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ON THE COMPUTATION OF EQUILIBRIUM FRICES

by

Herbert Scarf®

1. Introduction

In Mathematical Investlgations in the Theory of Value and

Prices, published in 1892, Irving Fisher described a mechanical and
hydraulic analogue device intended to calculate equilibrium prices
for a general compebitive model. The present paper takes up the

same problem, and discusses an algorithm for & digital computer which

approximates equlilibrium prices to an arbitrary degree of accuracy.

At least two versions of Flsher's device were actually
constructed and apparently performed successfully. The devices them-
selves have unfortunstely been lost, but there are several photo-
graphs which may be seen in the edition of Filsher's volume reprinted

in 1961 by Yale University Press.

The eguipment seems remarkably quaint and old-fashioned
in this era of high speed digital computers. Immersed in a large
tub filled with water are a number of canisters whose irregular

profiles are related to the consumers' marginal utilities for the

The research described in this paper was carried out under a grant
from the National Science Foundation. The paper will appear in a
volume of essays commemorating the 100th Anniversary of the birth
of Irving Fisher.



various commodities. Each canister 1s constructed partly of flex-
ible leather, looking somewhat like a bellows, which expands and
contracts in response to changes in prices. The canisters are con-
nected by an elaborate system of rods, hinges, and tubes filled

with water.

In order to specify the consumers' initisl dollar incomes,
a row of plungers is adjusted to speecific helghts, and in the pure
exchange model, a similar series of adjustments is made to provide
information about the initial stocks of commodities hefore tirade
takes place. The competitive price levels and allocations =zre then

determined when the system reaches a physical state of equilibrium.

In order to avold elaborate engineering problems, Fisher
found it necessary to assume that the utility functions could he
written in a separable form so that the marginal utility of ary
comnodity was independent of the level of consumption of the remain-
ing commodities. In the model to which the algorithm of this paper
is applied, there is no need for ﬁn assumption of separable utility.
Each consumer will have a set of demand functions, which are con-
tinuous and homogeneous of degree zero in all prices, and in addi-
tion, a given vector of commodities which are owned prior to produc-
tion and trade. Fisher assumes that & specific dollar income appears
on the right hand side of each individual's budget constraint; recent
authors have preferred to work with a more general model in which

income is derived from the sale of factors whose prices are to be



determined at equilibrium.

Assuming in addition that no income is generated by profits
arising from production, the market demend funclions satisfy Walras's
law, to the effect that the market value of demand at any set of
prices is equal to the value of the stcck of initially owned commodi-

ties.

Let the market demand functions be denoted by

(s oees )

‘E'n(ﬁl} ooy '»“-'n) 3

with (ﬁl, ey ﬁn) the vector of prices. Since the demand func-

tions are naturally homogeneous of degree zero, it is sufficlent

to assume that they are defined only for prices which are nonnega-
tive and sum to 1 , and continuous on this set of pricesz. 7Tf the
total stock of commodities prior to production and trade. ic glven

by the ncnnegative vector (Wl’ soa wn) , then the Walras law states

that nlgl(ﬁ) + aee ﬂngn(ﬁ) T AWyt oeee ko identically for

all prices.

While the consumption side of the economy is treated by
Fisher in an essentially modern fashion, the model of production
seems quite inadequate. There is no production function or trans-
formation set, but instead Fisher uses a notion of the "marginal

disutility of production"” which is to be equated to the negative of



the marginal utility of consumption for each consumer and commodity.
Moreover, factors do not seem to be used up in production nor is in-

come generated by the sale oFf productive factors.

The algorithm of the present paper permlts production to
be described by an arbitrary activity analysis model with a finite

list of activities. Each cclumm of the matrix

““1 O e 0 O al’n“}‘l LR al’m
A= 0 -1 ... 0O . .
0] 0 ., -1 an,n+l an,m

wlll refer to a specific productive process with inputs indicated

by negative numbers and outputs by positive numbers.

The economy i1s assumed to be completely described by the

market demand functions {gi(n)} , the technology matrix A , and
the stock of factors (wl, toos wn) prior to production. With this

notation a competitive equilibrium is defined by a vector of prices

Tyy e T s and a collection of nonnegative activity levels,

X cee X

17 _ such that the following two sets of conditicns are

met :
1. BSupply equals demand in each market, or mathematically,

m
Ei(ﬁ) - 121 aijxj = Wy for i =1, sea n .
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2. Profit is maximized at the prices x , or

1, coe m,
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with equality 1f xj >0 .

The existence of equilibrium prices for models of this
type has been investigated with great thoroughness by a number of
writers, {(for example, [1] or [3]) and we now know that if certain
relatively mild conditicns are placed upon the specification of the
model, there will indeed be an equilibrium. In our model the con~
ditions are quite simple. In sddition to the assumptions alre=ady
made, we require that the set of activity levels which gives rise
to a nonnegative net supply of all commodities, forms a bounded

set. 1In symbols, the set of nonnegative (xl, osa xk) for whieh

n

I a,.x, +w, »0 forall 1,
=1 ig 4 i~

shall be a bounded set. The assumption Wi >0 for all 1 will
glso be used occasionally even though it can be replaced by more

realistic reguirements.

In crder to demonstrate the existence of equilibrium prices
in a model of this generality, it has been customary to make use
of what are known as “fixed point’ theorems, which describe conditions

under which a continuous mapping leaves at least one point unchanged.



The arguments leading from a fixed point theorem to the existence
of equilibrium prices sre often quite direct and econcmically sug-
gestive; they have, however, a major drawback of cffering no reason-

able suggestion for the computation of such prices.

It may seem somewhat surprising, in view of ths substan-
tial bedy of work in mathematical programming. that no techniques
have been proposed for what is one of the central problems in ecconomic
theory ~- the computation of egquilibrium prices. This is undocubtedly
due to the preoccupation with models which are exclusively ¢m thne
production side of the economy and make no reference to the role

played oy consumers in the determination of equilibrium pricesn*

There is a sense, well-known to economists, in which the
model of competitive behavior does give rise to a nonlinear maximiza-
tion problem similar to those enccuntered in the theory of produc-
tion. If each consumer has & concave utility function, then the
maximization of a weighted sum of utilities subject to tie constraints
of the technology and the existing stock of commodities, aoes pro-
duce & set of prices which have many of the properties of equili-
brium prices. Producers are maximizing profit at these prices, and

no consumer can receive a higher utility at lower cost. There ls

In his thesis,Rolf Mantel [L4], gives a proof of the existence of

equilibrium prices which is similar in many respects to the argu-
ments of the present paper. I have aisc received an unpublished

manuscript by H. Houthakker describing an algorithm which should

be very effective under certain restrictive assumptions about the
demand functions and the technology.



however one serious drawback, namely, that unless the utility welghts
are selected 1n precisely the right way the consumption of each con-
sumer 1s in no way related to the Ilncome generasted by the sale of

his productive factors. Unless we are wllling to neglect this vitel
_link in the economic system completely, the problem has merely been
shifted from the determination of equilibrium prices to the deter~
mination of the appropriate utllity welights, and the latter problem

is no simpler than the former.

Nor is any general computational approach to be fcund in
the litersture about the stability of equilibrium, in which the pro-
cess of adjusting prices to excess demands may De viewed ss a gra-
dient method for the computation of equilibrium prices. Even though
gradient methods are successful on the production side of tie economy,
they need not be stable in a model involving consumers uniess some
relatively stringent assumptions such as “gross substitutablility,"

are placed on the market demand functions.

The basis for an effective slgorithm for the computatlion
of equilibrium prices has come from a rather unexpected source.
Until recently, the existence of Wash or Cournot equilibrium points
in a finite, two person, nonzero sum game, has been treated by the
same nonconstructive topologlcal methods as those used in equili-
brium analysis. But Lemke, working with a student Howson, has de-
vised a most ingeniocus algorithm, based on pivot steps as used in

linear programming, for calculating & Nash equilibrium point for a



two person game, [2]. Even though these problems have only & mathe-
matical connection, Lemke's basic idea may be combined with a differ-
ent notion of pivoting to give a constructive algorithm for approx-
imating fixed points of & continuous mapping, for finding a point

in the core of an economy, and for the algerithm of the present

paper, [5, 6}.

The next three sections describe the details of our algor-
ithm. The reader whose Interest is less in technical matterc than
in applications may prefer to jump to Section 5 in which some ex-

amples are glven.

2. Setting the Stage for the Algorithm

As we have seen, it is sufficient to consider only those
price vectors = = (ﬁl, oo ﬁn) which lie on the simplex with
n L
9 >0, and X o= 1 . Rather than examine all vectors on this
i=1l
simplex we shall assume that a large but finite list of vectors

ﬁn+l, see ﬂk has been selected, and restrict our attention to these

vectors as potentisl equilibrium prices. (The reason for beginning

the 1ist with nn+l rather than ﬁl should hecome clear later in

the paper.) Since the actual equilibrium vector need not be found
in this list, the algorithm will provide only an approximation but

one whose accuracy can be increased by enlarging the list of vectors.



Figure 1

The algorithm has been applied to a number of specific

examples, some of which involved a set of vectors contalning as many

6

as 10l members. OfF course, if all of the vectors in such a list
were to be examinéd in order to determine an approximate equilibrium
price vector, we would substantially exceed the cepabllitles of even
the fastest electronic computers; the algorithm however has rarely
required an examination of more than 1500 such vectors, and has gen-

erally terminated with a far smaller number.

After the vectors “n+l’ cas ﬂk have been selected, the

next step is to construct a particular matrix B with n rows and
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kX ecolumns, The first n colums of B wlll consist of a unit

matrix. Column J , with n+ 1< j <k, will be related to the

vector ﬂJ , in the list of vectors, according to the feollowing

gpecific rules.

1. Let al 1 be an

ng

activity in the technology matrix A which ylelds a maximum profit

*

at the prices 1Y . If there are several activities which give the
same maximum profit then an arbitrary selection of one of these is

made .
2. If the largest profit obtainable at the prices ﬂJ

is positive, then the jth column of B is defined to be

3. If the largest profit at the prices nJ is less than

or equal to zero, then the jth column of B is defined to be

£, ()

g () .



-~ 11 -

The general appearance of the matrix B is as follows.

J

(The vector =¥ 1is written above column j to indicate the con-

nection between the two.):

A+l Jy o K
N e T ca e hid vee X
— ) ]
I
l Ooooo *&lﬁ gl(ﬁ )
B = 0 1 ... 0 . .

@ .32
0 0 ... 1 = gn(n )

Aside from the first n cclumns, which will play the role of slack
variables, the columns of B will be compesed of either the market
demands at a given set of prices, or the negative of that activity
vector which maximizes profit for the price vector appearing above
the column. Of course some of the activity vectors will be repeated

a substantial number of times.

The number of columns of B 1s apt to be very large, and
we are fortunate that the algorithm never requires an explicit re-

presentation of this matrix in the memory units of the computer.

We shall be concerned with nonnegative solutions of the

equations Bx = w , where
W= (wl, ces wn)‘ ,

the vector of factors available prior to production. When these

equations are written out explicitly they become
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- B
‘z’aiﬁxj +‘§gi(ﬂ )yJ _Wi 2

where in the first set of terms, the subscript £ depends on

and refers to that activity which maximizes profit at the prices xJ s

should that profit be positive. In the second set of terms the xj’s
have been replaced by yj‘s to emphasize the distinction between the
two types of columns.

From the way in which the matrix B 1s comstructed the
following conditions are satisfied.
J

1. If yj>0, then T e.iE_SO for every £ .

[ e M

i=]
2. If any activity £ , other than a disposel activity,

n .

has a positive weight Xj , then I = 8y, >0 .
i=1

| ]

The basic idea of our algorithm is to approximats an
equilibrium price vector by determining a noﬁnegative solution to
the equations Bx = w with the property that all of the prices

ﬂJ corresponding to positive xj or yj are close to each other,

and that the ith coordinate of all of these prices is close
R .th . .
to zero, if the 1 slack variable is positive.

In order to see that such a solution would Indeed repre-



sent an approximation to a competitive eguilibrium, let us imagine

J

that the prices x¥ corresponding to positive xj and y, are so
o

close to each other that they can be replaced by a common price =
in the above equations, and in conditions 1 and 2. In addition "

will be zero, if the ith slack is positive. Sinece all of the

e(xY) with positive weights y; ere replaced by E&{x) , the

equations become

- f b=~
which would describe the equality of supply and demgnd in all mar-

kets if it could be demonstrated that Zyj =1 .
Moreover, condition 1 becomes

<0, forall ¢, so

1. 1If yj >0, then Zﬂiaiﬂ

that the fact that no activity mekes a positive profit at prices

n follows from the positivity of at least one yj .

Condition 2 in conjunction with the fact that o= 9 if

the ith slack variable is positive, may be restated as

A more precise mathematical treatment would involve taking suc-
cessively more refined grids on the simplex and letting =x be

g limit point of those nJ corresponding to positive x! or yJ .



-1k -

2'. If any activity £ , including disposal activities,

has & positive weight xj , then Eﬂia. =0 .

iz

In order to show that we do indeed have an equilibrium

price we first show that at least one yj is strietly positive,

for then conditions 1'. and 2'. imply that no activity makes a posi-
tive profit, and that those activitlies which are operated at a posi-
tive level have a zero profit. Moreover if the above eguations are

multiplied through by ™ and added we would then see that

( - |
(?yj)\fﬂiﬁi(ﬂ)) ?wiwi ,

and it follows from the Walras law and the positivity of Zniw{

that Sy, = 1 .
5

The only missing link in our argument 1s therefore the

demonstration that at least one yj is strictly positivs. But if

all yj are zero it follows that

—Eaiﬂxj =Wy s and

Zﬁi&iz >0 for all £

with a positive x‘j . But then

x, = -Sg W, ,

052 Zmydy X, 11



which contradicts the positivity of Eﬁiwi . {The assumption Wy >0

for all 1 , 1s used here and in the previous paragraph.) This

concludes our argument that a1 represents an equilibrium price.

Of course the fact that the vectors ﬂj corresponding to

positive xj and yj are cloge Lo each other does not permit a

literal replacement by a common vector =x , but it should be clear

from the continuity of the demand functions that an average of ﬂJ
will serve as an approximate equilibrium price vector, since supply
will be approximately equal to demand in all markets, profits if
pogitive will be small, and the profits of those activities used at

a8 positive level will be close to zero,

3. The Main Theorem

In the previous section, we constructed a matrix

o+l k
1 7
I— -
10 ... 0 bl,n+1 cees bl,k
B = .
0 0O ... 1 bn,n+l veoo bn,k ,
_ e

whose jth column was elther the market demand at prices 1Y or

the negative of the profit maximizing activity at these prices, with
J

n° a specific price on the simplex {nlﬂi 20, ZIn = 1} . We
i

then showed how an approximate equilibrium price vector could be
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determined by finding a nonnegative solution to the equations Bx = w
guch that all of the veetors ﬂJ with pesitive xj are close to

+'¢
each other, and with the 1~ coordinate of esch of these vectors

close to zere, 1f the ith slack is positive,

In order to be specific about this statement we must for-

mulate a precise definition of the concept of closeness.

It will be useful to begin by making the following assump-
tion which can easily be brought about by a perturbation of the

ntl k
vectors o« sovee M.

Non Degeneracy Assumption: No two vectors in the set

ﬂn+l; ... % bave the same 1P coordinste for eny 1 , nnd no

vector has a zero coordinste.

J J

Consider n vectors =« 1, e T % selected from the

list of vectors. These vectors may be used to generate : subsimplex
in the following way: Begin by finding that one of the n veectors
which has the smallest first coordinate. This will ¥ield a unique
vector because of the nondegeneracy assumption. Pass a hyperplane
with a constant first cocordinate through that vector. Then find
that one of the n vectors with smallest second coordinate, and
pass a hyperplane with constant second coordinate through that vec-
tor. If we continue in this fashion with each coordinate, the sub-

simplex which is then generated consists of all points x = (ﬁl, cen )



- 17 -

with
J J
. 1 n
o Emln(nl > e Ty }
J
; L n
xtn_>m1n(;rrn s oeeem ),
and.
g:l+ ...,+1rn=3_.
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In the above figure the list of vectors is given by

k . ;
T, «co n , and two subsimplices have been drawn, one generated

by x, 70 and x°, and the other by 7 , & , and =

9 .

The first triple of vectors are falrly far apart, whereas the three
vectors in the second triple are sll quite close and this is indi-
cated by the fact that there are several vectors in the list nh, e

interior to the first subsimplex, bul none interior to the second.

In general if there are no vectors in the list nn+l, e inter-

J J
ior to the subsimplex generated by = l, veo B 5 Ythen thesz n

vectors must be close to each other. This ig the concept of close-

ness which we shall adopt.

Before giving a formal definition, let us mske one exten-
sion to accomodate the possibility of forming subsimplices some of

whoge edges are given by the coordinate hyperplanes nyo= U . This

can be accomplished by the device of defining n new veators:

A = (0, M, e Ml)
e = (M2, 0, ... ME)
= (M, M, ... 0),

with Mi different from each other and greater than one. These vec-

tors, which are not on the simplex, are assocliated with the n slack

variables in the matrix B . If we now consider n vectors
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jl J'n 1 k
T s ees X from the extended list x, ... ® , and define the
associated subsimplex as before to be the gset of # = (ﬁl, cee ﬂn)
with
J J
1 n
ﬁgmdﬁ,”.ﬁ)
’ § J
1 n
%gmﬂ%,“.%),
and

F oaae * = 1
T T ?

then this subsimplex will be bounded by an edge T, o= 0 if =« is

cne of the n vectors, but otherwise the definition of the subsim-

plex will be as before.

In the following figure the subsimplex is generated by

ﬂe R ﬁu and n5 s
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and since there are no vectors in the list interior to this subsim-

plex we are Justifled in szying that the vectors ﬁh and x5 are

close to each other, and have a second coordinate close to zero.

The following formal definition makes use of a term "pri-
mitive set,"” which I have used elsewhere, to describe the concept
of closeness under discussion.

J'l Jn

DEFINITION: A set of n wvectors = 7, ... X from the

Llisy nl, ses nk will be said to form a primitive set, if nc vectors

in the list are interior to the subsimplex

J

J
L n
w, Zmin{a, o)

4
: d J
1 n
> o e
T, 2 min(zrn s 7, Y,
ﬁl + ees F nn =1 .

The main theorem of this veper, which will be demonstirated

by means of a constructive algorithm, 1is

J J

THEOREM: There exists a primitive set = l, cen a0 2 s

such that the equations
Bt = w ,

have a nonnegative solution with xj =0 1if J 1s different from



-

(Jys e ) -

The slgorithm behind this theorem will provide us with
precisely the right type of solution to the problem discussed in

the previous section. It will yield a nonnegative solution to

BXx =w , with all of the ﬂJ corresponding to positive xj or

yj cloge to each other, and with the ith coordinate of each of

these prices close to zero If the ith slack is positive.

L. The Algorithm

The reason for introducing the notion of a primitive set
of vectors, is not only to define specifically when n vectors are
to be considered close -- many cther constructions would serve just
as well for this -- but also because a type of operation, similar
to a pivot step in linear programming, can be performed »n a pri-
mitive set of vectors, and this operation is crucial for the develop-

ment of our algorithm.

The operation consists in removing a speclfic vector from
a primitive set of vectors and attempting to replace it by some
other vector so that the new set of vectors is also a primitive
set. As the following lemmm indicates, this operation can, with
one exception, always be performed and the replacement 1s uniquely

determined.
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jl jn ja
IEMMA: Tet 7, ... X be a primitive set and =«

a specific one of these vectors. Then aside from one exceptional

case, there is a unigue vector ﬂJ in the list nl, . nk s B0

J
that if xj replaces o , the resulting collection of vectors

forms e primitive set. The exceptional case arises when all of the

!




J;
vectors x - with 1 # a, are from the first n vectors in the

list, and in this case no replacement is possible.

: J

The wvector gJ which replaces c may be found by =

simple geometrical comstruction. To illustrate this constructicn
let us assume thet

J J J J
xii = min(nil, e xin) g0 that x 3 is on that

face of the subsimplex on which the ith coordinate is constant.

3

Assume morecover that =« 1

1s being removed.

Jy*
Let = 1 be that vector 1n the primitive set with the

second smallest value of I1ts first coordinate. To find the vector

J g%
to replace = 1 we move the face contalning = 1 parallel to it-

self, lowering the i*th cocrdinate until we first interssct a

vector x° 1in the list with

x) >al for 141, i

and

. J
J i%
y >'nl 5

or the face of the simplex S5 in whiceh ﬂi* =0 ,

Js
The rule is applicable except when the vectors x - with
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i #1 are all selected from the first n vectors of P, » and it

clearly produces a new primitive set. The detalls of the proof that
ﬂJ is the only possible replacement, and that no replacement is

possible in the exceptional case may be found in [6].

To see the anmlogy between this type of replacement and
a plvot step in linear programming, consider a system of linear

equations in nonnegetive variables, ¥x = w , where

% esa O bl,n+1 cao bl,k
B = . .
0 ..o 1 bn,n+l vao bn,k

A feasible basis for this system of equations, is a cocllection of

n linearly independent columns jl’ vou jn from the matrix 3 ,

such that the equations Bx = w have a nonnegative solution with

xj =0 1f j is different from jl’ s

n "
In a pivot step, one takes & specific column outside of
the basis and attempte to intrcduce it into the basls, while remov-
ing some column, so that the resulting collection of n ecolumns is
again a feasible basis. In linear programming one attempts to bring
into the basis a specific column from outside, whereas with a pri-
mitive set one attempts to remove a column in the primitive set.
1f the set of nonnegative solutions to the equations Bx = w forms

a bounded set, then a pivot step can always be carried out, and if

the problem is nondegenerate, in the sense used in linear program-
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ming, there is a unigue column to be eliminated from the basis for

the resulting collection of columns to form a feasible basis.

Cur assumptions on the technology guarantee that the non-
negative sclutions to Bx = w form & bounded set when the matrix
B 1s constructed as Iln Section 2. And nondegeneracy can be brought
about by & small perturbation of w , or by using a lexicographic
ordering, so that in our case a pivot step on the matrix B is al-

ways possible and unigue.

The main theorem of the previous section can now be re-

stated in a more specific and useful form.

THEOREM (RESTATEMENT) There exists a primitive cet

J J
¥, ... 2™, so that the columns jys -+ 4, form a feasible

basis for Bx = w .
Let us now turn to a proof of this theorem. Consider the

% *
set of vectors (ha, oo w0, w0 ) with 1% selected from those
vectors beyond the first n so as to maximize its first coordinate.
This collection forms a primitive set, as the following figure clear-

ly indicates.
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Moreover the columns 1, 2, ... n form a feasible basis
for the matrix B since w >0 . Let us perform a pivot step on
B by introducing column Jj¥ . If column 1 is removed from the basis
the problem is over since (2, ... n, j¥) would be both a primitive
set and & Teasible basis for Bx = w . Generally this will not be
the case and some column other than the first will be removed when
J¥ 1is introduced. The next step in the algorithm is to remove from
the primitive set that price which corresponds to the column just

renoved from the feasible basis for Bx = w .

The algorithm alternates between pivot steps on the B

matrix and the analogous operation on the primitive sets. We take
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into the feasible hasis for B +he column corresponding to that
price just taken into the primitive set, followed by removing that
price from the primitive set which corresponds to the column just

removed from the basis for B .

It is easy to see that in any intermediary step in the
computation, we shall be in a situation in which the feasible basis

for B consists of ¢columm 1 and n - 1 other columms je, . Jn

d do J

P . n
whereas the primitive set consists of vectors = . s KT, .s. T

with jl % 1l . The algorithm retains this relationship in which

n - 1 of the indices are identical by performing elther of two pos-

sible operations. If we are pivoting on the matrix B then column

jl must be introduced, and if we are replacing an element in the
jl

primitive set then = must be removed. Except for the initial

position where the primitive set is composed of the vectors

2 n J* . .
(x°, ..., #° ) and the feasible basis consists of the First n

columns,both of these operations can be performed; in the initial

J*

position only one operation can be taken since removing is

the exceptional case referred to in the Lemma.

In general some step has been taken to arrive at the pre-
sent state. The algorithm then takes that other continuation open
to it. The algorithm cannot cycle, since if the first state that
it returns to is not the initial position there would have to be

three ways to exit from thls position rather than two, and if the



Tirst position which 1s repeated is the initial position, there would

be twe ways to exit from this position rather than one.

Since the algorithm does not cycle, and there are a finite
number of possible positions, the algorithm must terminate, and this
can only happen when the prices corresponding to a feasible basis
for Bx =w also form a primitive set. This coneludes the proof

of the main theorem.

5. 5Some Examplesg

The algorithm has been programmed for an IBM 7094, =snd &
number of examples have been tried. Before describing the results
of a sample computation, 1t might be useful to indicate twz of the

special technigues that have been incorporated into the program.

In order to use the algorithm some specific set of vectors

ﬁn+l, vo ﬂk must be selected. I have found it convenient to form

n

this list by taking all vectors on the simplex {sx | m, >0, Im = 1}
1

whose coordingtes are positive Tractions with a given denominator.

In other words a denominator D 1is selected and we consider all

vectors

T o= (kl/D, kn/D) ,

with ki positive integers such that k., + ... + kn =D .

1
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If the list of vectors has this special structure the oper-
ation of replacing a vector in a primitive set can be carrled cut by
4 simple algebraic computation and does not involve a lengthy search
through all of the vectors in the list. Of course, the set

n+l
ﬂq 1, cae ﬂk will not satisfy the nondegeneracy assumption made in

Section 3, since many vectors in the list have a common coordinate.
There are a variety of techniques, however, for resolving degeneracy
and insuring that the algorithm does not cycle.
. . . jl J

The algorithm terminates with a primitive set = 7, ... =®
such thal the columns jl, .o jn are a feasible basis for the equa-
tions Bx = w , and as we have seen, an average of the vectors in
the primitive set will serve as an approximation to an equilibrium
price vector. In order to determine the specific welghts to be used
in forming an average, I have assumed that the demand functions are
locally linear in the neighborhood of the primitive set, and selected
that vector which minimizes the maximum deviation between demand
and supply. The efficiency of the slgorithm is substantially increas-

ed by a device of this sort.

Let us consider, as a numerical example, with no pretense

towards realism, an economy involving the following six commodities:

1. Capital available at the end of the current period.
2, Capital avallable at the beginning of the current period.

3. Bkilled labor.



4. Unskilled labor.
5. Nondurable consumer goods.

6. Durable consumer goods.

During the particular time period, production may be carried out in
each of three sectors; the construction of durable consumer goods,
the production of nondurable consumer goods, and a sector for the

construction of new capltal available at the end of the pericd.

The durable consumer goods sector is assumed to bhe des-

cribed by the two activities

L L
-5.3 -5
-2 -1
-1 -6

0 0

b 3.5,

with the commodities in the order given above. The first of these
two actlivities represents a process which produces four units of
durable consumer goods, and uses 5.3 units of capital, two units
of skilled labor and one unit of umskilled labor. In addition, the
5.3 unites of capital are partially depreciated during use and be~
come four units of capital avallable at the end of the pericd. The
second activity in this sector permits the substitution of unskilled

labor for skilled labor.
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There are three possible activities in the nondurable sector,

1.6 1.6 1.6
-2 -2 -2
-2 -l -1
-3 -1 -8

6 8 7
0 0 o,

with varying degrees of substitution between skilled and urskilled

labor.

Finally the capital good sector involves the following three

activities:

9 T 8
-1 -4 -5
0 -3 2
0 -1 -8
0 0 0
0 0 0,

the first of which represents the rate of capital depreciation if

no investment is undertaken.

In addition to this activity analysls model of production,
our hypothetical economy will involve five consumers each of whom

has a distinect set of demand functions and vector of initlal sssets.



The following matrix deseribes the initial assets of each consumer:

C. Bnd €. Beg. Skilt. L. Unskil. L. Non Dur. Dur.

Consumer 1 0 3 5 .1 0 1
Consumer 2 0 .1 .1 T 0 2
{onsumer 3 0 2 6 1 0 1.5
Consumer 4 0 1 1 8 0 1
Consumer 5 0 6 .1 .5 0 2

As we see, no consumer owns, prior to production, cither
nondurable goods or caplital available at the end of the period. Con-
sumer 5 is the largest owner of capital at the beginning of the periocd,
and there are varying degrees of ownership of the two varieties of

labor and of consumer durables.

I have assumed that each consumer has a set of demsnd func-
tions derivable from a utility function with constant elasticity of

th

substitution. This implies that at the prices = e T the 1

1’ 6’

consumer will make the demands

a,, . f.(my, «o. )
71 P 6
gj(:’t) h bi 2

.
J

where bi is the elasticity of substitution for consumer 1 , aij
measures the intensity of the ith consumer's demand for commodity

J, and fi(nl, e x6) is a complex function of the price vector
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% selected so that the budget constraint is satisfied for each in-

dividual. The specific values of aij are glven by

C. End C. Beg. Skil. L. Unskil. L. Non Dur. Dur.

Consumer 1 i 0 .2 0 2 3.2
Consumer 2 A 0 0 .6 4 1
Consumer 3 2 0 .5 o 2 1.5
Consumer & 5 0 0 .2 5 h.5
Consumer 5 3 0 0 .2 L 2

As we see, no cconsumer has a demand for capital atl the be-
ginning of the period, but there may be a substantial demand, depend-
ing of course on the prices, for capital at the end of the period.
Since there is no explicit description of production after the end
of the time period, this demand is to be interpreted as a demand for
savings. The entries under the skilled and unskilled labor columns
refer to a demand for leisure. Finally, the elasticities of substi-

tution bi are given by

Con. bi
1 1.2
2 1.6
) .8
i +D
5 .6
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In the numerical sclution of this example, the set

n+l k ;
1 y ... ® was assumed to consist of all vectors of the form

(kl/lOO, kg/lOO, s k6/100) ,

with ki positive integers summing to 100, There are an exception-

ally large number of these vectors. The algorithm terminated after
examining only 913 of them in & little over a minute of TO9L com-

puting time, with the following primitive set

ﬂJl HJE :ﬂiJ5 ﬂJh JTJS JTJ6
22 22 22 22 22 23
22 21 22 22 2l 22
20 19 19 19 19 20

7 7 7 6 6 7
12 12 12 12 1l 12
19 19 18 19 18 16

These six vectors are related, one by one, to six columns in the
matrix B , which form a feasible basis for the eguations Bx = w.

The first four of these vectors are asscciated with the 9th, Tth,

lOthJ and llth activitieg, in the order in which they are des-

Je
eribed above. The vector = 5 gives rise to a negative profit for

all possible activities, and therefore corresponds, in the matrix

B to a colum of demands, ﬁ6 is associagted with the thirteenth
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activity.

These six vectors were averaged by a set of weights ob-
tained as the solution of a specific linear program, and the follow-

ing wrice vector and activity levels were obtained:

= {21.8, 21.8, 19.4, 7.4, 12,2, 17.4) ,

Activity Level Profit
7 .86 -. 05
8 .0 -~ 25
9 .10 .03
10 141 .Oh
11 1.31 -.02
12 .0 -.02
13 b7 .00
1h .0 -.33

The profits in the final column are based on the price vector =x

normalized so that its sum is one.

As a final summary, let us compare the market demand at
this set of prices, with the net supply obtained by using these

activity levels in conjunction with the initial stocks of commodities.

. End C. Beg. 8kil. Lab. Unsk. Lab. Non. Dur. Dur.
Demand  11.27 .00 1.02 2.17 21.08 10.98

Supply 11.27 -.01 1.01 2,14 21.06 10.96 .



The price vecltor =n and the activity levels given above
seem to be a fine approximation to an equilibrium inscofar as the
equaility of supply and demand in each market. The profits, which
should be zero for those activities in use and less than or equal
to zeroc for the remaining activities, seem a bit less satisfactory.
This is undoubtedly due to the preccecupation of the final linear
programming problem with minimizing the maximum deviation between
supply and demand, a goal which is not directly responsive tc con-
giderations of profit. Many other averaging processes can be used
and they deserve to be explored before substantially larger prcblems
are tried. It should be pointed out that the final linear program-
ming problem, which takes no more than one or two seconds of com-
puting time, is & very minor part of the algorithm. The important
work in the algorithm is done in determining the primitive set whose
assocliated columns form a feasible basis for Bx =w . it i this
calculation which indicates the neighborhood in which spprovgimate

equilibrium prices are to be fcund.

In examining the above example one sees that the price of
capital available today is identical with the price to be psid today
for capital delivered tomorrow, so that the real rate of interest
should naturally be taken as zero. This is reflected in the fact
that the 1nitial stock of capital falls during the pericd from 12.1
units to 11.3 units, even though activity 13, a capital producing

activity is used at the level of .hL7.



tet us compare this model with one which differs from it
by the introduction of one new productive activity in the capital

goods sector. The activity

has a profit of .13 at the previous equilibrium prices, normalized
0 that thelr sum is one, so that if this activity is avallable it
will surely be used. It would also seem reasonable to suspuet that
the use of this activity would have a tendency to inerease the in-

terest rate from its previous level of zero.

If we adopt the same grid of prices on the simplex, the
calculations for this model terminate after the examination of 1185
price vectors in about one minute and 20 seconds of 7094 computing
time. After averaging, the fellowing price vectors and activity

levels are obtained:

a = (18.8, 22.0, 19.6, 7.1, 13.4, 19.1) ,
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Activity ' Level Profit

7 .69 -.11

8 ¢ -.30

9 0 .06
10 1.79 .08
11 .76 Ok
12 .0 .05
13 .0 -.22
14 .0 -.56
15 95 -.12

The relation between demand and net supply is given by the

table

C. End C. Beg. Skil. L. Unsk. L. Non. Dur. Dur.
Demand 12.98 .00 1.03 2.41 6.8 10.29
Supply 12.93 -.01 1.02 2.40 16.68 10.28

The new actlvity is used at the expense of activity 11 in
which a substantiasl quantity of unskilled labor was required to pro-
duce nondurable goods. As might be imsgined, the price of nondurable
goods rises and its consumption fglls. The expected rise in the in-

terest rate takes place, along with an increase in savings.

Thege examp;es give an indicetion of the speed and accuracy
with which the algorithm can solve a moderately difficult problem. I

feel quite sure that the performance of the algorithm can he substantially
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improved in both of these dimensicns by more subtle programming
techniques, and that eventually problems involving as many as twenty

commodities will be feasible without an excessive use of computing

time.
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