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SOME PROPERTIES OF "QPTIMALY SEASONAL ADJUSTMENT*
by

D.M, Grether and M. Nerlove
Yale University

1. Introduction

In two previous papers, [1i] and [15], Nerlove attempted
to analyze the effects of various procedures for seasonal adjustment
of economic time series on the characteristics of the series to which
these procedures were applied. The analysis consisted of a comparison
of the estimated spectra of the two series, original and seasonally
adjusted, and an examination of the cross-spectrum of the two series,
particularly of the coherence and phase shift at various frequencies.
In the course of these investigations several informal criteria for
Judging the adequacy of seasonal adjustment were develcped. These

criteris were:

First, the coherence of the original and the seasonally ad-
Justed series should be high at all frequencies except, possibly,

seasonal ones.

*The research on which this paper is based was performed with the sup-
port of the National Science Foundation under grants KSF GS-818 and
NSF GS-1721 to Yale University, and under a grant from the Ford Founda-
tion.



Second, although phase shifts are generally impossible to
avold altogether in any method of seasonal adjustment which uses past
data to adjust current observations, such shifts should be minimized
egpecially at lov frequencies at which most of the power in economic

time series 1s typlcally concentrated.

Finally, seaﬁonal adjustment should remove the peaks in the
original series which typically appear at the go-called seesonsl fre.
quencles, but should affect the remainder of the spectral density as
little as possible; in particular, the process of seasonal adjustment

ghould not vemove excessive power st other than sessonal frequencies,

A subsidiary considerstion Involved the possibility that sea-
gsonal adjustment might remove more than enough power at the sesasonsl
frequencies, thus producing "dips" at those frequencies. While this
was not regarded as especially serious in and of itself, corresponding
to the "dips “ there mugt exist intermediate peaks at frequencies
between the seasonal ones. ich peaks, if Iarge enough, might induce
gpurious fluctuations in the adjusted series..- a disturbing possibility.
Nettheim [17], however, showed how the seasonally adjusted series could
be corrected for "over-adjustment” at the seasonal frequencies. When
such corrsctions were made in s number of seassonally adjusted sevries
{male unemployment, 20+, total imports, and total ¢iviiian lsbor force},
the overall movement and general appearance’ of the resulting series |
differed very little from the uncorrected seasonally adjusted series;
however, in all three series the locations of turning points were fre-

quently altered, in some cases by ar much as two to three wonths.,



It is not possible to assess the economic significance of such effects
outside of a particular substantive context, but it is unlikely that
most consumers of seasonally adjusted series would fail to be concerned
about the possibility that seasonal adjustment methods may affect the

location of turning points by as much as two to three months.

In the first of the two studies referred to above, [14], it
was found that, for the BLS method of adjusting unemployment, a con-
siderable loss of power occurred at nearly all non-seasonal frequencies
higher than those corresponding to & sinusoidal fluctuation of 12-months
duration and that this loss was most severe for the age-sex groups
unemployed males 1k-19 and unemployed females 14-19, for which the
seasonal pattern is most pronounced and regular. Little difference
in this respect was found between the BLS method then in use and the
proposed "residual” method which involved first adjusting employment
and labor force for seasonal influences and then deriving the season-
ally adjusted unemployment series as the difference between the two.
However, in the second study, [15], a method closely related to a pre-
posal mede by E.J. Hannan [10] proved to be markedly superior in this
respect. The two studies showed that all three methods of seaspnal
ad justment produced series which had low coherence with its original
series at most frequencies above that corresponding to a sinusoildal
fluctuation of 12-months duration. Rather violent phase shifts were
found at many frequencies including some of the lover frequencies:; how-
ever, the significance of such shifts in frequency bands where coherence

is low 1s quite 1imited,l



The purpose of this paper is a reassessment of the earlier
findings reported above and of recent work along similar lines by
Rosenblatt {[21], [22], [23], and [24]). It has never been denied,
and, indeed, is repeatedly emphasized by Rosenblatt in his own work,
that the effects noted in the frequency domain are significant only
to the degree to which these same effects, translated into the behavior
of the adjusted series over time, affect the interpretation of the
movements of *that series. Tt has been found, however, extraordinarily
difficult to obtain general agreement on what constitutes "good" sea-
sonal adjustment in the time domain, and, hence, there has been con-
tinued reliance on the examination of the behavior of the adjusted

geries in the frequency domainoe

The chief problem in the interpretation of the effects ob-
gserved in the frequency domain is the formulation of a definite theory
of what constitutes "good" seasonsl adjustment, Without a clear and
rigorous notion of the purpose of seasonal adjustment, optimal proce-

dures cannct be formuleted neor short-comings assessed,
Suppose, for example, that the observed series, Xt is the

sum of two components, N£ , & non-seasonal component, and St ; &

seascnal component

(lol) Xt = Nt + St @

We leave aside, for the time being, the precise meaning of these com-

ponents, except we assume, by definiticn, that they are uncorrelated



at any lag:

(1-2) cov (Nt, St—k) = 0 F) k = O, :t 1, i 2, va

In this case; the spectral density of the observed series is simply

the sum of the spectral densities of each of the two components;

(1.3) £V} = Fe(d) + £54(0)

wvhere -n <A <=x . Since fSS(L)-E 0 , the spectral density of

N

+ is less than the spectral density of the observed series, X .,

t

Unless St has a line spectrum, e.g.,

(1.1) 8 =lee 9,

vhere Ay = 2nj/12 , J =1, ..., 12, for monthly cbservations, so

that it 1z posltive only at the so-called seasonal.frequenciga,j’the'ncn-
seagonal component will have a speciral density lying below that of

the observed series st frequencies other than these. For example, 1f

(105) St T astﬂle + at I}

where €, 1is a serially uncorrelated rendom variable with variance

t
62 and mean zero independent. of + , again assuning monthly obser-

vaticns, fSS(L) will be non-zero at every frequency. Thus, & come

parison of the spectral densities of m£ and Xt would show “loss of



power at non-seasonal frequencies" as well as seasonal ones. Conceivably,

our objective in seasonal adjustment might be to isolate N% , in

which case we should not obJject to some loss of power at non-seasonal
frequencies, particularly if the seasonal peaks were not expected to

be exceptionally sharp.

Continuing the above example, note that the coherence between
N£ and Xi is

(1.6) 0< RXH(x) = """E;;(i? <1

with the upper inequality strict when fSS(L) 40 . If fSS(L) is

large at any frequency, the coherence between H£ and Xt will be

low at that frequency. Some plausible models for the seasonal component.
and the non-seasonal component lead to cortribution by the seasonal
component of much of the power at high frequencies, seasonal or other-
wise. Hence, low estimated coherence of seasonally sdjusted and sea-
sonally unadjusted series at other than seasonal frequencies requires
careful interpretation. Furthermore, any method of seasonal ad justment
which consists of linear combinations of nast and, possibly, future
values of the series in guestion, withconstant weights, will produce

s series always having coherence «ith the unadjusted series equal to
one. By itself, then, the coherence car tell us little about the ade-

quacy of = seasonal adjustment procedure.



It is thus clear that spectral criteria of the sort used in
[14] are inadequate alone for the proper assessment of methods of sea-
sonal adjustment, Below, we outline several closely related "theories"
of seasonal adjustment and, in terms of the desiderata suggested by
those theories, we derive "optimal” seasonal adjustment procedures.
The methods so derived are applied fto s simulated time series having
the observed spectral characteristics of many real economic time series,
and it is shown that these "optimal" seasona)l adjustment procedures
produce time series which bear a very similar relation to the original
time series in the frequency domain as that which has been found in
previous studies. The investigation thus casts considerable doubt on
the adequacy of the spectral criteria adopted for the assessment of
geasonal adjustment procedures. It should be emphasized, however;
that the results of our study do not call inte qpestion the utility
of spectral techniqueé for the description and comparison of different
methods of adjustment. What is clear is that without an adequate theory
of what seasonal adjustment is supposed to do, no proper criteria for
the assessment of seasonal adjustment procedures can be formulated

either in the time domain or in the frequency domain.

2. Desiderata of Seasonal Ad justment

When most consumers of seasonally adjusted series -- and that
includes nearly every economically literate person -- are confronted
by the question of why they prefer such a series to the original; the

most common and natural reaction is that the enswer is obvious. Yet



on further reflection the basis for such a preference becomes less clear,
and those who give the matter extensive thought often finish by becoming
hopelessly confused. While we must confess that we belong to the hope-
lessly confused category, the following remarks may serve to provide

a framework, albeit perhaps not the proper framework, for analysis.

Fundamental to existing discussions of seasonal adjustment
iz the idea that an economic time series may be divided into components,
individually unobserved but distinct. The notion that a series of ob-
gservations might be divided intc several unobserved components which
summed or multiplied together, or otherwise combined, to give the ob-
served value of the series appears to bave ite origin in the work of
the astronomers of the eighteenth and early nineteenth centuriesok
When meteorological studies became important in the early nineteenth
century, the notion of unobserved components was carried over from.
astronomy and applied to the analysis of temperature variations and
variations in barometric pressure by men such as Forbes [5] and Buys
Baliot [3]. 'The basic idea in many of these studies was that the ob-
gerved records were the superposition of several uncbserved components,
pach of which depended wupon a distinct set of causal factors. Buys_
Ballot, for example, averaged temperature data using different pericds
(a.g. monthly, weekly, etc.) in order to isolate individual pericdic
components which he assumed depended on various astronomical factors

such as the position of the moon.

Similar techniques were applied in the analysis of economic

phenomena beginning in the middle of the nineteenth century. Charles



Babbage, analyzed daily clearing house records and determined the normal
weekly and monthly patterns as well and calculated the consequences

of disturbances by taking the difference between the ohserved and normsl
levels of clearings [1]. J.W. Gilbart, a mid-nineteenth century banker,
used the different seasonal patterns in the circulation of bank notes

to argue against tying the issue of notes of all banks to that of the
Bank of England [2]. He also assessed the impact of the Bank Reform

Act of 184k by the change in the seasonal pattern and in the monthly
pattern of note cireulation [6], [7]. W.S. Jevons applied similar
techniques in his studies of financial variables and made policy re-
commendations on the basis of the regularities he found [11]. The

ides that an economic time series mey be divided meaningfully into
several unobserved components appears tc have been firmly established

g

in economics since the time of Jevons.

It is, of course, quite debatable whether the ides of unobserved
components, appropriate as it may be in the analysis of astronomical
observations, is usefully applied to economic data or even to meteorc-
logical data. Nonetheless, we believe that this idea lies behind both
present methods of seasonal adjustment and the desire for seasonally
adjusted time series. In itself, the division of a time series into
seyéral unobserved components is of little significance, it is, rather,
théf the components are themselves ascribable to separate and distinct
groups of causes or influences. These in turn may or may not be directly
observable in principle or in practice and may conaist of other unoh -
served components in other observed time series. Again, note the astrono-

mical overtones that attribution of the unobserved components to separate
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groups of causal factors has. The great problem in the strict divieion
into separate causal groups in this way is the difficulty in the inter-
pretation of the components. Seasonal fluctuations as we understand
them, for example, do depend upon meteorological phenomena, but they
also depend upon customs and institutions. 'Unseasonal" weather, if

we may be permitted such a phrase, will, under current practice, be
allocated to another component. Thus, separation into causual groups
of factors affecting a given series is not in itself sufficient for
divigion into unobserved components. Social phenomens are a great

deal more complex than are astronomical phenomena; the unobserved com-
ponents into which it seems natural to divide an economic time series

may represent very heterogeneous and complex groups of causal factors.

Consider, for example, the analysis of the behavior of the
monthly unemployment series in the United States: one might attri-
bute some of the month-to-month variation to sampling errors; some
to the general level of economic activity end to demand conditione
for various types of labor in relation to supply, some to weather vare
jations and such more-or-less regular events as holidays, school opening
or closing dstes, and the like. Some of these causal factors have
different import for potentiml future changes, some may be affected
one way by certain economic policies, others another; and some not
at all. If this point of view is adopted, it is natural to ask:

Why should we not attempt to relate the observed series directly to
all of the causal factors which determine its values over time? There

are at least two reasons why such an approach may not be feasible.
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First, not all of the causal factors may be directly measurable. For
example, some of them may themselves be uncbserved components, or on
others there may be only incomplete, fragmentary, or no data available.
Second, the relationship between the causal factors may be so complex
and there may be so many different factors involved, that the task

of sorting everthing out with a relatively limited amount of data

is quite hopeless.

While i1t is surely not the case that it is "all or nothing"
as far as isolating distinct groups of causal factors affecting a given
economic time series, it is not unnatural to begin by a careful exam-
ination of the series itself In the hope of isolating regularities
which might be ascribed to the different causal groups. Such an ap-
proach is characteristic of the pioneers in the use of unobserved
components in economics. However, one might also exeamine the effects
of weather and other variables more directly. Unfortunately, it
does not seem possible, for the United States as a whole at least,
to get much beyond the effect of the number of trading days in a month.
The reason is clear:; 'Weather," for a country the size of the U,S.,
is not an unambiguous concept. The task of summarizing in a few vari-
ables this complex and geographically diverse phenomenon, which then
could be related to economic variables such ss retail sales, is not
posgible at the present time. Thus, for the most part, economic sta-
tisticians have tended to treat each series in isolation and have
attempted to "decompose” each observation into uncbserved components
each of which can be attributed to the effects of different causal

factors.



In this paper we accept the approach which concentrates
on the analysis of the behavior of a single time series. At the same
time, we must emphatically state that such an extreme position can
only be a temporary expedient, a prelude to further work designed
to suggest meaningful hypotheses concerning the origins of different
components and the relations among various components in several time
geries. Despite the great simplification achieved by restricting
the analysis to individual time series, we are not yet in a position
to state formal criteria for optimal seasonsl adjustment. Even though
one may accept the notion that the observed value of an economic time
geries may be divided into several uncbserved components; for example,
the traditional trend-cycle, seasonal, and irregular, it is still neces-
sary to specify in more detail the purpose of the analysis before formal
optimality criteria may be developed. Ig it clear that seasonal ad-
justment should be designed to obtain the best estimate of the so-called
+rend cycle component? Or should the goal be an estimate of the sea-
sonal compent itself so that this may be removed leaving everything
else? 1ternatively, perhaps what is really wanted is a prediction,
not just of next month perheps, but rather of a full year. All of
these ggggderaﬁa are implicit in what has been said or written on the
question of what constitutes good seasonal adjustment,,6 Furthermore,
they are not eatirely distinct, for good forecasis of an annual total
early in the year may be nearly equivalent to good estimation of the
trend-cycle component. ‘'The statement, for example, that unemployment
is higher than usual for thie time of year os often interpreted to mean

that unemployment will be higher for the year.
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The purposes of seasonal adjustment are both analytic and
predictive. If we believe that an economic time series results from
the superpositicn of several "sub-series" which are not directly ob-
servable, we may wish to isolate such sub-series in corder to study
their movements in relation to cbservable wvariables or other such sub-
series. This in turn may permit more accurate prediction of future
values of the observed series. Alternatively we may be interested in
a whole set of predictions, e.g., a manufacturer planning production
not merely on the basis of a forecast of next meonth's sales but using
forecasts for each of many future periods; and the seasonally adjusted
series may be an attenmpt to summarize s rather complicated vector result
in the form of a #ingle mmber. In what follows, we do not atiempt
to choose between these various points of view, but consider seasonal
ad justment both as an "extraction", or estimation of one or more un-
observed components, and as a form of prediction. 1In each case, we do,

however, adopt a formal criterion of optimelity.
Suppose that the observed value of a time series {xt} may
be represented as the sum of, say; three unobserved components: Eyt} P

trend-cycle; {st} , geasonal; and [ut} , irregular. Thus
{(2.1) X, =Y b8 b0

Further; let ws suppose that the stochastic structure of each of these
uncbserved components can be specified in such a way that the stochastic

structure of the observed time series {xt} is thereby determined.
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Following the above discussion the problem of seasonal adjustment may
be specified Iin the following three ways as the problem of obtaining,

at a given moment of time t :

A. An estimate or extraction of Vs based on the observed x_ either

t

up to that time or beyond it as well;

B. An estimate or extraction of =« and subtraction of this from

t ¥

Xe 5 based on cbservations either up to that time or beyond it

&8 well; or

C. A series of predictions of Xep X up to v periods

shead (e.g., 12 if we are dealing witb monthly data), based on
past observations alone, which may or may not be summerized in the

form of an average or mean value, weighted or unweighted.

All of these problems are closely related and may be solved by essen-
tially the same method. However, in order to apply the method a number
of further simplifications are necessary with regard to the criterion
of optimality we shall adopt and tc the nature of our specification

of the stochastic structure of the uncbserved components.

Tn some fundamental sense, optimal estimation of something
should depend upon what it costs to make an error. Such cost or loss
functione, can only be specified within the context of a specific de-
cision problem, that is, we have to know precisely how and by whom
an estimate or prediction is going to be used, before we can determine

an appropriate criterion of gptimality and derive an estimate or prediction
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which satisfies that criterion. Such a specification is obviously
impossibtle in the present context, for, whatever seasonal adjustment
may or may not be, it 1s surely designed to serve a great variety of
users in many different situations, The classic solution to this pro-
blem is to minimize the expected value of the squared error between
vhatever it is we are trying tc estimate or predict and the true value.

Thus, the criterion of optimaliiy we adopt is that of minimum mean-

square error-

As regards the stochastic structure of the unobserved com-

ponents, [yf} , (Et] , and {ut} , & oumber of possibilities exist,

Beczuse We wish to impose a decomposition into several uncbserved com-
ponents, a relatively assumption-free or nonparametric approach is

ruled out. However, rather general perametric schemes can be congldered
relatively easily. To facilitate our discussion, we introduce the

packward shift operator U defined by
(2..2) UKK L 4

Using this notation we may write the two-gided moving average

q
(z.3) Tax. = AMUx

a’tf

vwhere the A{U) is a polynomial in the lag operator U,

(2.4) A{D) = )EAJUJ .
=P



T

It has been found possible to reproduce the spectral shapes of meny

economlic time series by the following sort of models
The observed series {xt] may be decomposed into three com-

ponents as in (2.1) above and these three components satisfy the fol-

lowing relations

Q(U)yt = P(H)vt
(2.5)

8(0)s, = R(U)w, ,
where Q(U) , P(U) , S(U), and R(U) are polynomials in the lag
operator v s of relatively low order éxcept for 8(U) , which,
howvever, la of low order in UL 5 Vvhere I i1s the number of times

T

per year the series {xt} is observed.' The series {ut] s [vt]

and [wt] are assumed to be stationary with the following properties:

O'u, t=t',
Euu,=
vt 0, tAt,
2
Uv, tzt',
EV’V,:
Y lo, v,
(2.6)
03, t=1%',
Bw,w =
LAY

= = 1 -
Buv,, = Buw,, =Evw, =0, all t and t
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How complicated one may wish to make the polynomials @, P, S,
and R depends in part on how much data is avallable and how closely
one wishes to approximate the observed characteristics of the series

[xt} . For most series of economic relevance, rather simple, l.e.,
low-order, polynomials are desirable.

The question which now must be considered is to what extent

the parsmeters characterizing the polynomials and the series [ut} ,
{vt} , and [W£] should be taken as given in the problem of seasonal

adjustment as specified in one of the three ways outlined above. If
none of the parameters are taken as given, including the degree of the
polynomials @, P, S, and R, the problem of seasonal adjust-
. ment becomes an extraordinarily difficult one. On the other hand,
coﬁplete numerical specification a priori is clearly a most unreasonable
simplification. Possibly, a more realistic approach lylng somevwhere
between these extremes would be to assume that the orders of the poly-
nomials, and perhaps something of their internal structure could be
specified in advance, but that numerical values of the remaining para-
meters would be determined in the course of astatistical analysis.
Unfortunately, even this simplification leaves the problem of seasonal
adjustment too complex for us to handle at the present time. It seems
useful, therefore, to separate the problem of estimation of the struc-
ture of the time series to be adjusted from the problem of seasonal
adjustment proper. At the same time, we must recognize that, in prin-

ciple, the two problems should be sclved simultaneously and hope to



- 18 -

return to this question ln subsequent research.

In the simulation studies reported below, we assume that the
stochastlc structure of the series ({x. )} d4s known a priori. This
means, in effect, that our "optimal" seasonal adjustment procedﬁres
are more optimal than realizable procedures could ever be. That they,
in fact, possess many of the same spectral properties as the Census
and Bureau of labor Statistics Metheds do, is rather strong evidence,
therefore, in eupport of our conclusion that the spectral criteria
developed earlier do not in fact provide an sdequate basis for the

evaluation of such methods.

3. Minimum Mean-Squere-Error Extraction and Prediction:

An Outline of the Theory8

Qur aim in this peper as suggested in the previous section,
is to obtain certain predictions or extractions for a time series of
given structure which are minimum mean-square error. This section
gives a brief outline of the theory of such predictions or extractions
for stationary time series whose entire past is known up to a certain
point in time. In the next section, this theory is applied to the

ainmple model used in our simulation study.

It is convenient for present purposes to deal with processes
which are stationary, at least to second order,9 and defined at dis-

crete points in time. Let such a process be denoted by [yt) vhere

the index t ranges over the positive and negative integers and 0 .
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In 1938, Wold [27] showed that every discrete stationary process [yt]
could be decomposed into the sum of two mutually independent processes
{gt} and [nt} such that

(3.1) Yy = & o+,

where {Et] is the so-called linearly deterministic process which

may be predicted with zero mean-square error from all past observations

and vwhere W, is a stationary, possibly infinite, moving AVersge process:

(3.2) = Lbe .. b =1,
Mt Jgo(jtmj o
where
£|bj|2 <w,
and

O , otherwise 010

The process {et] is often called the "white noise Input of the moving

average.” We have found that most economic time series, possibly after
some transformation to render them stationary, can be represented in
the form (3.2). Such processes are said to be purely non-deterministdc
and can be shown to possess absolutely continuous spectral distribution
functions. In terms of the backward shift operator U introduced

in the previous section, Ny WAy be written
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(3.3) n, = B(V)e, ,

where

is an infinite series rather than a polynomial of finite degree in

the lag operator U .

In deriving the minimum mean-square-error predictors and ex-
tractors as linear functions of pes%, and possibly some future, values
of the cobserved time series, it is convenient to express our results,
not in terms of the coefficients attaching to various lagged valuee,

but rather in terms of the generating transform of these coefficients.

The generating transform or z-transform of a sequence

{ ... 8 15 8y By 8oy oo } is defined as

s _ .k
- (3.4) A(z) = L a2
. k=0
when the summation on the right converges. {When it does in some region
it represents the Laurent expansion of the function A(z) there.)

Note that 2z is complex. Clearly,

B(Z) = Zb ZJ
j=0 9

converges in a closed region bounded by the unit circle. We further

assume, largely to simplify the ensuing discussion, that it converges
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ingide & circle alightly larger than the unit circle. Then

-
B(z 1) = EszJ

=0
converges outside a circle which is inside the unit circle, so that
the function B(z)B(z'l) is defined and analytic in an annulus about
the unit circle. As we shall see this function evalusted on the unit
circle is proportional to the spectral density of the time series Xy o
The autocovariance function of a stationary time series is

defined as

(5'5) C(k) = Extxtak

and is a function only of the lag k . For processes which are sta-~
tionary and contain no purely linearly deterministic component, the

autocovariance generating transform exists and 1s given by
o k 1
(5.6) Bee(z) = I elk)z = o*B(z)B(z™)
. k:mﬂ

as can be readily deduced from (3.2) and (3.5), replacing n, by x .

On the unit ecircle, i.e., for z = e~ 1> ; =x <A <=x, We have
(3.7) (e“ik) = 2xf. _(\) = i c(k)efikx
y Syy Xx
: =t

= c(0) + 2 L c(k) cos kr ,
k=1



- 22 -

so we see that on the unit circle the autocovariance generating trans-

form is proportional to the spectral density function. Furthermore,

2 2
(5.8) £, = 5= [Be™)]

so that, because B(z)B(z_l) is analytic in an annulus containing the
unit circle, we see that spectral distribution functions for processes
of the type considered are absolutely continuous functions of X .

Equation (3.8) shows why the representation of gxx(z) as OEB(Z)B(zml)

is often called the canonical factorization of the spectral density

function. This factorization must evidentally exist for all processes
of the type considered but it may not be unique unless one sets condi-

tions on the zeros of g  (z) .
XX

Although all stationary time series with no linearly deter-
ministic component have a one-sided moving average representation, not
all have an autoregressive representation. A process defined by a se-

quence {xt] satisfying
(3.9) A(U)x, = €

where A{(U) is & polynomial in U and € is a white noise input
is called an autoregressive process and may or may not be stationary.

Tn stationary cases it is not necessary to restirict the degree of

A(U) to be finite. When gxx(z) is the autocovanciance generating

transform of a stationary process which has no zeros on the unit circle
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and is analytic both on the unit circle and in an annulus about the

unit circle, then the process {xt} has both a moving average and

an autoregressive representation. In this case the generating trans-
form of the weights in the autoregressive representation and those

in the moving average representation are related by

1
(5'10) A(Z) = B—(E'j' "
Clearly a necessary condition that A(z) exlst for a stationary pro-
cess, whose spectral density in canonical form is aaB(z)B(z”l), is
that B(z) shall have no zeros on the unit circle. Indeed to make

the factorization unique we observe that gyy(z), being symmetric,

has a zero outside the unit circle corresponding to every one inside
the unit circle so that we can separate these zeros by appropriate
choice of the factors B(z) and B(zgl) . If this is done so that
B(z) has zeros only outside the unit circle the factorization will

be unique and A(z) will be given as in (3.10).

Although perfectly acceptable statlonary processes such asg

Vi = & - € 10 do not possess autoregressive representations, we gen-

erally suppose throughout the remainder of this paper that the processes
with which we deal have both moving average and autoregressive repre-

gentations.

Of substantial practical importance is the case of a time

series with & rational spectral density function. In this case, by
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definition, the autocovariance generating function may be written as

the ratio of two polynomials:

(3-12) Bee(2) = 202 .

If a(z) has roots on the unit eircle, then {xt} cannot be regarded

a8 stationary for it has no moving average representation. On the other
nand, if Q(z) has no such roots, we know that because gxx(z) is

symmetric in z and 2=+ , botk P{z) and Q(z) must be as well,

and, hence, can be factored as

o I -1
o 1 (L -pgz)l-p2")
k=l X k

(3.12) g, (2) = : .

m

=1
kEl(l akz)(l 2 )

Note 02 has been chosen so that the leading coefficients of P(z)

11

and Q(z) are both one. In line wiih the convention mentioned earlier

to ensure a unique factorization, we suppose |8, | <1 and o | <1.

If the strict inequality holds in the first instance the procéss hag
an autoregressive as well as & moving average prepresentation: the

latter has generating trensform

7 (
m(1-8.12)
k=1 k .
1 (
n{(1r-wz)
K=l ak .

(3.13) B(z) =
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and the former A(z) = [B(z)]ml . Processes with rational spectral
density are typically represented as an sutoregression equal to a noise

input which is not white, i.e.,

n n
(3.14) n(1-aUx = n0(1-pUs
e R T kTt
We are now in a position to show that the process described

in the previous section by equations (2.1), (2.5} and (2.6) has & ra-

tional spectral density function of the form (3.12). Iet

2/ 2

h = Uv 611
(3.15)

1 = 02/02

b= 0,/%

be the ratios of the variances of the noise inputs to the trend-cycle
and the seasonal, respectively, to the variance of the irregular com-

ponent. Because {utJ s {vt} , and {wt) are mutuslly uncorrelated

sequences, we may write the spectral density or, better, sutocovariance

generating transform, of the observed series {Xt} as the sum of the
spectral densities or autocovariance generating transforms of its un-
observed components. Thus,

(3.16) Be(2) = &gy (2) + g (2) + gy, (2)

=] =]
- Piz )P zul 03 + RgzzRgzgl! 05 + 0121
Q(zyalz™") S(z)s(z )
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by (2.5) above. Factor out ai and cellecting terms, we ocbtain

(5017) SH(Z) =

a a(z)alz 1) s(2)8(z"2) + AP(z)P{z V1s(z)s(z"}) + pR(z)R(z"1)a(z)o(z")

ofz)a(z")8(z)s(z ")
2 1
n{1-pz)1-pz2")
nO’Ekﬁ
n
H (1 - akz)(l - akz

where B, and :L/Bk , k=1, ..., m are the 2m roote of the poly-

nomial
Q(Z)Q(zwl)s(z)s(zwl} + LP(Z}P(zﬂl) + R(z)B(zml)Q(z}Q(zgl) ,

assumed to be of degree 2m , and & amd l/a , k=1, ..., n,

are the 2n roots of

afz)alz"ys(z)8(z ")

2

assumed to be of degree 2n . Note, however, that ¢° in {3.12) is

the variance of {at] s the white noise input to the moving average
representation of the time series, vhersas, oﬁ is not this at all,

but only the variance of the irregular component. The method of ob-
taining 02 for ‘processes with covariance generating transforms of
the form given in (3.17) is explained in detail in Nerlove [16, Appendix,

gsec. B] and need not be repeated here.



- 27 =

Consider now two Jointly stationary nondeterministie processes

th

[yi} and {xt} . The k lag covariance of y, and x in that

t ?

order, is given by
(3018) ny(k) = Eytxtﬂk k = 0’ il, _"'2, aaa 8

Note this is different from Ey, X, = cxy(k) = cyx(ek) . 'The generating

transform of ¢ k is
e

E cyx(z)zk

(3.19) gﬂ(z) o

and may be termed the cross=-covariance generating function inasmuch
as its value on the unit circle is proportional to the cross-spectral

density function of the series {yt] and [xt] .

Consider the problem of estimating ' for fixed +t given.
the entire past of the series [xt] up to and including that time.
Iet us consider only predictors which can be expressed as linear com-

binations of past x's ,

=]
Fal

(3“20) yt = P zjtwj = 7(U)xt #

and consider optimal that choice of 7, for which Ec}t - yf) 18 minimdzes,
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Because [xt] is stationary we can write

(3.21) X, = B(U)et 5

where [et] is & white noise zequence with variance 02 and ho =1,

If ¢(z) represents the generating transform

(3.22) 9{z) = y(2)B(z) ,

we can express §t in terms of the past of {et] to t

It i8, in fact, more convenient to find o{z) or §t in the form
(3.23), then determine y(z} from (3.22), provided [B(z)]b]‘ exists,

and so express §t in the form (%.20).

Under the minimum mean-gquare-error criterion, we seek to

minimize

(3.24)  E(¥. - yt)z [T o 12

ij %63 7

var(y) + var(jz,ocpjet_j) - 2cov( Z qJJ 437 yt)

var(y) + ) tp? -2 % CJ‘PJ
J= J=0

where ¢ j= E(yt - Eyt)etm g Completing the square, we obtain
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[+ o] [ 44 [}
(3.25) E(F, - %)% = var(y) + &* L (o, - (—1)2 B
" Yt o 2 2 320
1 « 2
>var{y) - =5 Lc
02 j=0 J’

with equality only for P = cj/og . Whence.

]

A 2 2o 2
(3.26) min E(yt - y) = var(y) - ¢° 2 9y -

J=

The following notation will be used extensively throughout

the remeinder of this paper: If {... h—l’ ho, hl’ ...} 18 a sequence

E J

we denote by [H(z)]+ that part of H(z) having only nonnegative

powars of z , i.e.,

[£(z)]_ = & hJ.zJ )
Using this notation we see that {3.25) implies

(3.27) 9o(z) = =
: 4

él"ls

3 1
; CJZ = ';5 [gye(Z)]+ .
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We may assume {yt] has zero mean without loss of generality. Then

(3.28) gyx(Z)

I

[}
k
)N (Eytxt”k)z
ko oo

)

z zkEy Ebd begok

Z z Z b Ey£ %

keww  J=0 9 -J-k

wj J+k
k=§; szbj 27700y

it

[

sye(Z)B(zﬂl)

Hence,

(2)
(3.29) o(z) = -% flﬁ_i—
o

or, using (3.22) and assuming the process has an autoregressive re-

presentation,

1 &y (Z)
(3.30) 7(z) = 2 .
o - ¢ B(z) B(z N

Fquation (3.30) is the fundamental formuls for optimal signal
extraction and prediction. To obtein the result for prediction we set

Vg = Xppr V¥ >0 . Then



(5.31) gyx(z) = km%mzkExt+vxt-k
=27 § zk+vb(k+v)
ka-oo .
aaB(z)B(z“l)
z¥ ’
whence
(3.32) y(z) = — B(=)B(="")

023(2) B(z“l)zv
l | B

where 7(z) is now the generating transform for the prediction of

+

x,,, - There is no need to restrict {yfl to observable series, 1t isonly

necessery that we have sufficient information about its stochastic pro-

perties to be able to specify gyx(z) . Equation (3.30) then expresses
the generating transform for the estimate §t . If Yy is an unobserved
component of the series X, » Wwe say y(z) 1is the generating trans-
.form of the optimal extraction.

ILet Y49 be a weighted average of future values of Xy

a8
(3.23) Y, o= WX .
_ t48 kel K t+k
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Suppose we wish to forecast not Xi vy but Yiso * We may apply (3.30).

Since
2]
BVt %63 = B L i e
k=l
0 .
= Z ch(k+,j) ] J = 0, j‘_ l, *ee ey
k=1
o ] j
(3.34) g, (z) = ¥ Zwkc(k+3)z
- YT jmem k=l
0 ca
= L wkzmk T 2Xe(k4d)
k=l jw...--w

i}

8
% wkz"kB(z)B(z'l)
k=1

caw(zml)B(z)B(zul)

e
vhere W(z) = % wkzk « Let the generating transform of the optimal
k=1

weights in

g

x
o83 t=]

5 -
t+0 p
by ne(z) . From {3.30) and (3.34), we obtain

(3.35) 1(2) = gy W= IB(2)]

6 -
= ZW l '—(1)']
k=1 k Bizi\zk .

0
= Lowy (2z)
i 4"
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where 7k(z) is the generating transform for the optimal autoregressive
predictor of Xeox ° Inserting the backward shift operator in place

of z in (3.35) and applying the resulting operator to Xy gives

us
(5'36) y"t+8 = QQ(U)xt
2
= W, ’;\" (U)X
kel S ETTE
i ~
= kglwk.xt»ek ’

s0 that the optimal prediction for a weighted sum is just the weighted
sum of separately optimsl predictions. This result is useful in deriving

optimal seasonal adjustments of type C as described in Section 1 abova.

4, Choice of a Simulation Model and Derivation

of Optimal Extractions and Predictions

In this section we show that a simple model of the general
form (2.1), (2.5) and (2.6} yields a spectral density function with
characteristics similar to those of many observed time series. The
simple model is used to generate a simulaﬁed time series and to obtain

theoretically optimal seascnal adjustments according to variousg criteria,

Figure 1 shows estimated spectral densities for automotive

sales and inventories. The estimates exhibilt two features commonly
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found in economic time series. First, there are peaks at each of the
so-called seasonal frequencies {with monthly date these frequencies
correspond to 1, 2, 3, &, 5, and 6 cycles per year). Second, apart
from the seasonal peaks, the power spectra are generally decreasing
with frequency, having substantially more power at the frequencies

near zero than anywhere else.

In our analy=sis, we declded to use a three component model
with components corresponding to the traditional "trend-cycle", "sea-
sonal", and "irregular". In choosing & model, we sought one which
was simple, 1.2., had only a few paraweters, and one which had a spec-
tral density with characteristics which could be associated with par-

ticular compeonents of the sort assumed.

The “trend-cycle” should be a series, the time pattern of
which is dominated by gradual cumulative movements and does not have
any prominent short term regularities. In terms of its spectral den-
gity, it should have maximum power at the origin and decreasing power
throughout its range. Many low-order autoregressive processes have

spectra of the type described. Figure 2 shows the spectral densities

of
=4
X, = t fe,} white noise
t 7 (1 - 9501 - .75U) 7 b
(4.1)
€ + 0.8 € 1

Ty = (AT .5500(1 = -750]

while both models meet the general requirements mentioned, the second
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model was chosen since its spectrum declines somewhat fasiter than the
first st the high frequencies. This allows almost all of the power
at the higher frequencies to be contributed by the seasonal and irre-

gular components.

The simpleat process with pesks at each of the seasonal fre-

quencies is

v

) t
-

z [vt] white noise,

where I, 18 the number of observations per year. A process of this
typve amounts to specifying I independent processes each of which
aprears as & first-order autoregression when observed at annual inter-
vals. Figure 3 shows the spectrum of 2z, (a = 0.9, L = 12) ; note
that the peaks at each seasongl frequency are the same height, which

ig not characteristic of real economic time series. To produce smaller

peaks at the higher seasonal frequencies the following model was used;

Vi o+ 0’6vt-l

1l - O.,9U:L2

£l

(4.2) 8, =

The spectral density of this process is graphed in Figure b,

The irregular component used is a white-noise sequence.
Although the irregular component need not be serially uncorrelated,
e.g., major strikes or intermational incidents may have effects which
last for several months, we nonetheless chose an uncorrelated sequence

for simplicity. In principle we could have used
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2,

1
I, = aaintai 5 {qt] white noise,

vhere L is the number of observations per year,l2 Unless the cone
tribution of the irregulsr component to the overall variance of the
time series is substantial, varying the model chosen for it has little
effect on the spectral characteristics of the series assumed to be

obgerved; hence, we used the simplest specification. Thus

(4,5) xt = Tt + St + It

g, + 0.8 €. v, + 0.6v

- t 1 + t t-1 + 1
C=950) 0 = 750) ¥ gy

{at} 5 {vt] N [nt} mutually uncorrelated white noise sequences.

The variances of the noise sequences were chosen so that 85 percent

of the variance of Xt is accounted for by the trend-cycle, 10 per-

cent by the seasonal component, and 5 percent by the irregular. Figure

5 gives the spectral density of X£ . While we attempted to pick a

model whose spectral shape was realistic, it should be noted that we
did not_attempt to duplicate the spectral density of any particular
economic  time series. The spectral Sshape in

Figure 1 is merely intended to illuetrate the characteristic sought.
In practice, estimated spectra are quite irregular in appearance even
when the true spectral densities are highly regular. The model used

is a realistic one in the sense that its second moments, or spectral
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dengity, exhibits characteristics similar to those of many real economic

time series.

The series analyzed were simulated by generating normal random
variables, with the appropriate variances, tc be used as inpute to the
several components of the model. Each component was Initialized by
picking a random variable from o populetion with variance equal to the
variance of the component; 450 cobsesvations were then genesrated, of
which the first 120 were discarded. Figure & shows that last 100 ob-

gervationa 0f the simulated time series.

To apply the theory cutlined in ihe previous section, we
need the canonical factorization of the covariance generating function

of X, . Since the individual componenis sre orthogonal,
(4.4} gxx(z) = gTT(zj + gSS(z) b By

ﬁ:(l%uSZﬁ{l*ogzrw)

(lmﬂgﬁz ) (lc.ﬂ 752 ‘) (lsogﬁarl .

o§(1+o6z}(1+06z“1} .
+ o -

(1»»9Zl‘£)(lwa9zmm) L

2 EQZ?P(Z:'}"); e
= H 1z

(1,992} (107521 {192 2 {1,952 {1~ 752 31,92 1%}
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where

GQP(z)P(z”l) = cs(l+,82)(1+,8zml)(lag9z;2)(l=o9z=la)

+ c$(l+,6z)(l+°6z'l)(l=395z)(lw°75z)(1w,95z"l)(l~°75zal)

2)( 12y,

+ 0 (L-.952)(1-.752) (2-.92"%) (1-.952 1) (1. 752 1) (1-.92

02 is chosen so that the constant in P(z) is one,15

Once the polynomial P(z) is obtained the predictions and
extractions can be calculated using (3.30). As an example, consider

the problem of finding the least squares estimate of Tt+v at time

t ( v may be any integer). Since the components are uncorrelated

with one another

(L.5) &px(2) = &pplz) 5

nence, the generating funciion of the sequence of weights is given by

Y(z) =
(1.952) (1-.752)(1-.922) | {1+.82)(14.82 1) (1-.952 ") (L. 75211 (1-.92 12
Hz) (1-.952)(1-.952"1)(1-.752) (1-. 752 " )P (2 )2

(4.6)

_ (1-095z)(1-a75z)(1~19z12)}21+08z)(1;u8z’l)(1m,gz‘12)

P(z) k1»°95z)(1=«75i)P(z=1)zv

-+

Generating functions for estimates of the other components and for pre-

dictions can be obtained by evaluating similar expressions. Since
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s A 4 > 1k
(4.7) Xt-w,t T Tt4vst + St+v,t + ‘It-w,t 4

1t 1s not necessary to evaluate generating functions for each of the
four cases explicitly. This is especially helpful if v is negative

since in that case the best predicter of xt+v as of time t is clearly

Xt+v :

The calculations needed to evaluate (4.6) can be easily handled
by using the following theorem of Whittle [26, p. 93]:

let Qz) be a function of =z analytic in p < lz] < p'l ,

and let € be a number such that |6| <1 . Then

R(z) = (1 - 0z)?|—2) | _ 1 (5) , [q(z)]
(1 - BZ)P . p +

where np(z) is & polynomial in z of degree p-l s S0 chosen

thet the differential coefficients of orders 0, 1, ..., p~t

of R{z) are respectively equal to those of @{z) at 2z = o™t

where

p-1 (3} =1 .
e, nlz)= ¢ S =( ) gLy
p S 3t

Q (z) = [afz2)]_

(l+,8z)(1+u83=l)(1mu9z°12)

v in (4.6) with Q{z) and ex-
P(z")z

Identifying

panding (l=°95z)"l(la.75z)ml by partial fractions, we may apply Whittle's
theorem to each term in the sum and obtain y(z) as a rational func-

tionof =z .



5. Simuwlation Results

In this section the results of using the various methods of

"optimal" seasonal adjustment on our artificial series are reported.

Consider the special case of extracting the trend-cycle com-

ponent when the entire history of Xt is known. The generating trans-

form of the optimal welghts is

gepl2)  &pp(2) o5

(5.1) 7(z) = EXX(Z) = sxx(z) o

The gpectral density of the estimate is

(5.2) a0 = 7(e (e ™M)E (1)
£oep(2)
T E W)/ (M)
£ph)

fss(*) £
TR0 T BN

1

The ratios fss(x)/fTT(k) will generally be large near the seasonal

frequencies. Thus "optimal” adjustment will produce dips in the spec-
tral density of the adjusted series at those frequencies. (See, for
example, Figure 7.) Such dips do not represent "overadjustment,” as
Nerlove [14] thought, but rather are characteristic of this sort of

"optimal" adjustment.
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Since the filter used is linear and symmetric, the coherence
will be one at every frequency and the phase shift zero; however, the
spectral density of the adjusted series will show a loss of power at
every frequency. Note that not only will there be a loss of power re-

lative to the spectrum of the ohserved series xt , but from (5.2)

it is clear that there will be a loss of power relative to the spectrum
of the trend.cycle itself. Figure 8 shows that the same phenomena can
be produced with filters which are only moderately two-gsided. That the
dips are not consequences of over adjustment can be seen from Figure

9 which shows the estimates, ﬁt s, and the true values, Tt « The

"ad justed" series does well in tracking the trend cycle, however.

{(Ses Fioure 15 "taei!.c:toa",)l'6

Ysing one-sided filters only does not lead to dips at the
seasonal {requencies (onewsided filters occur when forecasting or es-
timating the current value of a component). As Figures 10-14 show,
however, the other effects noted in [14] are still present. Relative
tc the cbeerved series all methods produce "distortions" at all fre-
guencies and generally lead to a loss of power throughout the entire

range.

In- the case of one-sided filters, the filters are not sym-
metric, and the phase angle is thus generally different from zero,
although this does not imply that the method of adjustment used is im-
proper. The coherence between the adjusted and the unadjusted series

is unity at every frequency because the filters used were linear.
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However, if one were to estimate the coherence between the series using

the simulated forecasts and the series Xt the estimates might be sub-

stantially below ona. When such coherences were estimated this result
was indeed obtained. I{ should be pointed out that low coherence in
this case derives only from sampling errors and truncation of the

forecasting or extraction operator.

Our simulation results clearly suggest that all of the unde-
girable features noted in the spectral comparisons of the unadjusted and
BL3 seasonally adjusted unemployment series in {1hk] are reproduced
by the three sorts of "optimal” adjustments here considered. Since
the criteris of optimality are rather plausible, it can only be con-
cluded that the spectral criteris suggested in [14] leave much to be
desired. Furthermore, the results obtained do not depend on sampling
problems cr the difficulties of too short series; they are logical con-
sequences of the alternative assumptions we have made concerning the
objectives of seasonal adjustment. To the extent that the BLS and
Census Methods of adjustment have succeeded in matching the character-
istics of these "optimal" procedures, which, please note, are applied
under ideal circumstances, they represent a truely remarkable achieve-
ment of trial and error. The achievement is especially noteworthy
in that it is based on no formal model and little understanding of the

nature of seasonality.
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6. A Conclusion

The effects, desirable or undesirable, of a particular method
of seasonal adjustment can only be assessed properly in the time domain
and only in relation to the objectives of such adjustment. In making
an assessment we are greatly handicapped by the inadequate attention
which practitioners of seasonal adjustment have paid to the purposes
of such adjustment and the lack of a clearly formulated conception of
the nature of seasonality. A sound basis for the use of unobserved
component models in economic analysis has never, apparently, been de-
veloped; such models vwere introduced uncritically by early nineteenth
century econcmic etatisticians who also worked with metecrologlcal and
astronomical data. In [14] seasonality was defined as that character-
istic of an economic time geries which gives rise to peaks at seasonal
frequencies and an attempt was made to develop informal, but generally
applicable, criteria for "good" seasonal adjustment in spectral terms.
Any criteria should reflect time-domain effects even if couched in
frequency terms. lack of clear objectives precluded formulation of
appropriate criteria and spectral criteria were developed in the hope

that they might serve as second best.

While we reserve Jjudgment on the general question of the ap-
plicability of uncbserved component models in economic analysis, we
do here adopt such an approach as a working hypothesis. In terms of
the traditional simple three-component model, modified by the addition

of appropriate stochastic assumptions, we formulate three plausible
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objectives of "seasonal adjustment.” We show how the minimum mean-
square error criterion may be used to obtain "optimal" methods of
seasonal adjustment, neglecting sampling problems. We show both em-
pirically and theoretically that such "optimal" methods of adjustment
reproduce many of the features of the relation between seasonally ad-

justed and unadjusted eseries noted in [1k4].

We conclude, not that spectral comparisons are useless, but
rather that such comparisong must be interpreted with greet care.
Clearly, the criteria suggested in [14] were naive. Furtlier research
mist emphasize objectives and models. Whether these are formulated
in frequency terms or in the time domain is of secondary importance.
What is relevant 13 the empirical validity of the models and a precise
statemént of objectives. A more careful analysis by economic policy
makers and others concerned with the uses of economic statistics of the
question of why they prefer seasonally adjusted series (or whether they
really do!) should aid immeasurably this endeavor. We must, as vell,
reexamine our passive acceptance, now of 150 years standing, of the
validity of unobserved-components models in the analysis of economic

time series.
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FOOTNOTES

lFor true coherence equal to zZero, the phase angle is approximately
uniformly distributed in the interval [- /2, n/2] .

2Rosenb1att [23, TP. L.5] puts the matter felicitously as follows:
"Iike the physician's stethoscope and electrocardiograph, the spectrum
is 8 highly sensltive instrument. Not only will these instruments
display the readily recognizeble characteristics of a patient (time
series) which are not too difficult to interpret, but they will also
point to much finer effects which at first may not be readily under-
stood;, but whose meaning may become clearer through research, experi-
mentation, and experience. Often, difficulty in the interpretation
of the spectrum will be & reflection of the degree of deviation from
the gpectral criteria. This process of examination is analogous to
the procedure followed by a physician in exsmining a patient. He com-
pares his findings with his standards for good health; he may classify
one individual as being in better health than another, yet, unless
deviations from norm are extreme, it is difficult for him to say that
his patient will not live a full and fruitful life.”

5.‘3‘>et=_~ Nerlove {14, pp. 259-60]}.

L‘Sesez Pannekoek [19, p. 280].

27 more complete and documented history of the idea of unobserved com-
ponents and the basis for seasonal adjustment is contained in Chapter
II of Grether [9].

6For example, in his paper in [12], Julius Shiskin writes (p. 530):
"Gyclical movements are shown more accurately and stand out more clearly
in dats that are seasonally adjusted. ... seasonally adjusted data not’
only avoid some of the biases to which seme-month-year- ago comparisons
are subject but also often reveal cyclical changes several months earlier.
Seagonal adjustments, therefore, help the business statisticlian to make
more accurste and more prompt disgnoses of the current economic situation
...+ A3 a general purpose aid, both in historical studies of the business
cycle and in studies of current economic trends, seasonal adjustments
rank second only to the provision of the raw observations themselves."

In a careful investigation of all aspects of the U.S, employment and
unemployment statistics, a committee chaired by R.A. Gordon wrote [20,
p. 165]: "... the purpose of seasonal adjustment ... is to bring out
the effects of the less transitory factors that affect the series.
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Iet us imagine that all the underlying economic and social factors
that influence & series were held constant for an entire yesr. The
average level of the series over that year would then reflect ihe
impact of these underlying factors, free of transitory seasonal in-
fluences.”

TE,g., L = 4 for quarterly data, I = 12 for monthly data, and I = 52

for weekly data.

8This section ig based on Grether [9] end Nerlove [16, sec. TI] and is
introduced here largely tc make the expositions self-contained. The
basic theory is due to Wiener [25].

gI.eo, have means which do not depend on the time index t and autoe

covariances waich depend only on the lag involved and not on the absolute
value of the time index.

loNote the normelization hu =1 has bzen impoged. We could equally

well have imposed the alternaiive normalization 02 = 1 .

llBecause of the nature of gyx(z) ; these coefficients cannot be zero.

ldShiskin [18] states thet the irregular component should APPE&Tr Uncor-
relatec when examined at intervals over one year in length.

Pame method used to obtain the roots of P(Z)P(zwl) was a variant of
Muller's method (13]. Since the roots of P(Z)P(zml) come in reciproeal

pairs, if r is any complex root then r , rt , ¥L are also roots.

Muller's method was adapted by taking all four numbers as roots when
any complex root was found. ‘This considerably reduces the computational
load. The 28~degree polynomial could be completely factored by finding
odly 7 to 14 roots. (Fxactly how many depends upon the number of real
roots found.) Most procedures for finding roots of polynomials have
difficulty if there are multiple rooits or clusters of rooits which are
cloge together. The method was altered to guard against the latter
possibility: If after a fixed mmber of steps the P(z)P(z-1) was

not sufficiently close to zero, or if the step size became small,

the search was resumed in the neighborhood of the reciprocsal of the
point at which trouble was encountered. The idea was that even if

ry and r, are close together, l/rl and l/r2 may be quite far

apart and could be more easily distinguished.
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1
The generating function for the v-step predictor of X may be written

1 gxx(z)—l 1 GTT(Z) + 338(2) + sII(Z)
7(z) = mb(z'l)zf_h = B(z) B B(z1)z

+

- 1 [ & 1 _533(”) L | 8(®)
B(z).E(Z-l);§ ) + B(z)\E(Z»l)zv X + B(z) B(z”l)zv

+

Loet ¢ - E[['I.‘t - LyX ]2] . Differentiating with respect to the

Pl
T givea

E(T,X k)=g(ttk)”z733(xt3tk) k=0, +1, +2, «cos

Taking 2z transforms of both sides ylelds

8pp(2) = 7(z)gg(z) .

l6'1’he generating functions derived above apply only if the entire past

of the series Xt is known, 1In calculating the estimates shown in

Figure 9, the filters were simply truncated at the earliest observa-
tion. Thus one estimate uses 360 observations, one uses 359, and
80 on.



