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COMPARISON OF k-CLASS ESTIMATORS WHEN
THE DISTURBANCES ARE SMALL

by
Joseph B, Kadane#*

1. Introduction

The study of simultaneous equation econometric models has led to
many estimators alternative to ordinary least squares: single-equation
limited information maximum likelihood and two-gtage least squares, for
example. However, the behavior of these estimators has been difficult
to describe, and it has been difficult to choose among these estimators.
The work described in this paper explores this problem in the case in
which lagged dependent variables are not permitted.

To be most useful for normative purposes, a description must be
detailed enough to give a good approximation and expose differences
between estimators, and yet be simple encugh to strengthen intuition and
yield eagily~described comparisons. Since detail and simplicity are in

conflict, approaches may differ in this respect.

One important approach used in the past is large-sample asymptotic
theory. This reveals a persistent bias in ordinary least squares, and a
large-sample asymptotic equivalence between two-stage least squares and
single-equation limited information maximum likelihood. Additiomally,
Nagar [12] found the %= term in the large~sample asymptotic bias and the

*This paper is baged on the author's Ph.D. dissertation written under the
direction of Herman Chernoff at Stanford University. Other helpful comments
were contributed by Kemmeth Arrow, David Grether, G.S. Maddala, Marc Nerlove
and John G. Ramage. This research was supported at Stanford by a grant from
the National Science Foundation, and at the Cowles Foundation by grants

from the National Science Foundation and the Ford Foundation. An earlier
version was given at the Econometric Society meetings of December, 1966,
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T and =, terms of the moment matrix of two-stage least squares.
T

secuomists have been uneasy, however, about application of large sample
theory to gamples which may not be "large" in the relevant sense. Addition~
ally large sample asymptotic results often depend on arn assumption about

the asymptotic behavior of the moment matrix of exogenous variables which

is difficult to justify.

Monte Carlo experiments [17, 13, 14, 7, 8], 2 second approach
to the problem, have only rarely been used to explore the domain of validity
of large sample approximations to the mean and variance of an estimatcr.
They have provided some insights into the behavior of estimators under a
variety of circumstances, but hypocheses generated by Monte Carlo experiments
are difficult to place in a general theory unless they have analytic con~
firmation of some kind. The parameter space is so large that Monte Carlo
results often fail to provide a reaszonably comprehensive picture, Corollary
1 below gives an example of a result which is true for small models, like
thogse used in most Monte Carlo work, but which appears to be reversed in

large models;, which are often esncountered in practice,

A third approach, introduced by Basmann [2], finds fixed sample

exact densities and moments. More recent werk on this line has been done

- by Basmann {3,4], Bergstrom [5], Kabe [9, 10], Richardson [15], Takeuchi

_[18] and Sawa [16]. All of these papers have been limited to the case
of two endogencus variables in the equation being estimated. An Important
result of this work has been the finding {in a special case by Basmanm [2];
in & more general form by Takeuchi [18} and Sawa {16)) that for two-stage
least squares, moments of order less tham K exist, and those larger do
not, where K 1is the number of exogenous variables in the system. However,
the method is difficult, as it involves integrating a noncentral Wishart
distribution, and the results for the exact moments and densities have

been so complicated as not be be very illuminating,

The paper introduces a fourth approach, based on asymptotic series

in a scalar multiple, o , of the variance of the disturbance in the model,
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Ag o —» 0 the regression function is an increasingly good description of
the random variables generated. Intuitively this is suggested by Gauss's
"“Theory of Errors'-~the errors were never intended to be so large as to

swamp the regression function.
The major results of this paper are the computation of the bias
(to order 02) and matrices of second moments about the true values

(to order 04) for all k-clags estimators (for fixed k) and for single-
equation limited information maximum likelihood. These results are
given in gection 2, and proved in the appendix., They provide the basis

for a number of interesting corollaries.

One corollary is that for equations in which the degree of over-
identification 15 less than or equal to six, two-stage least squares
uniformly dominates the limited informatior maximum likelihood estimators
(in the sense that the difference between the moment matrices of these
estimators is asymptotically (as ¢ = 0 ) positive gemi-definite re-
gardless of the values taken by parameters or exogenous variables). This
is unexpected on the basgis of the considerations introduced by Chow [6].
Interpreted in his context, this result means that ailowing the data to
cheoose the direction of minimization (limited information maximum like~
lihood) introduces too much variability into the estimator compared to
the benefit gained by fixing an arbitrary direction (two-stage least
squares). There are some indications that this preference for two-stage

least squares is reversed as the degree of overidentification gets large.

A second corollary shows that for sufficiently small gample
sizes and degree of overidentification, ordinary least squares dominate
two~stage least squares in the same sense. This had been suspected by
ecconometricians for some time, I believe. Finally, and a surprise, a
third corollary shows that the k-class estimator with smallest asymptotic
variance occursg when k is negative (of course, this takes no account of
the bias, which can be considerable). These are examples of the usefulness

of reasonably simple approximations.
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The results obtained bear an interesting relationghip to each of
the three other approaches. Since the sample size, T » ig a parameter in
small-c asymptotics, a natural way to compare large-sample and small-c
results is to allow T — « in the latter. Remarkably, in each case in
which large-sample results are svailable, the limit of the small-o
expression (as T — o) is the large sample asymptotic expression. Thus
the results of Nagar [12] are obtained for the special case k =1 + /T
(for constant <) in the computation of the bias and moment-matrix
(theorems 2 and 3). Also the results of Anderson and Rubin [1] are
obtained on the distribution of the root, % , of the determinental equation
appearing in the theory of limited information maximum likelihood. (See
also [11].) Thus small-o asymptotics can be thought of as & reasonably
good approximation to the behavier of k-clasg estimators whenever some
combination of large ssmple (i.e. large T ) and low phenomenon variability
(small ¢ ) ought to lead to reasonably good estimation. Small-g
agsymptotics have the important advantage over large-sample theory of
being able to "correct” for sample size. Therefore whenever an econometrician
is prepared to trust large-sample theory, he should be willing to trust

small-c theory more.

In conclugion, small-o agymptotics have the following advantages:
(1) They are as simple as, and a generalization of, large-

sample theory,
(ii) They can provide definite answers to normative choice of

estimator questions.

The ability of small-c asymptotic expansions to explain
Monte-Carlo studies, and the light this sheds on various past Monte-Carlo
studies, is to be considered in a separate paper. Whether ultimately
this small-c asymptotics prove to be the best compromige between
simplicity and detail remains to be seen. However, it is interesting
te note that ﬁhis approéch can be applied to many other econometric and

statigtical questions [1l1].



2. _Statement of Results

Let the complete gystem
Y YB + 2+ oU = 0

have a first equation

(2) y = YIB + zly + ou

where Y is a T x G matrix of endogenous variables, partitioned

Y = (v, Y5, Yz) where v is Tx1, ¥, i8 Tx G, and Y, is

1 1 2

T x 62 (G = G1 + G2 +1) ; Z iz a T x K matrix of exogenous variables,

and Z,

2 is

partitioned 2Z = (Z1 B 22) where Z, is T x Kl

T x Kz (K = K1 + KZ) s Z is asgsumed to have rank K ; B is a non-

singular G x ¢ matrix of parameterg with first columan (-1, B', 0")°

where =1 is a scalar, B is G1 x1 and 0 is a G2 % 1 vector

of zeros; ' i3 a k x ¢ matrix of parameters with first column

(', 0°)' , where 7 is K, x1 and 0 isa K, x 1 vector of zeros;

U isa Tx €& matrix of jointly cormal residuals with zerc meang and

covariances Eu__u =g,.8 and with first columm wu ; = 1

ti%e'j  “ijet’ 1

and o is a (small) positive number. The general k- class estimator of

(s) is

i
(3) Y. = KYRIYE ; -1 - kY%
(B YlYl kvx'v lel (Yl kVv*)1
e T y

2y Z:2 z!
171 171 1

|- R | 1

where V¥ = PZYI and where fo. any matrix X, ?x =1 - X(X'X) X" is

the projection onto the space orthogonal to the columns of X , As is
well~-known, the two stage least squares estimate corresponds to
k = 1, ordinary least squares corresponds to k = 0 , and limited infor-

mation {single equation) maximum likelihood corresponds to k = A ; where



%Y,LPZIY*% iYéleY* s
([1‘-) A = Min - = x =
¢ -

and Y, = (y, Yl)n

- ~

B, in (4), vhen normalized, can be written as (=1, Bi) where BK is
limited information maximum likelihood estimator of B .

To write the reduced form of the gystem, partition Btl con-
formably with Y = (y, Yl’ Y2) as 3,1 = (b, Bl’ 32) where b is

Gx1, B is Gx G, and B is Gx G, . Then

1 1 2 2
y = -Z[b =~ oUb
Yl = le"Bl = oUB1
YZ = mZFBz - cUB2

From (5), write

[Y), 2,1 = [-2B}, Z;] + o-UB;, O) = x + oV ,

1!

and let Q = (X'x)ml . Also let the first column of T be o Then,

1 E
following Nagar [12], define

q = Cov (V, u) = E{Vfu) = «Bl' ol @ 6x 1 vector,
.'6"0
Cl = qq
— > H x;\‘ ¥ .
C2 = bl (z 519, )Bl 0, aGyxy G matrix
0
Finally, let Ty = (1~k)T + kK - G1 - Kl - 1, gu o that,

for cordinary least squares,

ro = T» G1 - K1 -1

for the two-stage least squares

L K = G1 - Kl -1 = K2 - G1 =1=L-=1

where L = I(.2 - G1 is the degree of overidentification.
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Theorem 1 (asymptotic biag)

6) E(ek) = ozrk Qq+ 0(04) for fixed k , and
2 4 . ]
E(ek) ==0" Qq+0(c) for limited-information maximum likelihood
where
B B
e = - .
k
Y/ x 14

Substituting k = 1 + Q/T in (6) yields Nagar's {12] bias

result as T = o , Also notice that

T =G =K =1
1”17, Ll

k = T = K T~K

yields a small-o asymptotically unbiased estimator. However lack of

bias is not a very attractive property for econometric problems, so this

is not recommended as an estimator. (The small~c asymptotic bias of

Nagar's "large-sample unbissed” estimator can be evaluated using (6).).

Theorem 2. Let 8 = k(k=1) (T=K). Then

() E(ee,’) = 0°Q + 0 [{{1-2r) tr () + tr (C,)}Q

+ (D + 25 +2) Q0Q+ (5 - 1, + 1) QC,Q1 + 0(°)

for fixed k , and, provided T >K+ 2,

E(ehgh“) = 02Q + 04 [E} tr (CIQ) + &r (CZQ)} Q

(L+2) (T-K + L-2)
oo g o

+ 0(05).

Again notice that substituting k = 1 + @/T in (7) vields the same

expression as Nagar [12] found as T =« ,

2
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In order to compare moment matrices, a strong criterion is
adopted: A >B if and only if A -~ B is non-negative definite (since
A and B are loss functions, this implies that B 1is preferred). The

following lemma is useful:

Lemma: If A > 0, then
{(tr A) I >4 .

Proof:
Let H be an orthogonal matrix which diagonalizes A . Then

n
eiH[trA)IaA}H"e“mE x,nki=z7~, >0
y=1 3 i# 37

where [hi} are the eigenvalues of A and e, is a unit vector.

Corollary 1.
g ¥
E(eheh ) > E(elel ) if L6 .

Proof
E(eheh") - E(elel“) = 04 [2L(t:r(ClQ)Q
+ (4-L)1Q €0 + L (2 + B2 qc 01
+ 0(05)
> o (12 + 6L) QC,Q + L (2+ g ;}2) QC,Q
+ 0(05)
>0+ 0() if L<6
since
acyq = o2 l2 ¢ 1/2)Q1/2 < QM2 (Q1/201Q1/2))Q1/2

(tr (CIQ))Q using the Lemma.

This means that the expected mean squared error of any linear
combination of parameters is smaller (for L < 6) estimated by two stage
least squares than by limited information maximum likelihood. Also it



-8 =

suggests that for really large systems the reverse might be true;
Monte Carlo results from small systems, where two-stage least squares

is better, may mislead when applied to large systems.

Corollary 2.
v 1 - -
E’(ec’e0 ) < E(e,e, ) if 0 < T-K< 2(3-L)

Proof:
E(eje,") = Elegey') = 0”(rgor;) {2 tr (6,Q)Q + (2-r,=r,)QC,Q
+ Qc,Q} + 0(c)
> 04(;: =r_ ) {(4~r,-r )QC,Q + QC_Q} + o(cs)
= 01 0171 2
>0+ 0(05)
if the above condition is satisfied QED

Corocllary -

g—k'{E(ekek“) - (Eek)(Eek“)} = 2(T-=K)04f (tr €,Q)Q + k(2Qc,Q + chQ)} +0(05)

Therefore the minimum variance k~-class estimator occurs when k is

negative,
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Appendfx A: Proof of Theorems

Throughout these proofs it is important to distinguish the
cases when k is fixed from those when it may be random. When k can

be either, it is demeted k¥ ; when fixed, it is denoted % .
Some additional notation is useful here: for any matrix X s

P =x(xﬁx)"1x” is the projection onto the space spanned by X,

P,=1-= Px 5 which was introduced in Section 2 just under equation (3),

is the projection onto the space orthogonal to the space spanned by X,
Finally, let

8§ =V'X+ X'V,

Lemma 1. If k% = Op(l) 5 then

€y oQX'u + UZQ(V“N*U = SQx'u)

+ GBQ(SQSQX"u = VIN*VQX'u - SQV'N*u) + 0p(04)

where Nt =1 = k*?zo
Proof: P f—
Y, 'Y - kEVRTYR Y, ‘2z, -1 (¥, = k¥v*)’
e 2" 2,'% 2% "

2

1]

o{{X'X) + 08 + V'V L&' + oViNe)u

2

o{I + Qos + ¢ v“N*V)}”IQ(x“ + oVIN*)u,

Use of the standard geometric expansion for the inverse of a matrix:

(C+ 08"t = 1 - na+ n2a? - w3+ ...

yields
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OQUR® + oV'N¥)u -0QloS + oPVINAVIQX' + oV ¢ )u

i

2

+ oQ{oS + o V'N*V)Q oS + ozv”N*V)Q(x° + oVIN®)u + ..,

oQX'u + 02Q(V"N*u'= SQX'u) + 03Q(SQSQX°u

]

VIN¥WQX'u - SQViN*u) + OP(GA) QED

Lemma 2. A = Op(l)

Proof: See Lemma lof Kadane [11].

u'P u {u'xQV'P,u) (u'PLu) = (u'xQV' B u) @'P_u)
- Z X X, Z
Lemma 3. A = TP + 20 =3
A (w'P_u)
Z
2
+ 0 (o o
p( )

{The first order term of Lemma 3 is derived for models possibly including
lagged endogenous variables, and is discussed in relation to the previous

literature in [11].)

Proof.

Let x* be the first G, rows of Q and y** the last

1

Kl rows, so that

- " = ' 2
le YiPy = B, (y, Y1) ("é]+ "(Oa;; X'ut o [0\ (V'Neu - 5Qx"u)

¥
+ 0p(03):]

=P [=y + Y,B + o¥ x¥*'u + 02 Y. X% (ViN*bu = SQx'u) + 0 (03)]
Zl 1 1 1 |5

ﬁz [mzly - gu + Uzlx** yx'u + Gle*x’u + czle*(V"N*UwSQx"u) + czzlx**
1

il

(V'N*u - sQy'u) + OP(US)]



o 13 =

= i = 2 = 2 3 I
= - + TR 0 -
le #Bxu C PXVQX u+ o xQv' (N¥ PX)u + OP(G 3

- 7 - 2= o 3
=P u+¢ PVlx'u+oP V' (Nk=P Yu + 0 (o
oF, " Qx 7 XQV*® ( X> p( )

1
Writing

2 3
GN2+0‘N3+.=”
2 3
o] D2 + g D3 + ceo

>
il
o=

N3D2 = D3N2

2
2

1]

= ENZ

+o + op(cz) ,

2

=

£

b=
[

H ley*&* = B’ Y;le)éleY*B*)

- 2 - 2 3
-gu'P + "QV'P + o u'(N¥-P ) VQx°' + 0
{-ou'P + a"uTxQV y toul X) Qx p(o )

= 2 = 2= 3.
-gP u + P VQy'u + o P V7 (NP + 0
{ obu+o B Qu + o B, xQV'( X) u p(c 3}

1

it

2 .= 3 .= 4
o Pu-~ 20 uwiPVQx'u+ 0 (o
u'B " Qx p( }

il

= 1P ‘ T t,
Therefore NQ u qu and NS 2u PXVQX u

Similarly D =g,' ¥,' B Y¥.B, = g&*“y*"izl) §2(§ZIY*5*>

H

= 2 « 2 = 3 .=
- Y = 4 ] o ] o EP + 0 'r? P
{-cu P‘x g uyQV Pxfdu {* Px) VQy z e )" .

) 2=‘= . 0 2’“ ] 3
- + : + F V? (N#=P + O
{ UPXU o PXVQX u+ o"F, xQV'( X> u p(ﬁ 31

1

N T
g u qu 20" u PZVQX u Op(@ )]



Hence D, = u’P.u and D =wUu”§ZVQx“u , and

2 Z 3
u'Pu (u'xQV P u) (u'P u) < (u'xQviBu) (u'P.u)
k:“:L + 20 £ _,XLQ X Z +0(0'2)
u'Bu (a'Bu) P
QED

The following numbers sre useful in the proofs of theorsms

1 and 2:
a=tr ?Z =T« K
b = tr (ix - ?Z) =tr (P, =~ By) =K, =G =L
c = tr PX e Ki + Gl =T -a="0b,

Also the notation [....]¥* 1is used to denote a single expression, valid
for both k* = k and k* = A , the upper part referring to k , the

lower part to A . TFor example

i ¢ . |aorswe, |
W= 1o b, =14 B = )
I- 2B,

The lemmas on expectation in Appendix B are uged without

special comment in the proofs to follow.

Proof of Theorem 1.

Recalling Lemma 1,

(A1) Efe,,) = OEQX'u + o’ E(QV'N¥u - Q(V'X + X'VIQX’w) + 0(o")
{A2) E{QXfu) = QX'E(u) = 0 ,
Let W' =V' = qu' . W' is obviously independent of u' , by

construction. Then
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(a3) E(QV'N*u) = E(QV’(I - k*P,)u)
= QE(W' (I - k*iz)u) + QqEu’(I - k*?z)u
= Qq(T = E(k*u'B,u))
*
ka
= CofT -
+b+'0(c) R
(a4) E(QV'XQK'u} = QE(W'XQX'u + qu'XQX'u) = Qq tr B, = cQq
(A5) E(QX'VQX’u) = QX'E(WQX’u + uq'QX'u) = QX‘Euu’XQq = Qg

Substitution of (A2), (A3), {A4) and (A5) in (Al) yields Theorem 1 .

To prove Theorem 2, again return to Lemma 1.

‘*’1 ﬁ”l_ G ) 5

(a6) Q ek*ek*Q —Bl+32+32 +]3.3+13,ﬁ+134 +0p(0)
where

Bl = GZ(X”uu”X)

3 ] 0 )

32 = ¢ (X"u(u'N*V = u'XQS))
(47) B3 = UA(V"N*U = SQX'W)(W'N*V - u'XQs)

B, = UA(SQSQX”u = VIN*VQX'u = SQV'N*u){(u'X)

The expectation of each of the above terms is evaluated below.
{A8) E{Bl) = GZX"Euu“X a= UZXUX = cszl .

normal
For B2’ since expectations of products with an odd number of factors of any /

variables with zero mean are zero, the only possible non-zero contribution

may come from N* when k* = ) .

(AS) EX"wu'([I - hﬁz]v = GEAX"uu"ﬁzv
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Becauge the computation of ek*ek*" is sought in this proof to order

4 0 1
g, both ¢ and ¢ order terms of A are relevant here. Hence
.o
_ u qu )
(AL10) -EMX'uu'PV = -E X'uu'P Vv
Z i Z
u'P_u
Z
i t P 0P - v R P B Uiy 0D
‘5 (u'XQV qu)(u qu) (u'XQV qu)(u qu) X'uu PZ
oF
K 2
(u qu)
2
+ 0{oc)

Again using the independence of W =V - uq' and u,

. uﬁﬁxu . -
(Al1) lUU'PZV = ~=—=Xuu'P,uq'p= Eu'quX'uq7= 0
u'P. u
Z
(u'XQV'Bu)(u'Pu) = (u'XQV'Bu)(u'Bou) |
20%'Eu X Z | py =
= 2 “
(u“qu)
(W'XQV P u)(u'P u) - (u'XQV'P u)(u'P u)
X z v'P, X -
20X *Eu -2 u'P uq"
(u"? u)2 Z
Z
| _
— —_
(u'XQV”?xu)(u“ﬁzu) - (u‘XQV'qu)(u‘ixu) )
20X "Eu = UFPZW
(uﬁ'i’zu)2
=
w XQqu‘P uu’P u - u'XQqu‘P uu'P u
20X’Eu X Z - Z X q'
(u“qu)

(WXQW P ud(u'P u) - (u'XQW'P_u)(u'P_u) _
20X'Eu X Z Z S
(u'_PZu)2 (2
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WP u)u'XQWB u « (u'P u u'XQW'Pu
Z X i Z
20X 'Eu

u'bw
(u“PZu)2 Z

[ - -
(uleu)ulixQ tr (quu‘Pz) = (u'-rigg_u)(UDXQ)tr (izuunf,z)

20X*Eu

]

(u'_qu)2

| {u'p u)u'XQ
20X'Eu | u'XQ -

o

u (Px - B )u
= -20X'Eu . uiXQe,
P u

b
P = o
¥z a-zic]xch 20373

i
]

)
%
im cJ
v+
b o
]

(Al2) EB2 = ¢ 02 + 0(c”) ,
using (A9), (Al0) and {All).

Moving now to B3 5
(A13) E(V'N*u - SQX'u)(u'N*V - u’XQs =

E{ViNeuu'N*V} = E{V'N*uu’XQs? - E{SQX'uu'N*V}
+ E{SQX'uu’xQs?} .

(A14)  E{V'N*uu'N*v]

E{W'N¥ruu'¥*W} + E{qu'N¥uu'N*uq'}

[l

E(u”(N*)zu) 02 + E(u'N*u)2 C1

u"(N*)qu

' - T .
u'fIl k*PZ][I k PZ]u

W[(R,) + (k- 1)2“1521u
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E{u'Nzu} =T=gag+ (k - l)za

E{u”[Pz + (A = 1)2§z]u =

u'N*tu = ul[P

E(u'Mu)? = (T

&

EQu'(I - Aﬁz)ujz

Summarizing, from {Al4),

To--

(A15) (T - a){T »a+ 2)+ 2{1 - k)(T -~ a)a + {1 - k)za(a + 2)
E{V'N*tuu'N*V] =
| cie + 2) + 0{c) 1
T=a+ {k - 1)2a
+ %
I aa+hfhjifél + 0(o

Next, from (Al3),

(1 = k*)?z]u = u‘PZu + (1 = k*)u“?zu

aMT - a+ 2) + 2¢1 = k)T ~ ada

+ (1 - k)2afa + 2)

E(u“qu)2 + 0{0) = c{c + 2) + 0(a)

(A16) E{SQX'uu'N*V} = E{(V'X + X'V)QX'uu'N*V}

fl

{since W*X = X)

E{u”N*qu°u]c2 + E[x"n*uu'xq}c2 + Eu' [Py Juu’NeuC,

+ [X“uu“N*uu“XQCl

—

E{(W'X + X'WIQX'uu'N*W} + E{ (qu'X + X'uq’) Q X uu'N*uq®}
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*
(T+ 2 - kadc T+ 2 = ka *
= (c+ 1) C, + cl+ cl
cfc + 2} 4 0{a) e+ 2+ 0 (o)
%*
T+ 2 - ka
=(C+I)C2+(c+l) Cl
¢+ 2+ 0(o)

Finally, the last term from (Al3),

(Al7) ESQX'uu’XQS = E(V'X + X'V)QX"uu'XQ(V'X + X'V)

EM'X + X'W)QX"uu’XQW'X + X°W)

+ E{(qu'X + X'uq®)QX'uu'XQ{qu'X + X'uq')}

CZEQX“IXQX’]X + x"(qu"IXQ)c2

+ tr (XQX'IXQX')C, + X' (tr {QX”:qucz)x
+ E{qu'XQX‘uu'XQX'ug"? + E{X'uq'QX Lu'XQqu'X}

+ EX'uq'QX’uu’XQX'uq® + Equ’XQX'uu'XQqu‘X

-1 o 2
202 + tr (PX)CZ + tr (QCZ)Q + E(u qu) Cl
+ X“E(uuﬁXQCIQX'uu“)X + X'Euu“quu“XQCI

v ] ¥
+ GIQX uu quu X

(e + 2)0, + tr (ch)q"l +ele + 2)0, + tr(qcl)q”l

+ 2(c + 2)C) + 2C;

1

(c + 2)C, + tr (ch)Q“1 +((c + 2)%+ 2)c, + tr {ch)q“’l

Returning to (Al3) and using (Al5), (Al6) and (Al7),

L e+ @ - el + 200k - 1K+ 2 N
E(B,) =0 ¢, + tr (Q¢))Q
2 + 0(o)



- 20 =

(k = l)2a

+b + c, + (e qc,)Q™"

(A18)

e

Finally, 34 must be computed.
(A19) E(SQSQX'u - V'N*VQX'u - SQV'N*u)(u’X)
= E(SQSQX'uu’X) -~ E(V'N*VQX'uu’X) - E(SQV’'N*uu'X)
(A20) E(SQSQX’uu’X) = E(V'X + X'VIQ(V'Y + X'V)QX"uu'X
= E(W'X + X'W)Q(W'X + X'W)QX'uu'X
+ E{qu'X + X'uq')Q{qu’X + X'uq')QX‘uu'X
= E(W'XQW'X) + E(W'XQX'W) + E(X"WQW'X) + E(X'WQX'W)
+ E(gu'XQqu'XQX'uu'x) + E(qu'XQX'uq'XQ uu’X)

+ E(X"uq'Qqu'XQX'uu’X) + E{X'uq ' QX uq'QX'uu’x)
=1

= 1 §

= CZQX X + tx (PX)CZ + tr (CZQ)Q + X KQCZ

+ E(qq“QX’uu“Pqu“X) + qu'QX"uu'quu'X

+ E{tr (clq}x"uuﬂpxuuﬂx) + E(X'uu'XQqq'QX'uu'X)

i

(c + 2)C, + tr (Cquq‘l +2(c+2)C, + (e +2) tx (CIQ)Q‘l

+ tr (01Q)Q”1 + 26,

(e + 2)¢, + tr €0 + 2 + 3)c, + (e + 3) ex (clq)q”l

E{V'N*VQX'uu'X} = E{W'WWQX uu'X} + E{qu'N*uq'QX'uu'X]}

= E(tr N*)CZQX'uu'X + Eqq'GX‘uu'N*uu'X

— — 3
T - ka * T+ 2 - ka [*
= - By §
= E u'qu CZQX ue'X + Cl
T « - a + 0(g) c+2+0(0i
¢
u qu
- =
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Now , -
u'qu u' (@, - P )\
EC,Qk'u|T - ——==a | u'X = IC, - aEC,QX'ua’X - EaC,Q%'u X2} ux
- u'qu ‘ u'P_u )
=(T=a)02“abc?_=T-a‘- ab c?.
a -2 a - 2
Then - ]
: * d
T+ 2 - ka T - ka
? 0,00 0 =
(A21) Ef{V'N*VQX'uu‘X} c+ 2+ 0(0) i aaE 5+ 0(0) c,
Finally, L" -
(A22) E(SQV'N*uu'X) = E(V'X + X'V)QV'N*uu'X
= E(W'X + X'WIQW N uu'X + Equ'¥Qqu’N*uu'x
+ EX'uq'Qqu'N*uu’X
= ECZQX'N*uu”X + E(tr CZQ)X'N*uu‘X
+ ClQX"'Euu‘N*uu’X + tr (CIQ)X-”Euu“N*uu°X
-1 T+2=ka |* T+ 2= ka (¥ -1
=C, + tr (02Q)Q + c:1 + tr(le)Q
c+ 2+ 0() c + 2 + 0(c]
. -
s |12fak = 1) = b+ 1Y =* (k= 1)a-b+1 *
(A23)EB, = © c, + c,
2 + 0(0) -b+afb2+1+0(c)
L ]
alk ~ 1) = b+ 1 }[¥*
+ (er ¢, Q"
1+ 0(c)
-

Finally, Theorem 2 follows using (A6), (A8), (Al2), (A18) and (A23).
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Appendix B: Certain Expectations

Lemma Bl: Let A be a T x T constant matrix. Then
EW'AW) = (tr A)02 o

Proof:

=EZTw, w .a
1

¥ _
.. = E .
(EW AW)IJ L w, a ,w e 52

[
t,t. 1t tt t' 3
= (CZ)ij E att = (tr A)(Cz)ij .
Lemma B2, Let A be a ¢ x c congtant matrix. Then
E(WAW') = ¢r (CQA)I o

Proof:

EWAW' EZ
{ ]ttﬂ . ogw

aoaﬂwjﬂ'tu =EE (C
Js3

£3%53 223510eer3y40

tr (CZA) Sttu .

Lemma B3: let A bea ¢ x T constant matrix. Then
E{WAW) = A"C2 N
Proof:

= — =3 T
E(WAW)tj E thAkt“wt“j A.ktZ VeV 4 (A CZ)tj .

Lemma B4s Let P, and P, be projections such that P P = 0 . Then

1 2 172
u“Plu tr Pl + 2 tr P1 tr Pl
T e [NV - =
E“u'qu““trrzuzP1+trP2P2+tr92»2[I Py - Bl

Proof: Since Pl and P2 conmute, letT (orthogonal) simultaneously

diagonalize them. _
I00 000
§ - = L4 = = 3
FP1F = 1000 Il FPZF 010 12
000 000

——
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Also let v' =u'l’', and v = (vl, Voo v3) partitioned conformably

with I1 and 12 « Then
u'P y v, 'v
1
Eu ET§;E=u" =T E|v -l7gi=v" T
2 Y2 V2

tr Pl + 2 tr P ty P1
= L - '
i P, -2 L+t , Lter B, - 2 (I-(, + 1)) |T

tr PI + 2 tr P1 tr Pl
= i —— e —— e —— - -
-z htee, htwe o3 I-F - k) @D.
2 -T2 2
In particular,
u' (P - B ju
X Z
b+ 2 .= - b = b
LI - - i
Eu - u a -3 { X Pz) + a Pz + P PX .
u qu

Lemma B6: Let R be a symmetric, constant matrix

Euu'Buu®'= (tr R} I + 2R .
Proof:
Diagonalize R :

TRI' =D, v=Tu v~NO,I)

ME( viD.v v

A

il

EuuRu u

2
i

ii

T'E v Ehi v, v

has the jth diagonal element

2 2 2 2 &
E(E?\,ivi )vj =E{ T MYy vj + Ajvj 1

ifj

= + 3, = A+ 2M, e, {t R)I + 2D._).
iijZI Aj ? i 5 (i.e. (tr (R) 2\3)

So the whole expectation is (tr R)I + 2R , QED.
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Corollary. Let Rl be a symmetric, constant matrix and R2 a constant
matrix, then

" ' =
Eu Rlu u Rzu (tr Rl)(tr RZ) + 2 tr (RIRZ) o

Proof:

[}

E u'Ru u'R,u = E{tr u'R_ v u'R.u}

1 2

E tr u u'R.u u'R, = tr ({E u u'R

]
1 9 uu 3R2)

1

]

tr (((tr RI)I + 2R1)R2) = tr R1 tr R2 + 2 tr Rle . QED,

ppe— 4—'*

(T+ 2 = ka)I - 2k"Pz

il

Eu u'N*u.u'
(c + 2)I - 21‘=x + 0(c)

e —1

(T +2-ka) tr R - 2k tr(RR,) |*

E u'Ru u'N*u

il
L)

(c+2)trR=-2tr (Rﬁx) + 0(c)
L




