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1. introduction

There are Lwo basic approaches to the theory of oligopoly
which may be called the coaperative and the noncooperative. Typical-
ly & cooperabive approach will utilize s bargaining model under which
the several firms in the oligopoly are supposed to bargsin mmong
themselves in order to asgres on some joint decisicon {say, & set of
prices tC be charged -- one per firm} which yields to the industry

cne of the outcomes which is Pareto optimsl for them.

A noncooperstive approach will, by contrast, involve each
Firm 1n isolated decislon making. This is not to imply that each
firm ighores the effects of its rivals’ decisions on i1ts own profit
or of its own decisions on its rivals’ behavior {and hence 1ts own
profits). Noncooperative formulations will generslly smssume the
firms not to make decigions Jointly. An eguilibrium of 2 poncooper-
ative nsture typically features 4 set of strategles {say & strategy

is & rule for cheoosing one's pricej, one for each firm, having the
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following property: For each firm, its equilibrium strategy gives
5t least as much profit as any other strategy 1t might choose, given

the strategy cholces of its rivals.

Qne pnssible method of finding a cooperative solutlon is
to define s bargsining process, or a set of axioms whish the solu-
tion muat obey, which turns the process of determining a solution
into & nonscooperative game. The Nash cooperative sclution [51 is
a case in point. Here, eack firm may be regarded as a) agreeing
te anide by the Nash axioms to find the solutlion point which re-
sults from the “threat point® znd b) choosing a "threat strategy. ™
The several threat strategies determine a threat point, which de-
termines a solution; while the shoilce of 5 threat strategy is die-
tated by the wish to arrive at the threat point whose associated

solution gives one maxisun profit

in the literature some discussion may be found of the re-
lative merits of cooperative and noncooperative theories. The
former have appeal becguse it seems so obviously sensible and in
the inrerest of all oligopolists to joiptly exploit thelr market
to the full. On the other band, meking joint agreements is diffi-
cult. The more firms there are, the more interests to reconcile;
hence, the harder it is to come to agreement. In addition, where
each firm has knowledge not shared hy others {say knowledge of one's
own profit function}, it becomes even harder to bargaln becsuse no

one knows the full alternatives open to the group and it may be in



a firm's own interest to misrepresent when disclosing information.

Thus 1t is not clear that either type of theory could
ever explain by itself the behavior of oligopolists, and as a re=-
sult both lines should be actively pursued. The present effort is
principally in the tradition of Cournot [4} and Chamberlin [2].
Cournot founded the nonczooperative approach to oligopoly and also
Invented the reaction function, a device which gives the decision
of a firm in a period as a function of decisions of all firmg in
the preceding period. The analysis to follow will make much use
of reaction functions. 1t will be assumed that the oligoepcly is
Chamberlinian in the sense that the firms produce differentiated
but falrly closely substitutmble products, and the decision vari-

ablie of each is its price.

The program followed below is quite medest and may be ex-
plained briefly as follows: Assume there are n firms, where n
is any integer greater than one, and each firm has a profit func-

tion:
Dip = DylXyys Kops voos Xnt) = piaxt) i=1, coey 1

where X, is the price of the ith firm in the tth period and

t

p,, 15 the profit of the 1% firm in the t%° period. Assume

also that each firm chooses its price according to a reaction funce

tion:



The problem with which this paper is concerned is: Could there

exist a set of reaction functions (one for each firm} that would
be an ”eguilibrium” set in the sense that it would give a set of
stable and self-perpetuating prices that would be profit maximiz-

ing for the firms.

This guestion can be stated in mathemstiesl form as fol-
. N L o . ) R R . %
lows: Does there exist a set of resction functions, Q¥£, cua wn)

which has the following properties:

*
The functions wl’ seuy wi have a unigue fixed
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&
e

C . o
point x

; * e e : i
{b) x° is a stable fixed point in the sense that if

.

orne starts with an arbitrary set of prices Xy and

choose.: x_ . saoccordivg to the resction funstion
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{c} A set of resction functions (g voon Uy 0 0 By
g P - . ved
wi‘l’ vcs wp 1 exists which glves the same fiwed

voint, * , &
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Qwiﬁ fe oy wn; where mi is opti-
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mal for any I b firm, That ig, given the profit

. Lth . . -
function for the i firm and its discount parameter,



: — . .t
Q&(O < a <1}, 1if the 1 b firm calculated the

reaction functions Pip which maximize the discounted

profit streams

T
Zp
=0

.
1,5+

knowing the reaction functicns of the other firms,

\U*

; (3 #1) , the o,

would converge to ., &g
iT ¢ g ¢ &

T s o gnd x° would be & stable fixed point of

L% * % e
(‘I’l; v Iiin_l 2 q)i ] viT}_) o0 Wn) :
The equilibrium set of reaction functions (w{, caey VY
0

is not unique. Regarding the reaction function of a firm as its
strategy, an equilibrium set does not form a noncooperative equi-

librium in the sense of Nash [6]. The latter would require @, = V.

. *

(for all 1 ). In other words, wi would have to maximize the dis-
. th " 3 , ¥ - P

counted profit stream of the 1 firm, given the vy (3 #1) ,

rather than merely giving rise to the same fixed point as D,

One might call w;, ce ey wz‘ an approximeter Nash equilibrium, ap-

proximate in the sense noted above. The stress lald on the profit

N * . . .
maximizing character of the wi is, of course, crucial. While

there are many sets of reasction functions having a fixed point,

those which do not maximize some reasonable objective function



would appear to have little bearing on the behavior of firms.

The equilibrium reaction functions considered here
(w{, ceos W;) may be termed “"asymptotically optimal." They are

asymptotically optimal in the sense that, given an arbitrary ini-

tial price vector, use of the w? will lead to a sequence of price

#*
vectors which, in the limit, converge to the fixed point of the wi .

The w?' gre, in fact, optimal reaction functlons at this polint.

An equilibrium satisfying &), b) and ¢) is a natural and
straightforward generalizstion of the classic Cournct sclution, re-
garded as the fixed point of a set of Courncot reaction functlonsal

In Cournot's formulstion, each firm has a reactlon function:

hY
/

sony &K
? T, el

Xip ™ Ot a1 vt Fra1,ee1r Fied,6a1?

Thus x.

14 depends upon the period + - 1 prices of every fim

except the ith . In addition W, iz chosen to maximize current

period profit, not a discounted stream; and, in determining

pit 3

“ﬁ , the ith firm dees not know the true reaction functions used

by its rivals. Instead 1t makes fthe usually incorrect assumption

that x., = % (31, J=1, vo, m} .

Jt j:t"l

In contrast to the Cournot formulation, then, the present
formulation will result in a reaction function for each firm which

is asymptotically optimal given the true reaction functions used by



the rivals.

2. The Characterization and Existence of Equilibria

2.1 The Model of the Firm?

Fach firm is assumed to have a demand function, fi(xt) 5

giving its sales (equals output) as a function of all prices charged
in the current period. Price vectors, % , sare elements of the

n-dimensional Buclidean spacs Rn - Let A be the subset of Rn

copnbaining all price vectors which have nonnegative components and

which correspond to nonnegative sales for all firms:

oy
H

ixjx; >0, £.(x) >0, £ =1, ..., n} CR".

@

Dencte by A the interior of A . The fi are assumed to have

. <]
continuous second partial derivatives at all points of A and:

AL £x) <0 im 1, coe, D

L]

42 £9(x) >0 j#1, J=1, cee, m xeh

These assumptions embody the differentiated products notion: the
sales of the %M firm will fall when its own price rises, but its
sales will rise as the price of any competing firm rises. Eesch firm

has also a {twice differentiable) total cost function ¢, » glving



total cost as a function of sales:

a3 ci{o} >0 i=1, ceo, 1
ac, °
Al Ci(fi(x)} = EE; >0 X e A

It is sssumed here that marginal cost is nonnegative. BSome addi-

tional assumptions are made on the fi and Ci ; however, they

are made in terms of properties of the profit function. The profit
funetion is:

-}

pi(x) = xifi(x) - Ci(fi(x)) i=1, cos,, X €A
The additional conditions on the p, are:
L]

A5 there is a point; % e A s such that

i
Pi(xc)mos i‘:‘"l, enaey I

86 P 2e, I BUxSR §41 [ e>0
. 3
(n-1)¢e <R<ow

n i3 -]
A7 T po(x) < ¢ x € A
n i S
J=1

A8 pfungm i, k#i 0 <M<

Assumption 85 places the Cournot point, x° , 1in the in-



terior of A , and output levels for all firms. A5 and A7 insure

. c
the uniqueness of x .

The assumptions made on the pij insure that the rate
at which Py diminishes per unit increase in X5 falls with in-
creases in Xy s rises with increases in xj(j # i} , and falls
if all prices are raised by equal amounts. AS merely places a finite
bound on the pgk (3, k# 1) o Of course, assumptions A6 and A7

imply pi(x) < -ne .

a @
It is clear that p;(x) < 0= pg(x) >0 (3£1), zed.

pd(x) = (x, - C{E N}, G F
pr(x) = (x, - Cl(2, NET(x) + £,
i G A i

£, >0 and f; <0 ; therefore p; <O implies (x, - C{) >0 .

Tt is known that fg >0 ; hence pi(x) >0 .

2.2 Some Properties of the Reaction Functions

In this section the existence of sets of reaction functions
with stable fixed points is shown. The latter are not necessarily
optimal. Additional properties of the reaction functions are also

Ffound..



It will be useful at this point to establish some addi-

tional notation. The reaction function of the ith firm is de=-

noted wi . It maps a point of Y into Rl « ¥ will dencte

n ‘ h
a mapping from R into g? 5 whose it coordinate in the image

space 1is wj » I.e., given x , y such that §: x-+y , ¥y = wi(x)

{1 =1, ..o, n) . ¥ will also demote a mapping from R" into

B" 3 however, if i? maps the point x onto the point y , the

following is understood: Yy = wj(x) GF1), Y, =,

The symbol € wilil be used to dencte a closed cube in

B and ¢ will be its interior. % = (X

Xy vy §n) will be the

origin of the cube and & {0 <& <) will be the length of a

side. Thus C = {x|x, <x, <x +8, 1=1,...,n) . Let X
. o
denote (gl AELTIRER 5) . Let € be contained in A .

When necessary, additional properties of € will he specified.

Let § have the following properties:

A9 ¢g(x} >0, i, 3=1, couy n ¥ contained in the
' interior of
I .
A10 Tyl <y<1, i=1, ., the domain of ¥ .
3=l
A11 wﬁk (1, J, k=1, 2e0, n} are continuous and bounded

in absolute value on the interior of the domain of ¥ .
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The assumptions A9 and A10 {which restrict attention to re-
gotion functions for which an increase in price by one firm leads al-
ways to subsequent increase by the others {wg >0} and for which a
one unit increase by all firmg leads to a subsegquent increase of less
then one unit by all firms (f wi <o L3} may leave out of amccount
resction functiens which some may regard ag very plauvsible; however,
the class which is allowed is both moderately general and of some in-
terest. It 18 to be hoped that later efforts will broaden the slope

of the present results.

Proposition 1: Let © C A be a closed cube with origin

and gide & , aond let ¢* be a point on the diagonal of ¢

y :kxl S = Xp'*ﬁv enay ?_En*E" 0<p <E .

If & trensformation ¥ with domain O satisfies A9, AlO, All,

and has y~  as & fixed point, then:

v A L * LN - A o oy 2 -
let ¥y = &yi “+ gl? ooy Vo TR be eny point in © (- <E, <& ~ B ,

\ £, . N
all 1 !. Consider the 1 n coordinate of iy)

#liy) ifviiﬁ} becguse wf >0 forall 1, J -

i
¢j{§J = wi{y*} - B E?xl wf{z} for suitable chosen z on

the line segment connecting x and y , from

the mean value tTheoram.



W™ -8 STy vl 2x v ey - x 480 >,

n J
because Lj~l Wi <y <l.
By similar reasoning
* Doy o
Vo y) < (E) = v (yT) e (B8) B W(E) <x, v B+ (BBly<x +5 .
. _ , o1

Thus, for all 1, x, < $i(y} <% t®, for yecC. Ply) e C .

This completes the proof of Propositiom 1.

Proposition 2: Let ¥ be a transformation; satisfying

AQ, Al0 and All, which maps points of £ into C . For any

* * . : < ;
scalar x, such that x, <x <x, + % ; there is a unique

fixed point, x , of i% such that x = (x;, ey xn) e C .

If x; and xi* are two such scalars, corresponding to fixed

* - ¥ o ¥* ** * e
i ; specti X, b : .
points x and X s respectively, then xl < xl :xj < xJ

From conditions A9 and AlO it is clear that § is of
ILipschitz class with ratioc n <7 . Define the distance from x

to y as follows:
d{x,y) = max |x, =¥

i
1

Zlearly under this definition of distance d{¥{x) , ¥{y)) <y d{x,y) .



- 1% .

As y <1, ¥ is a contraction. A contraction which maps a set

into itself has a unigue fixed point in the set. Thus iﬁ has a

unique fixed point for given xF

g and iﬁ is a contraction which

maps ¢ into € if § is.”

*%

It remains %o show that if x* and x are both fixed

. ‘ *
points of § , then xr < x?* x? <.x3 {3 =1, cvo; n) . Let

1 K *

X = (xi} coey x?ml s KL s Eilgs oo xi) and
e 3T ot 4= o2,
Clearly:
xg =>¢j(x£¢l} ;>X§Wl ifl, =2, ...
4% & consequence of ¢? >0 J, k=1, ..., n . Also, because

: R £ *¥
iﬁ is a contraction, ==~ converges to x as L rw

Denote the set of fixed points of iﬁ in ¢ by Bi

*
For every finite scalar ﬁi such that X < ﬂ: Siﬁi + & , there

] ¥* ™
is an element B ¢ B, such that B = (Bi, cooy Po

Proposition 1 has shown that any set of reaction functions
having a fixed point on the diagonal of the cube C , and satisfy-
ing assumptions A9-All, necessarily maps C into itself. 'This

means that, given such a set of reactlon functions, if the price
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vector, X chogen by the firms in time zero is in C , then

O 3

every succeeding price vector, x, {t >0} , will also be in C ;

1.
) @
hence an initial price vector im € (CA) will lead to future
(2]

price vectors which are in A . From Proposition 2 it 1s seen that

when § meps € into itself, .§ {for any given i} has a set

of fixed points, B, . Each element x*  of B, corresponds to

a different value of x? {5i §‘x§ <EH &) and if a particular

coordinate of x* ¢ Bi is larger than the corresponding cocrdinate
#¥

of =% e Bi , it is larger in all coordinates. This property of

the elements of Bﬁ will prove useful later.

2.3 Cptimality for a Single Flrm

This section is devoted to showing that a set of reaction
functions exists which bhas a stable fixed point and for which the
fixed point is a profit maximizing point for the j’.,'th firm. The
central result is Proposition 5. Indeed it is the central result

of the paper. Proposition % merely establishes an open interval

{0, af} , which is non-empty, over which the discount parameter

of the firm may vary. When the discount parameter is within this
range, Proposition 5 will hold. Proposition k 1s not readily in-
terpretable; however, it facilitates the part of Proposition 5 which

shows that {given the price vector of the preceding period, X 1
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the reaction functions of the other firms, ii , the firms own
profit function, Py and discount parameter, ai ) the longer

is the time horizon over which the firm seeks to maximize profits,

the higher will be the price it will choose in period * (item
c))-

It will be useful now to introduce some functions of the

derivatives of the profit functions. Let:

i
G (5 ) = pi(x,) + Ea pi(xtﬂ)w:f ()
~ 1 i
Uil(xt) = pi(xt) Sze,oee
where f
xt = (‘yl(xtml)’ R | Il!i'l(xtul)’ t: wl"l‘l( l)} R | ‘l‘n(xt_l)) %
|
l = (Wl(xt&), a0y “’-lfi_l(xt), q)i,s-“l(xt)j \lfi"%*l(xt)’ c0wy wn(xt)_))
Xip = @il(xtwl) is defined by the condition Gy, {x,) =0, and
= mis(xtml) is defined by the condition G, (x.) =0 . It will
be understood that:
o, .
k is ik
Giglxg) = 55— = Py (%)
kt
Ji JE J
ro I |=¢ (x )(p (0,005 oq(xg) + Z oy (Xtﬂ)tif {x )>+ P} (xtﬂ)\if
T st
i, k=1, ..o, n, 8 2>2
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k ik
Gll(xt) - pl (xt) °

It will be seen in the proof of Proposition 5 that Gis
and @, have very natural interpretations. Gis(xt) is the first
derivative of

=

-1
?Elpi,twl+Tai

with the side conditions J =0 {1t =1, coo, 8=1) .

Gimixt+smf
Hence, Gis{xt) = 0 is the first order condition for profit maxi-

mization when a) the firm wishes to choose its current price, Xy

so as to maximize profits over an horizon of & periods and b) it
assumes in the next period it will seek to maximize over a s-1 per-

iod bhorizon, in two periods hence over a s-2 pericd horizon, ete,

o - \ _ ) .
The functions x. . @is(xtal) are merely the profit maxi

mizing reaction functions for the ith firm when its horizon is s

periods. X, = @is(xtwl)

is another way of expressing the condition
Gis(xt) =0 . As Gis(x } =0 = Gis(wﬁxtml), ooy wiml(xtml), Xips
wi+l(xt~1)’ ceey wn(xtml)) , the latter expression may be inverted
to give x,, = @, (x. ) (when gt # 0) . It is seen below that

it = PisiFen is

2 [+
i
Gis < O everywhere on C .
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In the remeinder of the paper, the cube, C , will be
assumed to have the properties which have previously been attri-
o
buted to it (i.e., origin x , side & and C CA) . In addition,

C will be chosen s0 that:

Pi(E) >0 i=1, ¢eo, n
p;(51+a, coes X, 4 8) <O i=1, cee, 1 .

The new characteristice of C merely mean the Cournct

point, x° s 1s interior to it. A consequence of the choice of

C 1s the following:
Let: y(xi) be a price vector (yl, cooy yn) with com-

ponents fixed as follows:

* »*
= X, < LXK, + 8 1
Ya=¥y  ESYyS 3f
Yi =%y

There is a number x; such that x. < x: <x, +8% and pi(y(xz)) =0,

i

*

and. pi(y(xi)) <0 for x,

< xi <x, +8 . The x

5 1 which satisfy

this condition may be written as follows:

X, = hi(xl, coey Xg 15 Kyqs eees xn) .

(]

The implicit function theorem applies, as pii(x) <0 for any x € A
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such that pi(x) = 0 ., With time subscripts returned:

T L TRIRIEY 221,17 Fier,e’ oo Xpp

The functions ®,, may be written as follows:

>
i

it - hi(#l(xtwl)j eoy #i-ﬂl(xt-l)" vi‘_!_,l(xt“l).? L ] Wn(xt_‘l))

= Pyplxpg)

it is apparent from the definition of the ¢is that

J
L Gy (X)ﬂf(x )
1{( =J#i t t- 1 i 3 k=13 o0 wy I

Pigh¥ i
'Gis(Xt) 8§ =1, cov

t-1

Thus, if it could be shown that Ggs >0 (3 #£1), G;S <0 and

xn_l GJ <0, it would be known that \1:3,‘ >0 (3, k=1, 2e0, n)
and E wk <1 dimply
k=1 "3
@% =0 and g @, . <1,
is k:l'is

Proposition 3: Given: a) V¥ which satisfies A9, AlO, and

All, and which maps C into C, b} o {x) such that

i,s-1

q’il(x) =< cPi,Swl(x) 351 +8 (xeC), and c) CPl . l(x) >0,
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n 3 . ° . *
sl q)i,s-l(x) <y <1l (x<C) . There is a number «, >0 such
. * i J . .
that if o, < , then G/ (x) <0, 6y (x) >0 (jf1),

o .J °
50 .GY (X)) <0 for xe C and x

5=1%1s 1 2By

(Xl’ cues Ky g5 Kyiqs cees xn) .

o

Denote by N the bound on Iwgk(x)| (i, J, k=1, ...,), %xeA

and by 4 ,

max T pg(x) .
xeC J#L
i‘»:lj noajn

§ is positive, and, of course, is finite because the derivatives of
the pi are bounded and C is compact., The proposition is an almost

trivial consequence of the bounds on the sundry derivatives:

k ik
Gis(xt) - Pi (xt)

oz 1‘4’3("t)<1’gi(xt+1)q’i s-11%¢) * Eiipiﬂ(xtﬂwl;(xt)) i pg(xt&—lwék(xt{l

JfL

22 1 €
>e + 0 l-(n-1)%MM] >0"a, <a = kK #1
- L. - ot (nnl)eyem + NQ,

Gi (x.) < -ne + 03[723 + (n-l)gng + NQ < O::i?ai E’ag = n€2 5
® 723 + (n-1)"y™M + NQ

In

K 22 ) .
ZGiSS“€+Qi[7'ER+(nﬂl)yM"FnNQ]SOﬁaisaji_. - - ‘
= 7R+ (n-1)7y"M + nlQ




Clearly, a8 ¢ , ¥, R, nl , M, N, and Q@ are finite and

strictly positive, 0 < Q% < a? s o% ; hence, any value of ai

such that 0 <@ < ai will satisfy the prescribed conditions.

Thus Proposition 3 shows that when a) the s-1 period

horizon profit maximizing reaction funetion, has positive

Qi,s-l ?
first partiel derivatives which sum to no more than ¥ (< 1) , ©b)

© lies sbove the one period reaction function (s >1 ,

i,s-1

Py 1(x) >, {(x), xeC), and c) the discount parameter is
5 8= il
suitably restricted in its range, then Gis(x) <0, Ggs(x) >0

n . °
(1 #1 and = Gis(x) <0 {(xeC) . These conditions on the
J=1

J

Gis

will be seen in the proof of Proposition 5 to guarantee that
?; o will have positive first derivatives which sum to no more than
R

Proposition 4: Given ¥ which satisfies A9, A10 and All,

which maps € into ¢ ; Gis(x) , & function whose range is in

1 . i J . noJ
R~ and for which Gis(x) <0, Gis(x) >0 (3#41) , Zj:lGis(x) <0,

(x e C) and B; , the set of fixed points of ii contained in ¢ .

Gis(x) is strictly monotone decreasing along elements of B, .

(I.e., given B, P' e B, , B, <B{, then Gis(B) >’Gi5(ﬁ')) .

Jet § and P + E Dbe elements of Bi . From the mean
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value theorem it is known that:

n
k
V(B +£) - ¥,(B) = kile(zj)gk s JFL,

where the z‘j are appropriately chosen points on the line segment

Joining B and £ + £ . Then:

ooy
b= Evi(sde,  F

It is known that if & >0, then g >0 (k =2, .., n) , and

similarly if & <O . In addition, |gk| < |gi| . This may be
seen readily by assuming ?;§ |§J| = |§j,| > gi] .

n k n N
kile,(zj,)lgkl STEsd kile.(zj,)g Al <legl

A contradiction results, thus,|§j| <|g] (A1) . Assume £, >0,

The proof may now be concluded directly.

H

J
. Gis(y) <0.

n .
o J
GiS(B + g) = Gis(ﬁ) = jil GiS(Y)gj < gi ;

T

1

With gj < 0 , the above inequalities are reversed. This completes
the proof.

Let:

G, (x) = Pi(x) +Q jEiPi(X)vg(X) .
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*
Glven, a& (where O <’ai <fai) it is obviously possible to select

a ¥ such that

Gi(y*):»o i=1, ..., n

where y* is the fixed point of § . One need only choose y*

close enough to x° , given the values of the W;(y*) .

Proposition 5: Given ¥ , P, and ai such that:
* * )
Lo ¥y ) =y =(x; +B, 2, +B, .o, X +B) O<B<BH

w —
2. 6{y") =p;¥") +a iy W) =0 (0<a <a¥)
i J i 1.

3. Qis » & transformation which takes x + y such that

7 = Py (%)

Then the following are true:

S

a} . is the reaction function which maximizes I a!T”lp. .
is =] * i,t+r-1

k n _k e
b) q’is(x) >0, Zk:lcPis(x)-<~7 , xeC, s=1, ...

c) @is(x) >-@i,s_l(x) , 8 =2, vee, X €C .
Dencte by @, the limit of the P o and by Qi the
limit of the O,

1is

d) y* is the unique fixed point of ¢i .



e) ¢, maps C into C .

f) The seguence ¢, converges as 5 > .
g} ¢, 1is monotone, continuous and of Lipschitz class
with ratio n <7 .
To show a) one need merely turn to the maximization pro-
cess itself. When s=1 , the firm seeks to maximize present period
profits only:

max p; (%} = py (v {xg 1) o) LARLCED P P AL CP ERRPIR MENEP)

X,
it

The first-order condition is
i i
Gil(x‘t) - Pi(xt) = 0 = Pi(\yl(xtml)’ R | ‘If't-'l(xt*].)) xit, llfi-i-l(x‘b-l)’ vey Wn(Xt_l»

which is a maximum, as pii(xt) < 0 where pi(xt) =0 .

Xy = ®;(x, ;) 1is defined implicitly by the condition

When & = 2 , the firm seeks to maximize as follows:

e pylxy) + oypy{xp ), where xo =05, (%),

it '
for the nature of optimal behavior for the firm in the last period
of its horizon is independent of whether the last period is the

tth or gome other. The first-order condition is:



= 2h -

‘, 0 . . v
6.p(x,) = pylxg) + opi(®y) (x))op; (%) + o jﬁipgc@ﬂ(xtm;(xg =0

= pi(x,) + aia, (0, )er, (x)+a{j§p(¢ )w(x)=

However, as ¢.. has been defined by the condition Gil(d)

il

il) =0

- S0, Wix) =
Giolxc) = pylxy) +of £ pi{@, )¥i(x) =0

ot

&o

tive; hence, Gia

In general:

= 0 dimplies pi <0, for ai zj%i piﬁrz is necessarily posi-

< 0 and Gia = Q0 corresponds to a maximum.

i , 1 : .
Giolxg) = pylxg) vl (0 1)9F o 5(x) + jiipi(°1 o-17¥50x)
i, i i
= pylxg) + o Eopyley o )ix)
JFi
Again, G _ = O::‘;p;(xt) < O-‘;—“:)Gfis <0 :‘:}Gis = 0 is & maximum,

Item b) is a conseguence of Proposition 3.

that if qJ;?_ (x) >0 and EJ q)l ol

n

Sl i(x)<0 (xeC

i J
Gis(x) <0, Gis(x) >0, I

xi_?hi(xl, cacy ceus xn)) . That G,

*1417 %1400

implies x >, (xl, cooy By 15 Ky 0o xn) .

It is known

(x) <y <1l (xe co) , then

and

=0 (s >1)

It is known that



the conditions on the Gis hold for 8 =1 . If these conditions

hold for s , then the conditions on the mﬁs hold for s :

k J
} lSﬁiais("t)“’k(xt_l)

L]

i
~Gygix, )

Thus, by induction, b) holds for all s .

Consider Gi,s+1 :

. ) _ i , J i
Gi,s«}!l(x't) = Pi(xt) + ai Jiipi(wls seay *iwl’ Pig” *i+l’ sy ‘*n)*g(xt)

where the argument of the wj and @15 is X, and

b = oo i X J . ( ‘ 5% 0 o
Xy = A% g0y v Wy g0 o Xy ¥R ) » V(%1 ))

]
Choose x arbitrarily in € and choose x

t-1 it = q’i,s«-:t.(xtml)

(i.e., so that Gi,Swl(Xt) =0 ). Surely if ¢Hs{xtml) >-@iys_l(xtml) s

- >
then values of X, and x, , such that G, =0 imply Gi,s+l 0

: Ji . . . * . ~ -
{because 2 >0 3; and if *ip 18 chosen so that ui,s+l 0

* ‘ i .
. \ + ,
{given X1 ), then Xy > Ky {because Gi <0 ). Thus if

by
gy 3} 20y o gl g then oy D g) >0y Glxg ) o Tt ves
seen earlier that ¢is(xt=l) >’@11(Xt¢1) {5 =2, a00) , 80 ¢) is

proved by induction.



Item 4 is essily shown. The fixed point of @il is
in Bi . Let z be that peint on the diagonal of C for which
pi(z} = 0 , By continuity of pi it exists because pi(ﬁ) >0
and. pi{y%} <0, It is known that wjiz) $>zj J#£ 1 becsuse z
is below vy~ on the Alagonal of © : henze ¢il(Z) >z, . On the
other hand, @il(y*) < yi {because pi{y*} < 0 }. Thus the cube

,.'*.
¢

C. T, whose origin 1s 3z and side is yi‘m z, , 1s mapped into
itself by Qil and therefore contalns the unique fixed point of

2., « If the & have fixed points in © {i.e., in By ), then

w

Ui

they are successively higher. If ig the fixed point of Qis s

7

the < < B for all J j. Tt ig seen that:
than ﬁs < Bs+1, *@js pj,s+l or all j } : & seen that

Consider

. ¢ K " il‘ ®y ' Jr #* * 7% * * i.,ﬁ ¥
u’i;’:(y ) = pl(y ) + Cz'l Epl&yl; R | yjjalj @llky ,}5 yl{f‘l, “o Ny yn)q‘rJ"\y )

J#l
P } . ) ;¥ . fa s . = ) ‘ a3
@iaxy 7 < Q becsuse Y )< Y o The latter holds because Z
. . : " P B i o=
declines along elements of Bj y uilgy J =0 apd yo o<y,

y' =By} . Thus B, <<y implies & (y') <O which implies

B, << y* . Clesrly v~ is the limit of the B, - It is obviously



an upper bound; however, given a ﬁs << y* , 1ts successor, ﬁs+l 5

will be ﬂs << Bs+l << y* . Hence for any element, ﬁ*', of Bi

such that B, << 8* << y*¥ there is an s >0 such that B¥ < B, -

Knowing that @‘is 20, =1 (piS =7 q)iﬁsml(x) < cpifrs(X)

and that @is(y*) < y? establish that & maps C into € . It

is
alsc establishes the convergence of ¢, _ - The conditions b) on
the @?S imply that the P, are of Lipschitz class with ratio
n <y {i.e., !¢536X3 - asﬂy}igg ndi{x,y} for %, yeC ). In
addition the limit of the Py o colncides with the upper envelope
of the ¢Hs because they are a montone sequence. The linit, @& P
ig finite for at least one point, @&(Y*) = yi . A proposition in
Choquet [3, page 1%36] shows that under these conditions g, is
everywhere finite and of Lipschitz class n < (which means @,
is also continuous). It remains now only to show that Dy is mono-
tone., Let x, y e and %y g‘yi for all i . It mast be proved
that @ (x) <g{y) . It is known that @ {(x) <@ (v) <o{y)
for all y ; therefore, mi(x} §J¢H(y) .

It is tempting to call L the reaction function for an

infinite horizon; however, it would not be guite correct to do so.

The method of czlculsting the mas is one of working backward from



a finitely distant terminal period. It is obviously a legitimate
technique for finite & ; and the convergence question is impor-
tant and interesting; for intuition suggests that while behavior
today might well be affected by the length of the planning horizon,
the effect of extending the horizon by one period should surely
diminish as the horizon lengthens, and become arbitrarily small as
the horizon becomes arvitrarily large. Intuition also suggests that
vehavior with an infinite horizon should coincide with the limit
of behavior for a finite horizen, 5, &5 & =<+« . Very likely
g, do=s coincide with the reaction function for an infinite hori-
zon; howewer, this polot is not proved in the present paper.

2.4 Optimality for the Industry

+

|

If one had & traosformation ¥ which fulfilled all of

the conditions assumed in Proposition 5 and for which Gi(y*) = 0
for all 1, ¢, would be optimal for the £ pirm {for all 1 },

in the sense of Proposition 5 (alluded to in the first seetion): If

one calculates the P v whish are profit maximizing reaction func-

tions for an horizon of s periods, it is seen that as s + = ,

¢, tends to a limit, ¢ . This limit, @ , with ¥, glves
rise to the same fixed point, y*', as does ¥ and @ is mono-
tone in each argument, contiruous and of Lipschitz class with ratio

n <% . Therefore &i has the approximate optimality property:
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It is optimal at y* » It has been shown that there exist trans-
formations, ¥ , which satisfy the assumed condition for a single

firm, but not for all firms simultaneously.

Proposition 6: 'There exist transformations, § , which are

equilibria in the sense of Proposition % for each firm simultaneous-

1y
Choose the cube € so that x° , the Qournot point, is
on the disgonal {(i.e., x? ST xg - X, for all i, 3 ). Let

7 = {z} be the set of diagonal points of ¢ in the closed inter-
val [x%, %] .

*
Let ¥ ‘be & transformation satisfying assumptions A9,

AlD and All, whose domain is the cube with origin (ggl' -~ B, co0y X_ = B)

11

and gide 26 , with fixed point x° . There is a least upper bound

L o
z € Z such that:

3.0z} = piiz) +a & pd{aW  {x%) >0
i i 1oyt J

_ , *
for i =1, .e., n and all 2z g 2 such that zy < z"; « The ai are

the values determined according to Proposition 3.

* ¥*
Now choose an arbitrary y* € Z for which xi < ¥y <z oo

Iet § be defined as follows:
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¥i{x) = i(xl S By Xy = By oeeey X - B} B = vy, =% XeC.
Finally, choose ai 3

irf *}j
Wpi\y &
al - j _x: Tl * i 5= l.? co ey n
E pyly lyT)
J#i

¥ and the ai meet all the conditions of Proposition 5 for all

i ;3 hence ¥ 1s an equilibrium set of reaction functions.

3. Conzluding Comments

The result of this paper is the demonstration of condi-
tions under which one may prove the exlstence of a sort of eguili-
prium. The equilibrium is described by a transformation ¥ which
is 8 set of reaction functions, one of each firm, and a point y*
which 1s the fixed point of ¥ . y* is a stable noncooperative
equilitrium in the sense that a} ¢ 1is a contraction, therefore
X, = (ﬁ{xtml)) +y* as t =+ w , irrespective of the initial vec-

tor Xy » b} if the ith Tirm calculates P o5 the limit of the
P o (mis is optimal for the firm when its horizom is & periods},
then ¢, = (vl, ooy Wy 10 By Yiiqs coos ﬁn) is a contraction which

also has y* as a unigue fixed point.

This equilibrium overcomes several objections frequently
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levied at formulations of the oligopoly problem: a} the firms maxi-
mize a discounted profit stream, rather than current period profits,
b} optimal behavior for the firm can be found, in equilibrium, with- ]
out forcing the firms to make incorrect assumptions about rival be-
havior and c¢) within the limits of price variation oligopoly, the

demand, cost and reaction functions are fairly general in form.

This paper leaves untouched many very important problems.
a) It does not propose, or give the properties of, a dynamic adjust-
ment provess for firms which start with no notion of rival behavior
patterps, and which perioiically estimate these patterns from avail-
able dats. b} No attempt is made to incorporate uncertainty about
rival reaction functions or the firm's own profit function.
e} The ahalysis doss not account for additional variables. Pirms
coild make price and output decisions and carry inventories. Ad-
vertising and product design might be introduced. d) There is alsc
the large. important question of the objective function. If the
remuneration of the decision makers depends on, say, both sales
and profits, firms might sct so as to maximize a discounted stream

of a weighted sum of both.
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FOOTINOTES

! It will be neglected that Cournot applied his concept to a quantity
model. The spirit of his accomplishment is equally applicable to
a differentiated products price model, which is the context in which
it shall be applied here.

In the interest of concise notation, partial derivatives will be
denoted by subscripts, as follows:

R 2 o ik
Bpi/ij = D] o pi/axjaxk =Dy . ete,
The indices j and k are integers denoting the jth and the
kth arguments of Py » respectively. Where no confusion is likely

to arise, time subscripts will be omitted.

The definitions and results of analysis upon which this paragraph
draws mey be found in a standard reference such as Bartle [1].



