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Martin Weitzman

1.  INTRODUCTION

Because modern technological processes are so intricate,
it is usually expedient, in a large centraelly planned economic
organization, to delegate responsibility. Formal mathematical
models have been constructed which verify the intuitive notion that
under certain assumptions the need for completely centralized knowledge
can be obviated. Convergence to overall optimality can be achieved,
these models show, if the appropriate information is iteratively
calculated by each economic agent and transmitted to the others in
the form of a suitable index. In many theoretical procedures the
prospective indices sent out by the center are prices; while those
received by it are in the form of gquantities. Here the reverse order

will be incorporeted into an algorithm of the simplex family.

Most of the basic ideas reported here were worked out during the
summer of 1967 while I was attending the Ford Foundation sponsored
Berkeley Summer Workshop on Analytic Techniques for the Comparison

of Economic Systems. Roy Radner and Edmond Malinvaud were especially
helpful incriticizing an edrly draft.At Ysle this work was supported
by & grant from the Natlonal Science Foundation.



While guch an algorithm may or may not be of interest as
a computational device for mathematical progremming, in this paper
greater emphasis will be accorded its role as an abstract description
of multi-level economic planning with incomplete informetion. In
this context an algorithm which revolves around centrally prepared
production quotas might be considered advantageous because guantity

directives may be more appealing from & practical standpoint.

2. MOTTVATION

For many centrally planned econcmies, economic plans are
prepared in accordance with the following rough format. As a result
of past experience and a backlog of statistlcal information, the central
planners possess an approximate but workable notion, usually in
aggregete terms, of the technological possibilities confronting the
various production units of the economy. Combining this knowledge
with their own planners' preferences, highly tentative sets of control
figures are prepared for key economic sectors. The control figures
gradually seep down tc the lowest economic echelons in the form of
specific production quotas. Individual economic units will then engage
in "counter planning , ' whereby they propose quota changes to their
immediate supericrs. Typically the basis for a proposed change in a
gquota is its alleged infeasibility. Economic units will attempt to
convince their superiors that technological considerations preclude

Tulfillment of their assigned quota. In the process, they try to impart



%o the higher ups a notion of the technoloéical constraints binding
them and will often indicate the direction in which a new quota must
move 1f it is to be producible ('we need at least this much ceal to
produce that much steel ana"). In turn, higher authorities attempt to
cut slack from the padded préduction figures of their constituents.

Sogn after they are distributed, therefore, production figures sthart
working their way back up the planning hierarchy so that inconsistencies
can be resolved and slack removed. New targets are then reassigned on
the basis of the increasingly accurate pleture of overall production
possibilities being continually revealed to the authorities by the

planning process itselfl,

Especially at the highest level, target reassignment can be a
complicated process, involving as it does the interaction of planners®
preferences with intricate and continually changing reallocation
possibilities. Eventually, when most of the quotas are neither overtight
nor too slack, the plan will have converged to an cperational stage and

ig ready to be implemented.

The principal aim of this study is to present a formal math-
ematical version of some aspects of the planning procedure just outliined
and to examine its properties. HNeedless Lo say, a theoretical study of
this scrt cemnct purport to reflect planning practice in any real economy.
The aspect of reality most critically examined here, to the neglect of
several others, is the learning geme whereby the center iteratively comes
closer to knowing the production sets as a result of the planning process

itself.
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3. A MODEL OF AN ECONOMI&/

The hypothetical economy studled here deals with n  distincet
and homogeneous commoditlies, identified by +the subsBeript 1 taking the
values 1 to n . Producticon is carried out by m distinct productive
units or firms, indexed by the subseript k running from 1 tom .

The @ commodities under consideration refer only to items centrally

traded and do not include commodities specific to any firm.

The net output of commodity i produced by firm k is
denoted ¥4y - It is negative If in fact firm k consumes this good.
Tirms transform inputs into cubputs by laws of production indexed by
the antivities available to them. An activity is taken here in iis
mcet general sense to be merely the designaetion of one of the decision
varisbles of the firm'z production plan. The activity level of the

+‘1
j‘ﬂ ackbivity utilized by firm %k 1o denoted de (3715 e 0o,

n

Production possibilities for firm k are limited by a
segreity of fixed factors and other restraints which are reflected by the

geh of inequalities

1A

fﬁk(vk, yk’) 0 g=l,eees L, (1)

%/ This secticn describes some general concephts used in the modern

theory of resource allocetion and is necessarily brief. TFortunately
some excellent references can be consulted. The entire framework including,
whenever possible, the notation, has been adopted from Malinvaud (16671,
which provides a general methodology for analyzing decentralized planning
procedures and from which much of the inspiration for the present study
has been derived. A comprehensive survey of the theory of resource
allocation proper is contained in Koopmans [19571].



It is assumed that all of the functions {fﬂk} are differentiabi$§/

The producticn set of all net outputs producitle by firm &«

is dencted by Yk and is formally defined ag follows

. <
= 3 ) f ’ o = ] = o5 J
Yy {yﬁ| v, with Ek‘ivk'yk) 0 for f=1,.... Iw}

It is assumed thaté/

(1) Y, is ceavex;

fii) Y, is olosed and tounded Irom above;

”~ el

_ <
i1 it e Y and o=y Hh = Y
( iig ) i ‘_Y'K Yk :YR yk',, =341 yk Y

-
Final net output of commodity 1 is denoted by X, o The

final net output vector x, which includes both consumption and

investment goods, is feasible from the viewpoint of the planners if ir

\
belongs to a set X given a priori and assumed to be c¢losed. The

2/ In additicn, we assume tha! certain regularity conditicns, the
so-called “constraint qualifications’ are met; Kuhn and Tucker [1951].
More general formulations, cobviating the need for differentiability
and phrasing the cconstraint gualifications in wesker terms are
presented in Uzawa [1958].

2/ Assumption{i) is familiar from resource alloeation theory and Koocpmans
[16597] should be consulted for an adequate discussicn of its
significance. We note here only that we are not requiring every
cperation performed within the firm to conform to the laws of dsoreasing
or constant returns. We are merely presuppesing thet, together with
pessible decreasing returns in scme operations, the "convexifying”
effeets of gearce fixed resources are strong enough to counterast +the
"denonvexifying" effects, if they are present, of increasing returns
in other cperations. The result 1s a convex set of input and cuitput
possibilities. Thus, the set of all vectors satisfying (1) need not
be convex (if it were, we would not have to additionally postulate
Y, convex). Assumption(iti) can be thought of as being due essentially

to the finiteness of fixed factors specific to firm k {like bclted-
down capital). Assumption {iii) merely permits free disposal of
commodities. The last two assumptions Could be weakened but it would
complicate the exposition without adding, in my opinion, much of
econonic significance,
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relation of social preference is aritlmetized by a welfare or utility

h ,
functiomé/; assumed tc be continuous and defined for all x ¢ X ,é/

In addition, it is assumed that if xe¢ X, xe X and =x z

X, then
> T
Ulx} = u(x) .
The resource stock of commodity 1 initially available to
the economy is denoted 0% .

/
The problem confronting the central planning agency is to ~

maximize Ulx) (2)
subject to % e X (3)
ykeYk for k= 1,...,m (4)
m
x5 s v o+ oo (5)
k=1

b/ It is obviously beyond the scope of this study to examine the conditions
under which collective cheices can be properly quantified. In this
payer it will simply be postulated *that social choices are representable
by a welfare function which the planners know. Other important
difficulties, including the prcblems of intertemporal choice, aggregation,
veracity, and implementation are likewise being ignored here. A brief
but excellent discussion of these mabters is contazined in Malinvaud
[1667] ; sections I and IIX.

2/ Interestingly enough, this algorithm does not require that +he welfare
function U { ) be concave or that the set X be convex. I do not
understand the practical implications for economic planning of this
unorthodox feature; perhaps there are none.

é/ For the problem under consideration to be interesting we can neither
assume & time period so short that the possibilities for substitution
are negligible nor one so long as to warrant an explicit treatment of
capital formation. An intermediate term plan, say of about four years'
duration, is what we have in mind. This issue iIs discussed by Porwit
11963] pp. 8,9. For many East European socialist countries the outline
of section 2 would actually be more appropriate as a descriphion of
short term planning; the intermediate term plan is often just a rough
guideline and does not have the force of an operationel document.



Under tne agsumption: made o fer, this problem will

W - . N - N . _¥
possess a meaningful solution with wmaximum attainable uwtility U .

The program XyYqreee me is ~alled feasible if it satislies

*
(2), (4), (5). The progrem [x , yl*ao.nyy%} is called optimal
if it is feasible and if U(x*) = U*.

While the problem (2}, (3), {4), {5) has been cast in a national
planning csetting, it should be c¢lear that other interpretations are
possible and that; in Tfact; meny other important problems can be so
structured. Even within the national planning framework, the concept
of a firm is meant to be guite general. International trade, for example,
zould be zcecommodated by postulating two extra firms or departments.

One would be in charge of exports, 'producing" foreign exchange oy

“ronsuming"

commocdities scld abroad. The other, in charge of importsc,
"consumes" forcign exchange to "produce" commodities purchnsced Trom

abroad. "Laws of production™, Tor cuch Firms would rellcet supply and

denand conditions on world marketo.
L, THE IMPORTANT COMCEPT OF INCCMPLETE ITNFORMATION

Managers specialize in handling their own firm's problems and
are therefore ignorant of the exact situation prevailing in other firms,
of society's total available resources, or of the planners® preferences
among net output possibilities. Nor are the managers of firm k 1likely
to be explicitly aware of the set 'Yk.

varking directly with the activity constraints (1), and even these are

Rather, they are accustomed to

familiar only for “customery’activity levels. Nevertheless, in the sense

that they could map out the relevant sections of Y iT they were asked

k
to do so in an operationally meaningful way, the managers of firm Kk

might be zald to know it implicitly.



An analogous situation prevails at the level of the central
planning agency. While the central planners can be considered to know
explicitly the vector of available resocurces « &and the set of
accepteble consumphion vectors ¥ , they are not likely to be acquainte=d
with social welfare in the same way. However, 1%t 1s assumed that,
perhaps after some introspection, they can operationally choose
unambiguously among various alternatives of scecial net cutput. In
this sense; the plammers can be thought of as impliclitly possessing
a uhkility function, even though such a function probably could not be

explicitly displayed & priori.
When it comes +o the activities {vk] specific to the flrms,

the center is considered tc be completely ignorant. Nor does it knew

cxactly the individual production sets {Yk] {otherwise the problem

(29, (3), (L), (5) could be solved directly). But it would be unfair
6 characterize the planners as being completely lgnorant of the
production sets. From common senge awzreness of what congfitules an
unrealistic preducticon possibility fto coplous statistics on present and
past preduction performance, the central planning agency hes ample
ingredients for forming at: least a moderately accurate picture of the
technological options open fc the Tirms. We can express this idea by
caving that the planners are .;.Eriori awvare of a closed, bounded-from-

abovez/ set of production possibilities for firm k , denoted Yﬁ 5

such thati

C oy®
Yk - k.

7 Once again, the assumption of boundedness is excessively strong, but
is retained for convenience.



If, for some reason, literally nothing were known about Yk’ the

(-]

planners could always choose Yk

by fixing arbitrarily large

positive bounds on the components of yk.

5. A DECENTRALIZED PLANNING PROCEDURE

From what hae just been said, it should be cbvious that a
workable planning algorithm cannot impose excessive informational
requirements on any single economic agent. The approach taken here
views the planning procedure as a learning process whereby the centur
iteratively comes to understand more and more exactly the relevant parts
of the production possibilities sets without ever requiring eny firm

to transmit the entire set.

Suppose at stage s (s=0,1,...,5), the planners know of a

closed bounded-from-above production set Y; such that

Y
At s5=0 , Y; is given a priori; later it will become c¢lear how a set

with the required properties is recursively generated for other values

of s . So far as the planners are aware, the set Yi genuinely

represents the technological options available to firm k . The central
planning agency is therefore in a position to determine what it thinks
is an optimal program [xS ,qi,...,q;] by solving the following master

problem.
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Maximize U (x) (6)

subject to xeX (1)
q €Y, (8)

x5 E:l YT (9)

Under the assumptions, this is a well defined problem with
maximum utility v° - U(xs) « The center now tries to impose the

pseudo-ophimal program {xs,qi;...,q;j by assigning the vector qz

as a quota or target to firm k for k=1,...,m. If, for each firm k,
, = 5 s 8 8

the quota 4 is producible (qk € Yk)’ the program [x ’ql"'f%n}

is also optimal for the center's original planning problem (2), (3),
(%), (5). This follows immediately from the fact that v° 2 U for
all s. The planning agency thus has an easy way of identifying an

optimal progrem when it has been attained.
If firm k cannot meet its target (q,: £Y), it sttempts

to scale down the planmers' overly optimistic impression of feasible
input-output combinations so as to force them to relssue a new, hopefully
feasible, target and to prevent them from repeating the error of thinking

that the previous target is producible.

The situation can be geometrically portrayed in Figure 1.

We formalize the notion that firm %k, in order to show that q; cannot

be produced, imparts to the planners a knowledge of the more modest

production alternatives really saveilable to it by saying that the firm
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s
selects & hyperplane Tk tangent to Yk which separate qz from Yk .
Such a hyperplene is completely determined by specifying the point of

5]
tangency, Yy 2 and the normal to it at that point, Hi, by the
following definition,

S

T, Eiywﬂiy=§y§}. (10)

5
Yk
Ty
key: Y; = area encompassing all positive sloping lines
Yi+l = area encompassing all solid positive sloping lines
Yk = cross-hatched area

FIGURE 1.
A Geometric Representation of the Production Target Procedure.
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S5=1 s-1

If q; eY , define H; Hk , and y; = yk . In

t

this case, the hyperplane Ti » While tangent to it, does not separate

8

the production set Yk from the quote %Y

Let Hi stand for the half space defined by the tangent

hyperplane T; ; 1l.e.,

8 | e . S8 _58
Bozlalm a=m y ).
By convexity, the planners know that Yk must be contained

s+1

K es follows,

within Hi , &8 well as within Y. We define Y

wom

s+l s 8
Yk = Yk 4] Hk .

It will be true that

and that

¥* s <l
v SeStL Sy L Sy S

In the case where q; ¢ Yk, more than one hyperplane can be both

tangent and separating. In addition to causing the algorithm to
converge, such & hyperplane must, for the purposes of this paper, be
selected as a result of an economically meaningful operation performed

by the firms. In this context two methods for obtaining Hi and yi
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seem to be especlially inmeresting.§/

6. A "PRICE GUIDANCE" PROCEDURE

IT the target qi assigned by the master program (6), (7),
(8), (9) is not fessible, firm k dis given positive prices 1;; and

told to determine ys and non-negetive z° which

X k
&
minimize PP (ll)
subject to ¥y © Yk (12)
>
Y T % 79 (15)

Because q; is not producible, the optimal value of

the objective function must be positive. An interpretation of

(11}, (12), (13) 1s thet the firms cen purchase commodities to help
meet thelr quotes at fixed transfer prices; their problem is to
schedule production and arrange purchases so as to minimize the total
“penalty cost" of meeting their quota. For the time being, the prices
p;u are given exogenously. Later we discuss their significance in

greeter detail.

B

i/ However, others are certainly possible. It will not be difficult to
see, for example, that various combinations of the two proposed variants
would also work. Having experimented with other approaches, I can report
that it would suffice to form a seperating hyperplane from the optimel
dusl prices associated with minimizingany one >f a variety of bona-fide
infeasibility forms or distance measures (distence, that 1s, from the in-
feasible point to points in the production set), of which the two selected
for detailed study are special cases. Unfortunately, some otherwise
plausible distance measures would probably not fare well as devices of
administrative control. TFor exemple, it might be needlessly difficult for
the manager of & firm to choose & production point which minimizes the
Euclideen distance from the assigned quota simply because he has little
understanding of whet it means. This is why we break away from mathe-
matical generality at this time and confine ourselves to the further study

of two idess which seem somewhat more plausible from an organization viewpoinit .



Firm k sees its problems as that of determining activity

levels v; , net outputs yi , and non-negetive purchases z; to
s L
minimize 1 (11) .
subject to £ (v, v.) S0 ¢ (14}
k''k’ “k k
> 8 5
Ve v 2 Sa } I (13)

We annotate optimel values of the relevant verisbles st

5 5 s
t h . i s T .
stage s with the superscript s Define fk . (vk , yk)

Associated with an optimal solution of (11), (14), (13) are non-

negative price vectors ¢i and H; such thet, in vector notation,

the following equations are fulfilled, 2/

4, 15 =o (15)

T (v * 7y - G) = O (16)

(pp - Ty) zp = O (27)

e = p] (18)

B i‘:‘ =0 (19)
k

=y ij;: (20)

9 /mnese conditions are derived in Kuhn and Tucker [1951].
See also lzawa [1958].
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The notation means, e.g., that the (£,J) th entry of the matrix

]
afk is afﬂk s
ayi aajk Ve T Vg

8

Y = Vg

Proposition 1. A vector n; which satisfies (15) - (20)

is the normal to & hyperplane passing through yi, tangent

to Yk’ and separating q; from Yk .
That the vector n; satisfying (15) - (20) is the

normel to the desired separating hyperplane can be a great

convenience becsuse optimal dual prices will often be automatically

avalleble as a by-product of the calculations which it was

necessary to perform in order to obtain a solution to (11), (12),

(13) in the first place. This is certainly the case with the

simplex algorithm. Institutionally, of course, dual prices

can be interpreted as marginal products.

Eroof:

(3]

s s S ] s S =] s S =] S
Te Ve =M @ - T A =T 9y - P B < T gy

It remains to be demonstrated that if yk € Yk, then Hi Y = n°

k 'k °

Suppose not. Suppose there exists e vector ik such that Vy € Yk

s ™~ 5 8
and Hk yk > Hk yk . Define a wvector function of ) , yk(l), as

follows

- 5
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* *
Define v, (A) eand Rk(l) to be any solution of the problem

minimize || R, (2) H2

" St
subject to fk(vk(x),yk(x)) = £, + £ (v (3) - vi)+ S;E(Yk(l)-y;) + R (%) (21)
k k ' '

£, (M), 3, (M) S0 (22)

This is a mesningful problem for values of A between O and 1 since,

from convexity, yk(k) €Y

<. <
fO O = = .
K T A=l

It is tedious, but not

difficult, to show that each component of Ri (») must be of order 22

>
Using the fact that ¢;= 0 coupled with (15), (19), (20), (21),
(22), we have that
02 4% £ (v* (M), v. ()
k "k ‘'k k

s

T i YRS eosﬂ( (M) - y5y+ 4 BE (W)
= Yk kT kavs(vk 'Vk)"kays Y (M -y O By (A
X X

= TL; (yk(l) - Yli) + ¢; R; (2)

= T (v (1) vy - v + 6 B O)
= AT (7~ 95 ) + O B (A)

Since Hiﬁyk- yZ} > 0, passing to the limit as M+0 provides the

needed contradiction and concludes the proof.
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The procedure under study would not be of much jnterest if
it did not, in some sense, move closer and closer to an optimum. While
pointwise convergence of this algorithm is not to be expected under the
clrcumstances, it 1s sufficient to require that it converge to the

production sets. Convergence to the production sets means that if ak

is a limit point of the sequence [q;}s_o 1 5 then ak € Yk .
=0,1,...

Proposition 2. If the (as yet erbitrarily specified) price

8 <
sequence {pk} is bounded away from infinity (pik =M< « for some
M, all i,k, s), end away from zero (pzk 2 >0 for some € ’

all i, k, s) , then the price guldance procedure is convergent to the

production sets and %35 Us = U*

proof: Because each menber of the sequences {q;], [yi],
[Pi}, {H;] belongs to & closed and bounded set, the existence of
convergent subsequences is assured. Thus, if a subsequence of [qi]

converges to E%, there must be at least one subsequence {q;], {yi},

{p;}, {Hi) of the original sequence, members of which are superscripted

. : t ~- t - )
with the index + , such that lim Qe = G o lim Ve = Yy s lim

oo oo o0
ol =P >0 a.nd.limﬂ;“ﬁig
= ’ = -
k k oo
Suppose that a% ¢ Y, - From the separating hyperplane

property,

L % > e ¥y

Because of the way in which the sets (xs

] 1 t %
k

ere defined, Hi 9 Hk Yie



Passing to the limit as t7ew ,

i A
|
i

L

This contradiction esteblishes that a‘k € Yk :

M9

Since every limit point of [q;] must belong to s there

exists & subseguence each member of which converges to a feasible plan

- - — >
{x, 4y .q.qm) . Because U is monotonically decreasing and o 2 ™

8 - > -
for esch s, lim U = U{x) = U¥ . But x 1s producible, implying
B-boo .

WX) S u*. Thus, lim U = 1%

B0

Proposition 3. If, in addition to the other assumptions

previously mede, the production set Yk is assumed polyhedrsl, the

price guidance procedure converges 1in a finite number of stages.

The premises of this proposition would be fulfilled if the

functions £ e () of equation (1) were all linear. In this case,

the firms possess what is often called & "linear programming technology™,

and the dual prices IHS{ are readily obtainsble from the simplex tableau.

procf: From Proposition 1, T; as defined by equation

At every stage s for which

(1C) is a hyperplane tengent to Y, -

the algorithm hes not yet converged, there is at least one firm k

such that qi ¢ Y, - We now show that the facet ﬂir)Yk is different

from the facet TII1 Y for all r < s . GSince Hr Z 2

8
Xk Kk k 2k 0, iwo
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cases can be distinguished:

(1) w2

r S
x I

v
C

A

s s T T 8 S
Then Hi.(qk - zk) <I Iy, - Since (qk - zk) belongs

to the set T° N Ik but not to Ti , it must be that ™ N Yk 3 1 oy

k k k' Tk
(ii) Hi z; =0

Because Hi z; = Pi zi > 0, the following must hold simulteneously

for at least one component 1 H{ = 0, 25 > O, >0 .

ik ik

Let vy be an n-vector with the ith component, positive and every
other component equal to zero. By the assumption of free disposal,

, r
the vector (yk - ui) belongs %o Y, and hence to Ti Ny,

5

buk not to Tk s

and & fortiori not to Tiﬂ Y, -

Since there are only a finite number of facets for each production
set and every stage calls forth at leasti one new facet, the procedure musi

terminate after & finite number of stages.lg/

While everything so far has been proved for arbitrary sequences

of administered prices (p;} {provided only that they are bounded away

from zero and infinity), it is more natural to think in terms of some

candidates than others. A superior choice weould appear to be the dual

s-1
EQ/ If at stage =, US < U ~, non active constraints can be dropped

from the master program without affecting the property of finite
convergence -- they will be regenerated later if they are needed.
This remark will also apply to the "quantity guidance" procedure,
yet to be discussed.
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prices associated with equation (9} of the master program. The price
received by all the firms would be identical for a given commodity,
reflecting marginal conditlions throughout the economy in the limit as
s approaches infinity, and approximsting them before the limit is
reached. Such prices would presumably help guide infeasible guotas
toward feasibility in a way which would do minimal damage to overall

utility, and for this reason the algorithm might be expected to be efficient.

Other possibilities readily suggest themselwves. In a one
product firm, the center might fix inputs at the quota level (by implicitly
setting the prices of purchased inputs at very high values) and ask for
the maximum attainable output. The opposite case is also conceivable --
fix ouiput at the guota level {by setting its price st an srbitrarily
high value) and ask for that combination of inputs which minimizes the
total cost of inputs over and above the alloted quota. Or, one could
envision a procedure that assigned fixed quotas for some commodities
(perheps allocatable primary resources like labor) by implicitly
setting high administered prices and allowed the firms ithemselwves to
choose all other purchases by minimizing costs of fictitiously imported
commodities. The common denominator of all these variants is the use,
whether explicit or implicit, of & price pi which is applied to excess
demands over a target qs

k

assessment Hi from the firms%l/

in order to eliecit s marginal productivity

11/ S s _ .8 e
If Zee > 0 then py, = Hik . Thus, it is not necessary to have

the firms report back the marginal productivity of commodities which
sre purchased in positive smounts.
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7. A "QUANTITY GUIDANCE" PROCEDURE

Given a producible production point di e Y firm k is told

k?

8
to determine y; and xk to

maximize X (23)

subject to Vi € Yk (12)
> s &

Ve = g+ (1-a) A (2h)

Firm k sees its problem with (1k4) replacing (12) .

Since di is producible, Ai Z 0 . To insure that the constraint
qualification is fulfilled, di is required, for some & > 0, all
k and s, to be a distance of at least © from any plane passing through
q; and tangent to Yk- This condition is superfluous for & linear
prograpming technology.

The objective function (23) , along with (24) is of a
form first popularized by Kantorovich.lg/ The "minimum sttainable output

level” di is, for the time being,regarded as a datum.

Proposition &. The dual price vector H; associated with

equation (1k) in the system (23), (1L), (24) serves as the normal to

a tangent hyperplane passing through ys and, if qs d Y , separsting
k k k

]
Yk Trom 9

12
“*/Kantorovich (1959],
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proof: The argument establishing (Hi , y;) as & tangent
hyperplane to the set Yk is so similar to the proof of Proposition 1

that it is omitted here.

From duslity theory, Ii(q,lsi - d]i) =1, and TLi yi = J\.: H;qli +

(1 - x;) n; di’, with 1; <1 if q 4 Y, - It follows that

8 8 5 8 5 5
y that
L, ¥ < ]'Lk Qe > showing if &, é Yk 3 q_k is separated from Yk.

by a hyperplane tangent to Yk and concluding the proof.

Proposition 5. Under the assumpiions made, the quantity

guidance procedure converges to the production sets and lim U° = u* .
BP0

proof: We need only prove convergence to the preduction sets;

%
since the proof that 1im Usz U is identical to the one presented in
B¥00

Proposition 2. As in that proposition, for any limit point E% of

[qi], there exist subseguences {q;i], [y;i}, {di}, {I[z}, and [)\.;Z}

t - + —
superscripted with the index t such that lim qk = q lim Y = Yy 0
Lopeo oo

1im dﬁ = E&, lim n; =T, and lim x; = iﬁ :

torco

q then A <1 . Fr
If q ¢ T o en From the separating hyperplane

property,
= - = =
Me 9 7 T Yy
From the way in which the sets Y; are defined in the master problem,
T+l < bt
= 1 t . Passing to the limit as i+ «
Hqu ]Ik Vi for al g ’

T g STy
k kO Vk

This contradiction establishes that Ek €Y, -
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Proposition 6. If in addition to the other assumptions

previously made, the production set Yk, is assumed polyhedral, the

"gquantity guidance"” procedure converges in a finite number of stages.

proof: As before, Ti is defined by equation (10) . At

every stage s for which the algorithm has not yet converged, there

is at least one firm k such that qi ¢ Y, , implying ©0 < )\_f; <.

Let r be any stage previous to s . We mnow show that the facet

] .
Tkﬁ Yk, is different from the facet ‘,Iin Yk .

This follows immediately if
e Vi 4 T O 3+ (3y) &)

s
because a point belonging to T n Y

T
K K dees not bhelong to 'I.‘k N Yk -

Suppose, therefore, that

G- 05 o ) )

s

r s
i HI: q (from the way q, must be chosen) and

T

v

Because I[;;

r r>_r .8 r .
O ¥y = I, dk {from the fact that (]'l';;,yk) is a hyperplane tangent to Yk}"

it must be true that r;yizniqli:nidi.

For any number [T
s s s r _s
(hg = w) T g+ (Ia + p) T4
S

r 8 s s
- 1 >
Vi independent of However, because Hk 94 l'Lk dk

s

is equal to Hk

(as was shown in the proof of the separating hyperplane property) ,
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5 5 B s 5 .8
is a decreasing function of u , egqual to Hiy; for p=20.

<
Thus, for any p satisfying O <pu = L; the point

(A - w) g + (1% + ) 4

belongs to T;pw Y, but not to T; . This concludes the proof.

While there are many possible candidates for {di} ,  some

are suscepiible of a more interesting economic interpretation than

others. Assuming a single product firm and choosing di to be the

origin is equivalent to working with a command system in which the firms
are required to maximize output but must consume inputs only in certain

fixed proportions as prescribed by the vector q; . This is reminiscent

of those planning procedures involving "input norms" which are

femiliar to meny students of centrally planned econcmies.

Another (but more complicated) procedure that might be expected

)
to work efficlently is to choose dk as the solution to the problem

maximize U (x) (25)

subject to x € X (26)
>m

X = E:l dk + W (27)

a e Di (28)



8 r T
Dk T F=0 lk Yx (29)
5 lr ‘
Fo0 M Tt (30)
T >
A =0 (31)

for k=1,...,m .

The problem ({(25) - {(31) means that the center is choosing

di to be the best production point from a set of convex combinations,

each member of which set the plammers know from convexity must be

]
producible. A procedure forming dk in this way might involve fewer

stages because the center is working with & more accurate notion of

sandwiched between Ys containing it

the true production set Yk’ k

and Di conteined by it. On the other hand, a disadvantage of this

technique is that at each stage two central master programs must now be

solved, instead of omne.

-

&. SOME GENERAL REMARKS ON THE PRODUCTION TARGET PROCEDURE
The following comments will pertain to the general method
of iteratively approximating production sets by tangent hyperplanes,
called the production target procedure, which was outlined on pages 10, 11,12.
The price guidance and quantity guidence algorithms are but two ways
of implementing this approach, by employing specific infeaéibility or

distance functions.

It may be of interest to contrast the production target

procedure with ancther medel of decentralized planning which has been
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discussed in the literature. An algorithm first proposed by Dantzig
and Wolfe }é/ which was spplied to an economic planning setting by
Malinvaud ;&/ is an example of a type of procedure whereby the center
approximates a production set by building it up from the inside, taking
convex combinations of those feasible polnts which are recursively
generated as part of the algorithm. The master program in the Dantzig-
Wolfe-Malinvaud (D-W-M) approach is of the form (25) - (31). The
procedure presented here is dual to the D-W-M approach in several
respects. Here the production set is reconstructed via tangent
hyperplanes (rather than boundary peints as with D-W-M) and the center
becomes progressively less (rather than more) optimistic about attainable
utility because the production possibilities sets revealed to it are
continvally being narrowed down {rather then expanded out). In the
D-W-M procedure, the center announces prices and the firms respond with
quantities; the reverse sequence is more nearly the case with the

procedure presented here.

In the linear programming case, & cubtting plane algorithm
which is somewhat similar to the one presented here can be shown to be

formally dual to the D-W procedure in the sense that either one could

13/ Dantzig and Wolfe [1961]

QE/ Melinvaud [1967]
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be derived from the other. &2/ From our point of view, the chief deficiency

of both these linear programming algorithms is that, because they have

been created as computational aids and are dependent upon the simplex

method for proving convergence, they do not lend themselves easily enough

to a meaningful economic interpretation. It is important, as Maliunvaud

has dcne for D-W, to free the algorithmic approach of what to the

economi st is an unfortunate dependence upon primarily mathematical

or computational concepts,léf

&2/ We sketch an cutline of how to obtain such an algorithm. First, find

the dual to the original D-W problem. Introducing new artificial
variables, rearrange the duvual problem so as to he able to apply

D=W decomposition to it. Dualize both the mester and subproblems

of this decomposition procedure back to primal form. After interpreting
it, one has arrived at a cutting plane technique which locks somewhat
similar to the one developed here. It can algo be viewed as a
generalization of the partitioning algorithm introduced by Benders
[1962] and would be identical to it in the case of a one firm economy.
This cutting plane algorithm differs from the one presented here
bezause it requires the firms to maximize their part of the cbjective
function for a given guota;, & command which is vacuous unless the
chjective is a separable functicn of each firm's activities.

For example, if a firm does not possess a unique profit meximizing
cormbinagtion the D-W approach calls for 1t to report back nevertheless

8 profit maximizing basiz fessible solution (vertex of the simplex).
Such an order would unfortunately not he operational in an organiza-
tional context. Finite convergence cculd be proved for the casge of a
rolyhedral production set without ever expliciily requiring fims to
report back vertices or exitreme rays by utilizing the notion of a
non-repeating facet, as was done here. The economist’s need for re-
writing is especially acute in the cutting plane spproach because the
main interest vis & vis national economic planning focuses precisely

on the special case where the utility function is not linear and
separable among the firms. In the language of activity analysis, the
objective is a function of net aggregated output and not of individual
activity levels per se. In this case the only real issue concerns the
feasibility of a proposed quota; there is no natural cbjective function
for the firms tc maxXimize given their quotas. If a quobta is infeasible,
the dual sub-problem is unbounded. The dual cutting plane approach
would then require the firms %o report back & homogeneous basic
feasible dusl solution which could be made indefinitely negative (a
member of an extreme ray of the set of dual feasible solubions). Such
an order would, of course, be difficult for a manager to interpret, much
less carry out, and we have endeavored in this raper tc show how a more
palatable sequence of economic interactions would also lead to convergence .
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While a polyhedral production set can be deseribed either as the
intersection of half spaces formed by tangent hyperplanes or as the convex
combination of extreme points, in more than two dimensions typically far
fewer tangent hyperplanes than extreme points would be required. For this
reason, at least in the case of polyhedral production sets, it might be
hoped that the procedure presented here would converge in fewer stages
than the D-W-M approach. However, from a programming point of view the
subproblem and perhaps alsc the master may be more difficult to solve in

‘ . 1
the produstion target procedure. WZ/

Although the production target algorithm has been shown to
converge in the limit as the pumber of stages goes to infinity, auny
real-life planning procedure must cease after a finite number of shages.

In practice, the central planning asgency could probably cell a halt 4o the
proceedings whenevef quotas were no longer overtight. For all practical
purposes, this would undoubtedly be sufficient because in the real werld
the boundary of a production set is hardly an exact entity anyway. As far
as the mechanics of the algorithm are concerned, the center could terminate

at any stage by taking the best convex combination of previously proposed

%Z/ While beth share in common a rough similarity in the message sequencing-
quantities from the center and merginal products from the firms -- this
algorithm differs siguificantly from that proposed by Kornai and Liphak
[1963]. Their algorithm is based on the method of fistiticus Tlay.
& sucressive approximations gpproach, whereas the producticn targen
procedure is based on programming cconsiderations not unlike those
underlying the simplex method. Also, the K-I approach works cnly for
an objective function which is separable smong the firms.



production points as in (25) - (31). This would be the only time such

& master problem would have to he solved. So long as at least one set of
previously proposed production combinatiore satisfied (26) - (31) ({which
would, incidentally, slsc have to be the csse for the proper operation of
D-W-M), the utility attained as & result of solving the "termination
problem” (25) - [31) would have to increase monotonically with the
number of stages. TIn the sense that realizable utility monotonically
increases, the production target algoritim, with the termination medi -
fication just described, could be thought of as having one of the ad-

ventages usually attributed to a primal algorithm.

In an institutional setting, we could dispense with such an
exact formalization as has been postulated here. The basic idea is that
the firms mast correct the center's exaggerated notion of their technolcgy
sets in a way that leads to convergence. Whether this is done by relaying
one separating hyperplane or several, formal curvilinear surfaces or
mere verbal descriptions, is nct important so long as it achisves the
desired effect. The relevant feedback mechanism for the general case is
flow-charted in Figure 2.

Finally we note thet although everything in this paper has been
presented in terms of but iwo levels of crganization, represented symbolically
by the center and the firms, generalization to three or more levels is
certainly possible. While it is not examined in the present paper. such
an extension conteins an interesting interpretation in terms of a quota

system with telescoped comand levels.
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The Flow of Infeormation in the Production Target Procedure.
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