from £ capital. Unfortunately it is difficult
to be precise about this issue. For one thing it depends upon how aggrega-

tive a view one is prepared to take.

Considering an entire economy on the most general level, £ would

consist of all social overhead capital including public service facilities

for education, scientific research, sanitation engineering, public health,

and law enforcement, agricultural overhead such as drainage and irrigation

systems, and hard public utilities like transportation, communications,

power and water supply installatioms. A somewhat more satisfactory inter-
pretation might limit B to the hard public utilities. There is even an
interesting way of looking at this model which restricts the economic scenario
to manufacturing and treats [ as structures, & as producers' durable

equipment.



For the purposes of this paper probably the most useful formula-
tion is the middle one which treats P as overhead capital for producers’

services. In any case, the basic features are taken to be the following.

(i) Capital of the B type is strongly complementary with « .
Investment in « capital will be productive only if it has been preceeded

by sufficient investment in P capital.

(ii) The B sector is highly capital intensive and usually con-
gists primarily of gtructures and installations. It is typically charac-

terized by a significantly higher capital-labor ratio than the «a sector.

{iii) There are substantial economies of scale in creating 2
capacity. The main reason is that due to indivisibilities there is obvious
cost lumpiness involved in creating a transportation, communications, or
power and water supply system as a whole. Geometric-engineering consider-
ations are also important in the case of many structures because the cost
of an item is frequently related to its surface area while the capacity

. . 1
increases according teo its volume.

(iv) Both P and @ capitals are specific tc the role for which

they have been created and cannot be shifted.

3. The Bagic Model

The highly stylized economy under consideration is centralized

and closed. A single homogeneous output, denoted Y , 1is produced which

1In addition the usual internal economies of specialization and information
handling may be present,



is perfectly general before it has been committed;and can be used for any
purpogse. The planners seek to maximize welfare by appropriately manipulating
the available instruments =~ in this case the destination of final output.
Fer simplification the following are assumed: stationary labor force and

population, congstant technology, no capital deterioration.

As an abstraction of proposition (ii), it is postulated that B
capital has only negligible manpower requirements. This makes the labor
allocation problem trivial because all available workers will be assigned

to work with « capital.

If B capital were abundant at time ¢t ¥(t) would depend only

on the stock of &a(t) and the labor force. Since the latter is treated

as constant, the production function in this case can be written as

Yt} = F(Ka(t))

Non-increasing returns to a single factor {plus differentiability) implies

F“(Ka) <0 for all K, >0 . Assume for the sake of economic interest

that F(Ka(O)) >0 and F'(Ka(o)) >0,
With Ka(t) plentiful, the production function is simply
£) = K (t) .
() B(’

Note the implied asymmetry in capital measurement; Ka is gauged by the

usual criterion of real production cost, whereas it will prove useful to

quantify KB in capacity units. Of course strict identification of K6



with "capacity” would be possible only if there were a negligible elasticity

of substitution between K, and F(Ka) » 4a condition which we readily

B

assume following (i).

In the general case,

Y(t) = min{F(Ka(t)), Kﬁ(t)}

At any time some outpuf can be stored in the form of a generalized
inventory, denoted X . The purpose of accumulating an inventory is the
possibility of later converting it into capital stock. With « capital
there is no reason for waiting to exercigse this option. One unit of inven-
tory is instantaneously convertible into a single unit of «a capital,

Under these terms of trade the transition from investment to & capital
formation might as well be performed as soon as possible in the more usual
direct form

K = Ty >

where Ia denotes investment in capital.,2

However, with P capital there is a meaningful distinction be-
tween capital accumulation and investment. Because of the presumed increasing
returns to scale described in (iii) it will typically be better not to in-

vest directly in B capital. Rather it will pay to first accumulate what

2A dot over a variasble denotes differentiation with respect to time. Var-
iables may not be explicitly specified as functions of time if this inter-
pretation is otherwise clear.



could be thought of as either an inventory of materials or as projects in
progress. Only after a while should some generalized inventory X be trans-

formed into new Kﬁ available for operation.3

Let AX represent 2 portion of generalized inventory X earmarked
for conversion into operating f capital. Naturally - < AX < X . Suppose

that AK., units of K, are created, where

B B

AKB = G(AX)

Reflecting economies of scale, G 1is taken to be a convex, monotonically
increasing, continuous function of AX defined for all AX > 0 . It is

assumed that lim G{(AX) = , G(0) =0, and
AX 0

1im G(AK) _ 0 (L)
Ax—.()"' X

Something like the latter condition is necessary to insure that economies
of scale are taken advantage of and that in fact generalized inventories

must be accumulated for this purpoese.

3This reasoning is easy to spell out by a simple example. 1f a certain
amount of material can be molded into a pipeline te carry a given volume
per unit time, twice as much material would result in a pipeline able to
transport four times the previous volume (assuming a given thickness of
pipe). Under these circumstances it may be better to wait a while for
a bigger pipeline even though larger inventory stocks would be standing
idly by in the interim.

4Generalizing to the case where (1) does not hold is not difficult. Con-
tinuous adjustments are then possible, as well as discrete jumps,



We will also find it useful to work with the function H , de-
fined as the inverse of G . H can be interpreted as an investment cost
function relating the cost in cumulated output units of a given B capi-

tal increase according to the schedule

-1
AX = H(AKB) =G (AKB)

Displaying decreasing unit costs, the continuous, monotonically increasing,

concave cost function H is defined for all AKB > 0 and possesses the

H(AK,)
properties lim H(AKﬁ) =o, H(0) =0, and lim "7§€E‘ =o , An
ARy AR -0+ B8

B B

example is illustrated in Figure 1.

4, The Ramsey Model

The social utility of consuming smount C(t) at time ¢t is
U(c(t)) . The instantaneous utility function U is monotonic increasing,
concave and differentiable, implying for all C > 0 that ©'(C) 20
and U"(C) < 0 . For simplification the condition
lim U'(C) = =
c~0t
is imposed, guaranteeing non-zeroc consumption for all time. ¥Fimally, it
is necessary to make a boundedness qualification of the form

sup U(F(Ka)) =B <
K, 20
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Ramsey called the least upper bound B the bliss level. A state of bliss
would be attained (in the limit) as consumers became sated with goods or
as the effects of capital saturation were so pronounced as to make it im-
possible to increase production past a certain output no matter how much

investment were undertaken.

For a given consumption path {C(t}}, Ramsey defined his social
welfare criterion V[{C(t))}] as a sum of the difference between instantaneous

utility and the bligs level:

]

[ [ugcce))y - Blde
0

Hl

vi{c(t)i]

There is no a priori reason why this evaluation integral ought to be finite
for any given {C(t)} , Should V be equal to =-e for each of two con-
sumption paths, there would be nothing to recommend one over the other; how-

ever a path yielding a finite value of V would be preferable to bothe5

Temporarily forgetting all about B capital, Ramsey's problem

is to

>The overtaking criterion makes {Cl(t)l preferable to [Cz(t)] if there
T T _
exists a T such that I U(C,(t))de > f u(c,(t))dt for all T >T.

oo ! o 2 =

Were {C,(t)} preferable to [Cz(t)} by Ramsey's evaluation integral

it would also be preferable by the overtaking criterion. The converse
is not necessarily true.
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max J‘ [u{cy - Bldt (2)
0
subject to C + I = F(K) (3)
K =1 %)
c, I >0 (3)
K(0) =K (0} >0, given (6)

Any path [K(t), C{t)} satisfying (3)-(6) is called feasible.

It is presumed that U and F are such that (2)-(6) is a meaning-
ful problem in the senmse that an oprimum exists.6 The Ramsey optimal path

{E(t), E{t)} must be feasible, satisfy
o <V = VI{C(t}]
and possess the property that for any feasible path {K(t), C(t)},
vife(e)tl <V .

Using the calculus of variations, Ramsey was able to characterize
the optimal path {K(t), C(t)} as the unique solution to the differential

equation

U (T = B - U(C) (7

6It is easy to see that (2)-(6) would have to be a well-defined problem if
U(F(Ka)) reached a maximum for finite Ka . The various sufficiency con~

ditions of Gale and Sutherland [1968], McFadden [1967] and von WeizsHcker
[1965] are stated in terms of the overtaking criterion but many of them
can be routinely modified to treat the Ramsey evaluation integral case.
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c+¥ = FK) (8)
with the given initial condition

R0) = Ka(O) (9)

Equation (7) is the famous Keynes-Ramsey rule of optimal alloca-
tion. Along an optimal path both capital and consumption grow monotonically
until one or the other goes to or asymptotically approaches its saturation
level. The other variable goes to or asymptotically approaches a corres-
ponding level which is determined from the production function. Thus the
bliss level is reached at least asymptotically. An optimal solution is

shown in Figure 2,

Define

Y(t) = F(X{t)) (10)
q(t) = u' (C(t)) (11)
T(t) = R(e) (12)

s
Note that Y(t) is a continuous monctonic function of t . The dual price
q{t) is interpretable as the value of an extra unit of output at time ¢t
imputed in terms of the evaluation integral. Differentiating (7) and (8)

with respect to time, substituting from (11) and rearranging yields
9= p'(K)
q

a standard relation of optimal growth theory.
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5. Optimal Capacity Expansion

One more seeming degression is necessary before formally tackling
the main problem. Now temporarily neglecting « capital entirely, treat
{?(t)} and {q(t)} as if they were prescribed data, {?(t)} is considered
in the present context to be a fixed final demand schedule which must always
be fulfilled. Thinking of q{(t) as the cost in current terms of invest-
ment funds at time t , the present discounted value of creating extra ca-

pacity AK at time t is q{t)H(AK) .

The least cost capacity expansion problem is to schedule capacity

{K(t)} to meet final demands [?(t)? at minimum total present discounted

cost, Mathematically, the problem is to find times Eys t2, .++ and capacity
increments AK(tl), AK(tz), sen which7
o
min §[{e,}, {AR(t )] = iilq(ti)H(AK(ti)) (13)
subject to K(t) > ¥(t) (14)
K(t) =R{t, ;) +aK{t, ;) for ¢, ,<t=t (15)
R(0) = Ky(0) 2Y(0) given (16)
i=1 2
t0 = 0

7A formulation in terms of specific times when capacity is increased is a
natural one because condition (1) forces a policy of positive capacity
augmentation at discrete instants of time. 1f all the capacity increments
went to a zero limit in a non-zero time interval, total investment costs
would soar to o because of (1). At times other than ty t2, sos

AK(t) is thought of as being zero. Manne [1967] discusses several prac-
tical examples of optimal capacity expansion problems.
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Let [Ei’ AR(Ei)} represent an optimal policy.,8 Define % =
¢[{Ei], [Aﬁ(Ei)}] » Using (15), an optimal path can alternatively be ex-

pressed by [ﬁ(t)} .

8Although the existence of an optimal policy is not proved, we indicate why
it has been assumed. Consider a feasible policy of installing § units
of extra capacity whenever K = Y . The cost of such a policy would be

0(8) = *ﬁél E (Y (K(O) + j8))8 . Passing to the limit, lim E q(Y (K(O)
_-;=o g0+ §=0
Y(”) ~w] o~ ~ o ~ ® ~~
+i6 = [ q@¥ "y = [ q(0)¥dt = [ q(£)F"(K)Kdt =
K(0) £y t;

o ~ —~
I F'(R)[B - U(C)]dt < @, where t, = Y 1(K(O)) . E%?l is well defined
t

1
for all § >0 . It follows that for some value §' >0 and some M < =,
s’y =M, Since an upper bound on { exists, so does a least upper
bound, denoted ¢ . This means that feasible policies exist with costs
arbltrarily close to ¢ In practice such a result is as good as an ex-
istence theorem, given the uncertainties of the data.

Strict existence of an optimal capacity schedule in the mathematical sense
could be rigorously proved if we had chosen to formulate the model in terms
of period analysis instead of continucus time. With M an upper bound on

¥ , we can restrict AK(n) to values 0 SAMK <G (n) for n=20, 1, 2, ...
A standard application of the Tychnoff theorem (cf. Kelley [1955], p. 143)

shows the Cartesian product set Q = )Kf[o G(:ﬂ(“i> to be compact.
n=0

Define the function @ = min{y, M} for all §N<AK(n) € Q . Being real
n=0
valued and continuous under the product topology on the compact set @,

[+ -]
8 must attain a minimum for some value > AK(n) ¢ Q, concluding the
n=0

proof,
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It is easy to see that along an optimal path, R(Ei) = ?(Ei) .

No extra capacity will be installed while some excess capacity already
exists. With q < 0, it pays to take advantage of economies of scale
and postpone intended construction until the day when some must be under-

taken anyway because full capacity will have been reached.9

More specific properties of an optimal policy would have to de-
pend upon the particular shapes of {?(t)} and {q(t)} . Llater we sharply
characterize an optimal capacity schedule for a certain parameterizationm.

A typical minimum cost policy is illustrated in Figure 3.

6. Formulation and Solution of the Basic Model

Having treated separately the Ramsey and Capacity Expansion pro-

blems, we are in a position to tackle the main problem introduced in Sec-
tion 3. Properties of the present model are vaguely recognizable as some
sort of 2 rough combination of features belonging to the two simpler pro-
blems. As we shall see, the optimal solution will combine, in a well de-

fined sense, the Ramsey and capacity expanzion optimal trajectories.

We use the same social objective as Ramsey. However, in the con-
o0

text in which it is presently employed, I {U{c) - B]dt 1is denoted
0

Ww({c(t)}] to avoid confusion.

9This simple conclusion is an example of a ''regeneration point theorem.”
Such a result greatly simplifies computatien because the search for an
optimum can be limited to full capacity regeneration points and these can
typically be efficiently examined via the appropriate dynamic programming
algorithm,
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FIGURE 3

TIME PATHS OF FINAL DEMAND AND INSTALLED CAPACITY
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The problem is to select times ¢t E?’ oo and to choose values

13

for the instruments ¥(t) ; c(t), I(t), Ia(t) , Ix(t) R AX(Ei) , and

AKB(Ei) eo 0

max W[{c(t)}] = Ofw{U(C(t)) - Blde (17)

subject to ¥(t) < F(K(t)) (18)

¥(t) < Kglt) (19)

c(t) + I{t) =y(t) _ (20)

Ia(t)-%Ix(t) = It} (21)

K (€) = I 1¢) (22)

R(t) = I (t) for t &7, (23)

§$+x<¥i +e) = X(r;) - AK(e) (24)

BR(E) = GIAX(E,)) (25)

Ka(t) = Ka(timl) +AAKB(ti&1) for ti <t £ (26)

A

Y(t), cit), Ity I lt), I {ed, X{t), 8X(t) 20 (27)

Ka(o), KB(U), X(0) given (28)

1OFor economy of notation, positive values of AX and positive changes in

K6 have been restricted a priori to discrete times {ti} . In fact this

is a vacuous restriction because condition (1) implies that even with the
possibility of continuous adjustments available, an optimal policy would
always call for jump adjustments in KB at certain distinct times. For

times t #‘Ei , it is useful to interpret AX(t} and AKB(t) as being
zero, Note that AX(Ei) is defined as minus the change in X at time

ti °
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Where not otherwise noted, t 1is any non-negative time and 1 is any posi-

tive integer. By convention ?0 =0.

With only insignificant loss of generality, we restrict attention

to initial configurations of the state variables K

a’ K

B> X obeying11
Kgl0) 2 F(K,(0})
X(0) = 0,

The following theorem is the main result.

Define {gi} and {??] by the recursive equations

i=1
j=1 .
_ HCARCE, )
l{ti)

=0

Under the assumptions of the model, an optimal solution of (175~

(28), whose variables are denoted with asterisks, can be described as follows:

11Later it should become clear what to do if these initial conditions should
not be met. In fact an optimal policy will always call for Kﬁ(t) > F(Ka(t))

-- for all t >0 if KB(O) > F(Ka(O)) , and for all sufficiently large
t if KB(O) < F(Ka(G)) . The latter condition must have therefore arisenm,

in some sense, out of mismanagement prior to time zero. The case of X(0)
positive is not difficult to handle; we normalize to zero just for nota-
tional convenience.
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Fortunately a relatively simple interpretation can be placed

on this formidable looking prescription.

The optimal policy is depicted in Figure 4.

Suppose that all

the [Ez, E?] sections of that diagram were compressed into a point and
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(chosen for the case i = 2)
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the gaps removed by pushing together and connecting the {Y*(t)} 5 {I*(t)}
and {C*(t)} curves. The resulting trajectories would be exactly the
Yy, 1wy, {E(t)} graphs of Figure 2. In other words, the sole

E

effect of introducing the [Ei’ ti] regions into Figure 4 is to stretch

out into positive intervals what would otherwise be isolated single points
of the original Ramsey optimal trajectory.

An analogous interpertation is available for P capital. Except

for the [5:, E:] gections, the time profile of KB in Figure 4 would

look identical to the Figure 3 portrayal of an optimal capacity schedule

t,, AR(E)Y. It is eagily seen that the t 1 of Figure 3 are exactly
i i i

those isolated points of the Ramsey optimal policy which in Figure 4 are

stretched out into time segments of positive length.
While time seems to stand still during the period [Ez, E:] 3

all investment is going into accumulating an inventory of X(E:) starting

sk
from an initial level of zero at time £§ . The interval [E:, ti] lasts

precisely long enough to build up that amount of X which will coalesce

to form the Aﬁ(%i) units of B capital dictated by the solution to the
% =k *

capacity expansion problem. Throughout the period [Ei’ ti] s Y (t),

I*(t) s C*(t) are maintained at the constant levels ?(Ei) , ?(Ei),

~ a e
C(ti) . At time t° the entire generalized inventory x(ti) is formed

i
into B capital and the ecomomy picks up again at that point of the Ramsey
trajectory where it left off at time t' because the KB ceiling had become

i
binding.
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In terms of economic development, [EI, E?] represents a big

push period.12 During this time all investment is being funneled at a con-
stant rate into the as yet unproductive overhead capital project. As will
presently be demonstrated, big push stages are likely to be of longer duration
and to occur more frequently in the earlier stages of development. From the
viewpoint of social policy, the big push is probably a critical time because
no real growth occurs and consumption is stagnant. It is hard to see how

this kind of restraint could be extended for significant lengths of time

without the imposition of economic controls.

Let p(t) represent the value of an extra unit of output at time

t dimputed in terms of the evaluation integral. Obviously p(t) = U'(C*(t)) ,

so that
i-1 _ .
p(t) = q(t -~ T (7~ £5) ¢  <t<¢t¥
= ot * r
p(t) =q(t,) £, ety

For t belonging to the Ramsey growth phase (E:_l, E:) , the

dual price declines over time; an extra unit of output is worth more if it
is received early because it could be productively invested in O capital to

* ——
yield increased future returps. However, in the big push phase [Ei’ t;'} ; the

social output price is stationary; whether received early or late in a big
push stage, an extra unit of cutput cannot be used to increase returans but

could only be invested in non-directly-productive generalized inventory.

120f. Rosenstein-Rodan {1961), Hirschman [1958], Scitovsky [1959].



23

7. Proof of the Main Theorem

The strategy of proof can be easily outlined, A consumption path

{Ce(t)} is efficient in the usual sense if it is feasible and if, for any

other feasible path {Cf(t)} with the property Cf(t) > Ce(t) for all
> £
t>0, I [c°(t) - Ce(t)]dt =0, We first exhibit four obvious efficiency
- 0

conditions (a)-(d). Without loss of generality, any candidate for an opti-
mal path can be restricted to satisfy these four criteria. Next, comsidering
only comparisons among paths so restricted, we show that an optimal solu-
tion must belong to an even more exclusive family of paths with special
additional features., Finally, the proposed solution is shown to be an op-

timal member of this family of special paths,
The four efficiency conditions are:

{(a) If F(Ka(t)) < KB(t) and X(t) > 0, there is no loss of

generality in restricting AX(t) to be zero,

Condition (a) is needed only to prove (b} and will not be directly used for

any other purpose. Let T be the first time later than t when F(Ka) = Kﬁ

(if this never happens, T = @ ). It certainly won't depress consumption
at any future or present time to put off until 1T setting AX >0 . It
may even help to wait and take advantage of increasing returns by later

converting a bigger chunk of AX intc more AKB .
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{b) If F(Ka(t) < (t) , no investment in X occurs at time ¢t .

Xs

This condition specifies that all investment must go into building « capitsl
if there is excess B capacity. As in (a), let 1 be the first time later

than t when F(Ka) = K

B Suppose contrary to the hypothesis that

T-
f X(t')dt' =7 >0 . From (a), we need to treat only the case AX(t") =0
t

for all t' ¢ [t, T) . Since nothing is going to get done with X anyway
until time T at the earliest, we can consider a different policy. Main-
tain at all times the same consumption levels as in the original policy.

Now, however, devote all investment to first building up Ka to level
Ka(¢) = le(KB(T)) and then put all investment into creating amount 7

of X . Let this alternative policy take (' ~ t) time units to complete.
It is easy to see that «¢' < T because the second alternative takes ad-

vantage of the direct productivity of « capital for all times when F(Ka) < Kﬁ .
Thus, the identical stocks of Ka s KB , and X are achieved at time T

and consumption is the same for all times belonging to [t, T'] , but the
second alternative permits attaimment of a strictly higher amount of comn-

¥

sumption at level Kﬁ(T) = F(Ka(T)) for all times of (7', 7] . It fol-

lows that the original path must have been inefficient.

(c) 1If F(Ka(t)) 2 Kﬁ(t) , no investment in Kcx occurs at time ¢t .

This condition prohibits investment in & capital so long as full capacity

already exists in that sector. Let 7 be the first time after t when
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AKB >0 ., Suppose that F(Ka(t') > KB(t’) for t' ¢ (t, Tt} and that

Tn
J Ka(t')dt‘ =% >0, It is easy to see that a superior policy is to first
t

invest only in X and then to coalesce H(AKB(T)) units of X into AXB(T)

as soon as X(t) - X(t) units of X have been accumulated, say at time
t' < 1 . Only then should the 7y wunits of « capital be built up. All
the while the same consumption levels of the originmal policy are maintained.

This alternative ends up with the same values of Ka ; K and X imme-

a)
diately after time r , maintains an identical consumption level for all
times belonging to [t, 7'] , and still allows a splash of extra consump-

tion to occur in the interval (7', 7] due to taking advantage of the direct

productivity of O capital.

{d) If F(Ka(t)) > KB(t) , if X(t) =0, and if T is the

first time after t when AX >0 . then AX(r) = X{(71) -

This condition requires that all X built up from zero for the
purpose of increasing KB must be coalesced into AKB all at once., Suppose

to the contrary that AX(t) = 7 < X(r) . Let 7' <t be such that

1

Tﬂ
j’x(t')dt; =7y . If FK|[(t)) = Kﬁ(t) , it will be better to set AK(t') =7
£

and then, duplicating the reasoning of (b), to restrict further jimmediate
investments to & capital. The advantage of setting AK(1') =y for the

case F(Ka(t)) > Kﬁ(t) is obvious, 1In either event, the original path

is inefficient,
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The following comments apply to efficient paths,
It follows from (c) and the initial condition F(Ka(O)) < KB(O)
that F(Ka(t)) < KB(t) for all t >0 . Let {?il represent the times

(in order) at which AX > 0 ; that is, AX(t) >0 if and only if t = 'Ei

for some positive integer 1 . Immediately after t F(Ka) < K and

i-1"’ g’

all investment goes into « capital. Let L be the first time after

t;.q When F(Ka) = K

i More formally, ¢t minimizes t subject to

B - i

tzt

1
8

-1 and F(Ka(t)) = K_(t) ; if there is no feasible solution, ¢,
B =i

-
Define R = gl(ti_l, ), with to=0. If teR, F(K/(£)) <Kg(t),

[=-]
and, from (b), I(t) =1 (t) . Let s= U [t,, t]. PFor t'esS,
a el

F(Ka(t')) = KB(t') , and (c) stipulates that I(t') = Ix(t')'. Thus any

efficient path can be divided into two distinct investment specialization
phases. Property {(d) combined with the initial condition X(0) =0 implies

that .gx(Ei) = x(t,) , or that X(t) =0 for teR.

Let ﬁi be the value of an optimal policy starting at time Ei .

Note that P 1s a function of Ka(£i) s KB(£1) and X(Ei) but does not

i

depend on t, explicitly because the cbjective function and the constraints

i
of the main problem are time autonomous. We know that all investment during

the period (?i-l’ Ei) is restricted to o capital alone. Consider Fi-l s

Ka(timl) R Ka(Ei) , as fixed. To be part of an optimal path, L
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treated as a variable, must be chosen to

t

=i
max _ [ [U(C) - B]dt + P, (29)

t,
i-1

subject te C + Ia = F(Ka) (30)
Ky = I, (31)
¢ 1,20 (32)
t g0 Kt ), K (t) sgiven (33)

Using the calculus of variations, the solution to this free-time

fixed-endpoint problem is

U'(C)K, = B - U(C) (34)
C+K, = F(K) (35)
Ei~1 , Ka(ziml) » Ky(g;) siven (36)

This, of course, is nothing but a section of the Ramsey optimal trajectory

(7)-(9).
Now consider an analogous problem over the time interval [Ei, Ei]

Let 01 be the value of an optimal policy starting at time t, with capital

i
stocks Ka(ti) y Kﬁ(ti) s X(ti) . All investment during the period [Ei, ti]

goes into building up an inventory of X(?i) starting from zero. Also

Y(t) = Y(Ei) = F(Ka(Ei)) = KB(Ei) = Y(Ei) is stationary for ¢t ¢ [Ei, ?;]
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Look upon Y(t) , Ei R X(Ei) and X(?i) as constants. An optimal policy

must have the property that ty s treated here as avariable, is selected to

t

i
max [ (u(c) - Bldt + m; (37)
.
=1
subject to C+1I = Y(Ei) (38)
X =1 (39)
¢, I 20 (40)
ko, X(E) =0, X(k), Y(g;) glven (41)

The calculus of variations solution to this free-time fixed-end-

point problem is

U'(C)X = B - U(C) (42)
C+ X = Yt )=F(R (L)) (43)
£, () =0, X(t), Y(t) given (44)

Optimal values of Ix(t) and C(t) are constants for t e [t,, ?i] .
They are equal to the optimal values, respectively, of Ia(t) and C(t)

in the solution of problem(29)-(33) at t = t since at that time equations

i 2

(34)-(36) and (42)-(44) are identical. Using the same reasoning, Ix(t)

and C(t) from (42)-(44) are also equal to the optimal values of Ia(t)
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and C(t) at time t = ;i for the free-time fixed-endpoint problem which

is identical to (29)-(33) except for taking place over the interval

(£ £i+1) instead of (t; ,, t,) .

These results justify the basic features of an optimal policy as
they have been depicted in Figure 5. Y*(t) , I*(t) , and C*(t) are con-
tinuous. Each big push stage of S 1is just a single Ramsey optimal point
stretched out into an interval of positive length. 1f thase isolated points
were reagsembled back into the appropriate niches of R and the resulting
conglomeration treated as if it were a set connected under continuous time,
the complete Ramsey trajectory (7)-(9) would emerge. A Ramsey growth stage
of R ends whenever full P capacity is encountered and it becomes neces-
sary to devote investment to building generalized inventories. Ramsey growth
continues as goon as all inventories have been converted into excess f

capacity.

In our search for an optimal policy, no generality will be lost
if further attention is restricted to the family of paths described above.

The social objective W[{C(t}}] can then be split up as follows

Wifc(e)¥l = [ [u¢e) - Bldt = [{u(c) - Bldt + [[u(C) - BJdt .
0 R s

As we have seen, the value of the former integral along an optimal

path must be V', the optimal Ramsey objective. As for the latter integral,
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1]

ftucey - Blde = ¥ [u(c(ty) - Bl - &)
g 1

i1=1 1
» _ - H(AK, (E, )
= (U (e )] —EE—
i=1 I(ti)
= - zlu (c(t )H(AK (t » . (44a)
i=

where t . =T, +Y (1(F) + MKy (E)) - ¥ H(X(ED) -

i+l B
i-1
Think of t; =L - T (Fj - Ej) as the singular Ramsey optimal
j=1
point which has been magnified into the interval [Ei, ¥i] . In terms of

the capacity expansion problem (13)-(16), (44a) is equal to

™8

u' (C(t )H(AK(E,)) = - 2 qf(t )H(AK(t ))

i 1

= -¢[[ti}J {AK(ti)}] ;

where ... =Y (X(t) + AR(E))) .

i+l
Thus IR[U(C) - Bldt will be maximized whenever ¢ is minimized

subject to the constraints (14)-(16). We can translate from [Ei} to

i-1
* = . * _ ™ Lk
{gi} and [ti] by using the relations t; =t + jil(t' Ej) and
H(AR(E,))
e - s —,
i i

'i'(Ei)
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. 1
This concludes the proof. 3 An interesting side result is that

~

W=V - §

The maximum social objective is less the optimal value of the Ramsey problem

by the social cost of implementing the cheapest feasible capacity schedule.

+ Capacity Expangion at a Constant Geometric Rate

The features of an optimal capacity schedule can be particularized
by restricting the general functions H(AK) , ;(t) , and q(t) to specific
parameterizations. Henceforth we consider a constant elasticity investment

cost function of the forml4
H(AK) = A(AK)? (45)

where A is just a positive constant of proportionality. The exponent a

measures the (constant) ratio of incremental to average costs of installed

13Note the critical dependence of our results on the time autonomy of the

system under consideration. In the original Ramsey problem the introduc~
tion of discounting, population growth, and time dependent depreciation
or technical change does very little to change the basic properties of
a solution (so long as the time dependence is exponentiall). This is not
the case for the present model, If time dependent features were intro-
duced, the qualitative properties of a welfare maximizing path would be
roughly similar, but there would be no possibility of cleanly decomposing
the optimal trajectory into two distinct sub-problems. On the other hand,
incorporating into the model such time autonomous features as Arrow's
"learning by doing" [1962] would not significantly change the nature of
an optimal trajectory.

laThis parameterization is popular as a pre-design approximation to investment
costs of installed capacity for such process industries as chemicals, pe-
troleum, cement, electricity generation, and primary metals. It should be
emphasized that in the cost engineering literature AK would refer to the
extra capacity created from the establishment of a typical complete process
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capacity. Consistent with the presumed existence of economies of scale,

0<a<l1l

The investment cost function (45) is depicted in Figure 1 with a = 2/3 .

We also assume that

=5
Y(e) = (“%tl> (46)

for some constants ¢ and s obeying

0<g

0<s < 1 .
a
An equivalent way of writing (46) is

g(t) = sr(t) (47)

where g(t) E’¥/? is the growth rate of final demand and r(t) = - &/q

is the discount rate, both evaluated at time ¢t .

In the framework of the isolated capacity expansion model (13)-
(16), expression (47) can be locked upon purely as a convenient parameteri-
zation of the underlying data. No formal reference need be made to any
other congiderations, since the capacity scheduling model is of interest

in its own right, The parameterization {47) pgeneralizes the case usually

balanced plant and not to the creation of semi-mythical "social overhead
capital" for the economy as a whole, Cost engineers usually treat the
exponent a as being equal to about two-thirds. Cf. Chilton {1960],
Haldi and Whitcomb [1967], and Moore [1959].
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analyzed where fixed demand grows exponentially and the discount rate is

constant.,

However, within the context of the two-sector model we have been
analyzing, relation (47) has an interesting additional interpretation. It
could come about as a result of society choosing to save at the constant

rate s

In turn, a proportional savings function is the optimal behavior
befitting any solvable Ramsey problem with a constant elasticity of marginal

utility., Such a utility function is of the form

uec) =8 - pc- N,

1
where B>0, D>0 and 7 = - %TC > 1 are given constants. The pro-

position about a constant savings rate is easily obtained by following the
equations
U'(C)X =B - U(C)

~— ~ ~]-
- (-mpc 1 T”%LE%?T ¢ =pc M

-(1-1)
1 =1

to the conclusion s(t) = 1 .

M
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With the specific parameterizatiom (45), (46) the minimum cost
capacity schedule has a particularly simple characterization. When capacity
must be increased (because no more slack exists), it ie always incremented

by a constant percentage of existing capacity115

Voo prove this interesting result by considering a schedule

{ti’ AKCL, )Y which is a candidate for minimizing current discounted cost
A A
t . Without loss of generality it can be presumed that K(ti) = Y(ti) s

so that no extra capacity is installed while excess capacity is already in

place.
y o= Zqlt, JH(AK(t,))

i=}
@ i-1 = 'i‘ a

= I 2{K(0) + T AK(t.)] A[AK(ti)]
i=1 j=1 4

1 -1 a
a-—e i-1 AKR(t,) 8 AK(ti)
= JAK(0) j§1 1+ 321 ) R0) (48)

Because { can be written in the form (48), it is apparent that

AR(E,)
K(0)

the cost minimizing values of are independent of K(0) . Now

15Note that if g(t) (and hence r(t) also) is constant, an optimal policy

would call for scheduling extra capacity increments at equally spaced in-
AK(tl)
K(0)

was proved by Srinivasin [1967] for the special case mentioned above.

tervals of length é In{l + A constant cycle time result
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congider the problem of finding a least cost capacity schedule which begins

at time t with capacity K(tn) instead of at time 0 with capacity X(0) .

This 18 a sub-problem of the original. The cost function for the new pro-
blem can be written in a form identical to (48) except for obvious index re-

numbering and the interchanged roles of K(tn) and K(0) . But the op-

tiﬁal incremental capacity sequence expressed in units of initial capacity
is independent of the initial capacity level. Hence, for an optimal path
(&, aRGENDY,

aR(e)  AR(E,)

- = i= 1, 2, . e
Let
AR(t,)
M = K(ti) i - 1, 2, TR

be the constant fraction by which capacity ia‘alwaysfincremented. Then

AK(ti) L] uK(O)(1+u)i-1 i=1 2 ... . Substituting into (48), we obtain

1 1
a-=ew i-1 -2 )
$@) = k0 "z i+ £aaiTh fruawntTh®
iml jul

a = *"=o - -:!'-

- gAR(0) ° zlr(nu)i'll L AYe T b
i

a -+ ‘a

= JAK(0) y = 1 (49)
8

a
1~ (14u)
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Differentiating (49) with respect to 1 and equating the deriva-

tive to zero, the following equation is obtained

L. at+l
a(l+)® -l-a=0 (50)

It is not difficult to demonstrate that a unique positive solution to (50)
exists, This value of 5 , denoted ﬁ«, is the unique minimizer of ¢(u)
as can be established by noting the positive sign of the second derivative

of (49) at | and verifying that lim ¢(y) = lim §(1) = o . Table 1 gives
u-0+ e

-
some numerical values of |, for given a and s .

The following results can easily be established.
1) %% < 0 . As the degree of increasing returns diminishes there
is less motivation to capture economies of scale by building significant

excess capacity ghead of demand.

~

2) %% >0 . As the discount rate falls relative to the growth

of demand there is greater incentive for putting off future construction

costs to a later data by increasing present outlays.

A quadratic approximation to (50), valid for small values of

n o is

2{1 - a)
a(l - a + %)

A
b~ .



.50

.60

.70
.75
.80
.85
.90

.95

TABLE 1

i AS A FUNCTION OF a AND s

(in percentage of current capacity)

38

.05 .10 .15 .20 .25 .30 .35 .40 .50 .70 1.0
6.4 12,9 19.7 26.6 33.7 41.0 48.5 56.2 72,0 105.8 161.8
4.8 9.7 14.7 19.7 24.9 30.2 35.5 41.0 52.2 75.6 113.5
4,1 8.2 12.4 16.7 21.0 25.5 30.0 34.5 43.7 63,0 93.8
3.4 6.8 10.3 13.9 17.5 21,1 24.8 28.5 36.0 51.7 76.4
2.8 5,6 8.4 11.2 14.1 17.0 20.0 22.9 29.0 41.3 60,7
2.2 4,3 6.5 8.8 11.0 13.2 15.5 17.8 22.4 31.8 46.4
1.6 3.2 4.8 6.4 8.0 9.7 11.3 13,0 16.3 23.0 33.4
1.0 2.1 3.1 4,2 5.2 6.3 7.4 8.4 10.6 14.8 21.4

.5 1.0 1.6 2.1 2.6 3.1 3.6 4.1 5.1 7.1  10.0



9. Concluding Remarks

In terms of our general model of economic development, capacity
expansion at a constant geometric rate is optimal for a proportional global
savings function, given a constant elasticity cost of extra capacity. There
are some interesting implications of such a policy. The optimal big push

—lp
periods (EI, ti) will be of longer duration in the earlier stages of de-

velopment. Later on, taking advantage of economies of scale, it will take
less time to sove ecuough ab o Tl rafo to incrcase capacity by a given
fraciion. ot only do the big pnush periods last longer in the bepginning,

r

but they occur more frequently as well, The Ramsey growth phases

e

[ti-l’ Ei] are of shorter duration early in the development process when
the econoumy is growing faster and it takes less time for output to attain

any constant multiple of its current level.

These analytic results quantify the generally accepted notion
that infrastructure is somehow a much more important ingredient in the
growth of an underdeveloped than of a mature economy. The longer length
and increased frequency of big push stages during the early years of de-
velopment means more time spent in no-growth stagnant consumption phases
awaiting the completion of overhead facilities. Of course, the present
model over-emphasizes certain structural rigidities, but the conclusions
accord well with the customary feeling that the creation of social over-
head capital is a more formidable barrier to growth in a less developed

economy,
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Along these lines it is interesting to ask how a national wealth
statistician would record, for the present model, the relative shares of
infrastructure and directly productive capital out of total capital stock.
As conventionally measured in terms of real production costs or material
““inputs, the percentage of overhead capital in the total stock would decline
over time. However in terms of cggacitz, the amount of indirectly produc-
tive capital would always at least match the existing quantity of directly
productive capital. That the two measurement standards yield a discrepancy
ig just another reflection of the role of increasing returns to scale in

the creation of overhead capital.
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