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MAXIMIZING STATIONARY UTILITY IN A CONSTANT TECHNOLOGY™
by

Richard Beals** and Tjalling C. Koopmans®**
1. Introduction

This paper is concerned with a problem in the optimal control
of & nonstochastic process over time. It can also be looked on as &
problem in convex programming in a space of infinite sequences of real
numbers. Because the problem arose in the theory of optimal economic

growth, the exposition will use some economic terminology.

The litersture on optimal economlc growth contains several

papers**** in which a utility function of the form

&0
t=1 .
(l) U(xl’ x25 ooo) = b¥ u{x_t) 3 O<a<l 3
t=1

is maximized under given conditions of technology and population growth.

Here x, 1s per capita consumption in period t , and u{x) is a

strictly conecave, increasing, single-period utility function. a 1is

called & discount factor. If O = , then p 1is called a discount rate.

.
1+p

¥ fThis study was begun in the summer of 1961 when both authors were engaged
in research under a contract between the Office of Naval Research and the
Cowlee Foundstion. The paper will be presented to the International Sym-
posium on Mathematical Programming, Princeton, N.J., August 1967. Pre-
liminary results for the special case of a linear production function
were presented by Koopmans to 2 meeting of the Econometriec Society in 5t.
Louis, December 1960.

** Department of Mathematics, University of Chicago.

**¥oowles Foundation for Research in Economics at Yale University. Work
completed under a grant from the National Science Foundation.

**¥¥oe Ramsey [1928], Cass [1965], Koopmans [1965, 1967], Malinvaud [1965],
end other papers cited there.



A generalization of (1) has been proposed under the name stationary utility,”

* Koopmans [1960, 1966], Koopmans, Diamond and Williamson {1964].

and is definable by & recursive relation
(2) U(xl_, xa, Xy ooo) = V(Xl, U(xe, x33 ooo)) e

One obtains (1) by V{(x, U) = u{x) + @ U . The natural generalization of «

in (1) to stationary utility is the funetion

(28) ax) = <ﬂ%é—‘19 - -
= U(x, X, X5 ooe

In this paper we study the maximization of (2) under production

assumptions deecribed below.

2. Definitions, notations and assumptions

We assume discrete time + , and a single commodity serving as

capital (amount z, at end of period t )} and also as consumption good

t

(flow x,_ during period t ) . Technology is constant and is represented by

t

8 production funetion f£(z) . If the labor force is assumed constant, f(zt)

represents output in period t+1 ; net of depreciation. If the labor force

grows exponentially at & given rate A >0, Zy and X, stand for capital

and consumption per worker, and f{z) represents output per worker less
AZ , the capital formation reguired in each period merely to keep z, con-

stant.
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A

7z, <z

A capital path is a sequence _z = (zo, 295 cea) , O " ,

where 0 <z <+ o . We dencte by (Z the tail (Zt’ z <+») and by

t+1°

z, the finite segment (Zs’

s%t Zogr v By)

A consumption path is a sequence, x = (xl, Xy, cee)

x >0 . We define the tail ¥ and the segment sxt as above.

For any constant a , we denote by con® the constant (capital

or consumption) path (a, &, 8, cos ) &

The capital path 0% is said to be feasible for the initial

capital stock =z if Z, =2 and

(3) Zeoy S 2 F f(zt) , t =0, 1, so0 o

If Oz is feasible for =z <{he associated consumption path lx with
(4) Xeyg =8 * f(zt) -2, 20, t =0, 1,

.,.
is also said to be feasible for 2z . Let 2 and.;{fz be the
collections of capital paths and consumption paths, respectively, which

are feasible for =z .

We assume

(I) The production function f£{z) is continuous and continuously

differentiable on the interval c,ﬁ?z lo, 2), z E'w . Moreover

£f{(0) =0, 0<#£'(0), f 4is concave, and the function n{z) = z + f(z)
is an increasing function mapping tﬁ?onto itself. Hence h(z) = lim h(z) =% .
Z+Z

To interpret these assumptions, let F(Z, L) represent total

cutput hefore depreciation, 7 +he total capitael stock, L the labor force.
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The standard assumptions F(0, L) = F(%, 0) =0 , Fl >0, F, >0, ¥y <0,

F homogeneous of degree 1, then imply through F(Z, L) = Lf{Z/L} , ignoring
depreciation, that 7 = o . Either exponential labor force growth or a
constant rate of depreciation will make 7z the finite number defined by

f£{(z) =0 . Should Z >7% , then feasibility requires 2y < z + ¢ for

any € >0 and large enough t (see Figure 1). From assumpticns on U made

below we shall see that optimality requires Zy <z eventually. On the other

hend, for O <z < Z , feasibility precludes z,_ 2z

vhereas z_ = z
't ’ ¥ %

requires Zy § z . For these reasons we consider only values =z o € (ﬂ .
We note for future use that if C < zc') <z , Teasibility permits 1lim 2' = z H
tro

see Figure 1.
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Figure 1. Two capital paths with zero consumption.
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(11) U(lx) is defined on the union G = \J X, of all
ze

feagible sets, satisfies the recursive relation (2), and is continuous

on each :(:z with respect to the product topology.*

¥ For a definition of the product topology see Kelley [1955], or use
N X%l
the distance function D{(.x, .x') = Z & , where B
1™ 1 tel 1+ ]xt - x£|

is any number with 0 <86 < 1.

An example where U(lx) is continuous on each JC , but not

on ): is given below.

(II1) U(;x) is_strictly quasi-concave on .

That is, lx(k) = h(lx) + (1mx)(le) , 0<A<1, implies

U(;x(x)) >min {?(lx), U(lx')}-,

a standard assumption in utility theory. In general, it expresses a
decreasing desire for one commodity or commodity bundle relative to another

as the other is traded for the one at a constant barter ratio.

(Iv) V(x, U) has positive continuous derivatives oV/ox ,

[+]

avV/oU , on g xCLL, where (J = (0, %) EEQ(%J is the range of U(lx) .

Moreover V(x, U) is continuous at x =0 for all U, and, if V is

not differentiable at x = O , then lim U 3 Y) . w forall U.
x-+0

Tt follows from (II) and (IV) that U(lx) strictly increases

with each xJC .
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The purpose of the exception at x =0 is to permit a utility

function for which " z_ >0 " implies that " ?{t >0 for all t ,"

where 1§ denctes the optimal consumption path.

From the identity U(conx) = V(x, U(con;)) implied in (2) one

finds by differentiation that (IV) implies 0 < ax) <1 for all x >0

with xe Ao,
con
(5) (V) Let V,(x, y5 U) = ¥(x, V(y, U)) and
o o) S dy V,(x, y3 U) [ov,(x, ¥; U)
£, V3 = = T =

\\dx-vg(x, ¥v; U) = const, ox dy

o

Then, for given ¥, U, D(x, y; U) is strictly decreasing in x .on

Together with an assumption we will not need, that D(x, y; U)
strictly increases with y , (V) is implied in the following plausible
assumption: The first- and second-period consumptions x(B), y(B) that
maximize Vg(x, y; U} for given U if bought at given positive prices
p, ¢ within a budget px + qy g B, are strictly increasing with B .
Economically, consumption in neither period is inferior to that in the

other period, in the way potatoes are inferior to steak.

The three assumptions Jjust mentioned are illustrated in

Figure 2.



all assumptions is given by (1) above, with u(x) =

Figure

2. Noninferiority of consumption in Pericds 1 and 2.

An example of & pair of functions U(lx) , f{z) , that satisfies

4 .
x, 0<¥y<1l, and any f(z) ,

concave and continuously differentiable on (= [0, ») with

£(0) =0, £'(0) >0, limf'(z) =0 ,

7o

hence 1im (£(z)/z) = O . Then, for any

Zco

€ >0 and sufficiently large t , from (3), (&), Zegl s h(zt) < (l+<-:)zt ,

hence X

<

) £ (are)z, S (14e)°T 2

T

for t > some large T.
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Taking € < o' -1 one sees that the summation (1) converges on each t}:

oA "
hence on :1: . Note that U(,x) is not defined on all of X XK

o~

and is not continuous on :):\ if f(z) 4is not bounded; in fact, if wu(x) =x

the sequence of consumption paths X(n) with x_gn) =0, t ;E n and

1

B go2m

n converges to cono in the product topology, hut

U(lx(n)) =1 forall n, whereas U{_ 0) =0 .
_ con

3. Optimal capital paths

Given a feasible capital path Oz , let lx be the associated
consumption path given by (4). Define W(Oz) by W(Oz) = U(lx) . If
c)z and Oz' are in %z s then the concavity of the production function
£(z) implies that a conzex combination _z" = h(oz) + (l-)\.)(oz‘) ,0<Aa<1,

is also in . and that the associated consumption path Ox“ has
o
x;:: _>7uct + (1-).)::1; for all t . This and the strict quasi-concavity of U

imply that W is also strictly quasi~concave.
¢ A capital path o; is optimal for =z if Eo é?’z , and

W(o;) > W(Oz) for all z e %z .

A capital path o is strictly monotone in time if one of the

following conditions holds:

(1) z, <z , t=0,1,2, 1.0 ;
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The assumptions (I) - (V) in section 2 imply the following

Y
Theorem 1. For any initial capital stock z ¢ ¢/ there is a

unigue optimal capital path Oz . This path varies continuously with =z

and is strictly monotone in time.

If we define h(n)(z) recursively by h(n)(z) = h(h(nql)(z)) ,

»*
h(o)(z) = z , then the set ?»z is contained in the product 3—2 of
the closed intervals [0, h(n)(z)} , n=0,1, ... . The latter set is
compact with respect tc the product topology, by the theorem of Tychonov,

g

and, xjg* is easlly seen to be a closed subset, hence likewise compact.
¢ : ;

Continuity of U on ;X:z implies continuity of W on ”Z;f . 'Then the

continucus, strictly gquasi-concave function W assumes a maximum at &

unigue element oE of the compact convex set E;Zz . The remainder of this

section is devoted to showing continuity and strict monotonicity of this

unigue optimal capital path OE .

Given =z ¢ CJ?, let OE be the optimal capital path for =

and set ﬁ(z) = W(O;) .

Lemma 1. ﬁ(z) is strictly increasing, and continuous from

the left.

Proof. If 0 Sz <z' <z, andif 02 is optimal in 2/2,

T '/‘- 5 3 |= 4 |'= Aa
let Oz € 222, be given by zo z' lz lz Then for the

o~

-~ ~
associated consumption paths .x', X , we have x] >x.  and 2x‘ = X,

i 1 1 2
50 ﬁ(z') E’W(Oz')>>w(02) = W(z) . Therefore W is increasing.



- 10 -

If 0<z <2z, then, in the optimal consumption path X

1
assoclated with OE , BOme §t is the flrst to be positive. Then
gt' >0 for 0 5 t! § t - 1,and for a sufficiently small ¢ >0 there is
a & >0 such that the path (lxtwl 5 xt - €, t+lx) = 1x is feasible

for z -5 . Then U( %) <W(z-8) <W(z) . As &0, u(,x) > ¥(z) ,

proving continuity from the left.

We can now show that o2 depends continuously on =z . Suppose

{n) %

Z + 7 ¢ ¢~ . For some z' e (/pi Z(n) S%' forall n . Then

N
%?_ (n) c 2 for all n . GSince the latter set is compact, it suffices
Az s
to show that any convergent subsequence of the corresponding sequence of
7(n)
o]

optimal paths, , must converge to oz , the optimal path for Z .

Renumbering, we may assume Og(n) itself converges to some Oz € (izz .
By the continuity of W , Lemma 1, and the optimality of OE in .
respectively, W(Oz) = lim W(Og(n)) = lim W(z(n)) ZW(z) = W(Oz) i’w(oz) .

Therefore w(oz) = W(Og),sooz = OE by the uniqueness of OE , thus proving

continuity of OE .

Lemma 2. Suppose 0 Sz <z' <7z, and let 02 and OE'

be the corresponding optimal paths. Then either El < Ei or El = gi

Proof . Since z = 0 implies 212 0 the statement is obvious

in that case.
Now assume O < z . The stationarity of U (equation (2)) implies

that for each t , z is optimal for Therefore if

t 2y

o =A! Az i n Ai
z, = 2, #0 , then 1% = %' + Suppose so, and let ,x and;x' Dbe the
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~

associated consumption paths. Then Xy < %i and ex = gx’ s Write

= oy o 2 . . .
Uy = U(5x) = U(Bx) . Then (Xl’ x2) raximizes VE(X’ ¥ UB) subject to

n(h(z) - x) - y = 2, , and similarly for (z1, %é) . But this is seen to

. o N ai ~ ~y ~ =AI —f\ =/\ n
contradict assumption (V) , ince Xl < xl R xe x2 , and h(z) X, 4

= 2} = h(z") - %i , and in view of the concavity of h , the strict

quasi-concavity of U, hence of V2 {See Figure 3).

g Feov =
|




Now suppose zl>-zi >0 . Moving from 2z toward zero and

using continuity, wve can find 2z" with 0 < z" < z' but with the

Pl o~
corresnonding z\ = z! ; sece figure 3{a). This was just shown to be
lmpogsible.
~ ~
Finally, supnoce zl ot =0, Moving from z'  toward =

~
1 11

we get a 2" with 2' >z" >z and with the corresponding z! wsatisfying
L

<ar <

0=z S2 5

This proves Lemma 2.

see figure 3(b). But this is the case ruled cut just above.

~

We now prove monotonleity of optimal cepital paths. Suppose oF
7/

is optimal for z e -, z >0 . Suppose first that 3 _ < 21 . Now lE is
optimal for Zy » 80 Lemma 2 implies zl< 22 . Inducing, we get

Zt < Zt+l for all t . The cases zo = zl and Zo > zl are handled
similarly.

4, Asymptotic behavior of optimal paths.

in time A
Monotonicity.of the optimal path o? implies that the (possibly

infinite) limit z = 1im gt exXlsts. We want to determine, in terms of the
o '
initial capital stock 2z , when Z, inereases,1& constant, or decreases.and what
over time

its limit is.

Suppose the pair (X, v) maximizes VE(X’ v; U) = V(x, V(y, U))
subject to the constraint z, = h(h(zo) -%x) -y, where U, z, and z,
are given. Let El = h(zo) - %X and 62 =V(y, U) . It follows from the
usual analysis that, if X>0 and ¥y >0 , then
(6) Oz, Up) == V(X Uo) - S V(E, U) - (1 + £1(2y)
: &V(X; 2/ = 3u s Yo 8“.'; Y 1



- 13 -

If X or v is zero, (6) is replaced by an appropriate inecquality.
Conversely, (6) or the corresponding inequality implies that (%, ¥)

is optimal for the given problem.

Similarly lﬁn with each §t >0 maximizes

vn(lxn, U) = v(%l, V(xe’ ooey V(xn, U)..;Dsubject to ,x = being obtained by

(L) fromozn with z , z , U prescribed,if and only if

d _,a oa d _a oa 3 A on ,
(7) 5% V% Uppy) = 50 Vs Uppq)e 55 Vixg,ys Upyp) L+ g (z,))

t=1,2, «o., n =1, where U, =V U) and U, =U.

n-t+l(txn’
A path oF with associated consumption path & cannct be

improved by finitely many changes in t >1, 1if and only if the

Zt’
corresponding equations (7) hold for all t . Thus Oz cannot be inmproved
by finitely many changes if and only if it cannot be improved by a single

change.
Given z ¢ (f, z >0, the consumption path associated with

is x , where x =f(z) . Let U = U(

Z X)) . T Z were
con con ) I n

con co

optimal we could divide (6) by 5% V(x, u) to get

(8) A (z))(1 + £'(z))=1,

where o{x) 1is given by {(2a).
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Partition [0, z] into disjoint sets:

(z]2=0,2=32 or off(z))(L+£'(z))=2],

27 = {0<z<z| off(z))(1+ f'(Z)) >1),

it

{o<z<z| a(f(z))-(l+f’(z5) <11}.

N V>
Then {) ® 15 closed and Vs , (}) < are open. The precedihg

7

shows that & necessary condition for 2 to be optimal if 2z e <’ is

e f

that z € ~ . We shall show:

con

Theorem 2, Let o; be optimal for z, 0<z <7z . Then

() if z e ». o 18 the constant path =z ;

Fal

> - .
b if z ¢ then =z increases and =z is the

t
smallest number in ()/ ~ which is larger than 7z ;

& ~

(¢) if =z e 7, then Z,

number in / = which is smaller than =z .

decreases and zZ, is the largest

A path 02 optimal for z is called stable if for every path OE'
optimal for z' which has z' sufficiently near =z , the limit

zu': =272 . We have the following consequence of Theorem ; see Figure 4,
-]

Corollary. Let og be optimal for z . Then oE is stable

o =
unless z € and is also in the closure of f{z' | z' ¢ .{/d , 2! >zl

or of {z']z'e«j<,z'<z],
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Figure 4. Optimal paths; all except (b) and (f) are stable.

If zeJ=

satisfied by the path con® = oF ° Therefore z cannot be improved by

0 <z <7z, then (8) shows that the equations (7) are

2

o]
changing only finitely many of the z_, t 2 1. Statement (a) of

Theorem 2 is thus included in the following

Lemma 3. Let z be a feasible capital path with 7y Sz¥ <z

for all t . Suppose W(_z) __?w(oz') for all  z' with z' =z and

mz' =2 for some m, n . Then oZ is optimal,
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Pracf. Suppose Oz" € ,:fz , and. suppose first that z; >0, all t.
r o .

For any n there is a path oz(n> € }Z with Z(n) = z" and z{n) = =z
I
7 Ta

on en n ik

i

for sufficiently large m (depending on n , z; end _z ; this follows

from the last remark preceding Figure 3 above., Then W( 2) g‘d(o'z.(n) )}, and

z(n) > oz“ 50 W(oz) =>W(oz") . If z! 1s eventually zero, choose Oz(n)

Q t

similarly but with chn) = max {z), en3 for & Sn, where g =0, e, >0,

Again we find W(oz) 2 lim W(oz(n))z W(Oz") , 80z i5 optimal,

Tt is clear from the proof of Lemma 3 that the assumption that =z :

is bounded away from z 1s stronger than necessary. What is needed is that

tz can always be caught up with, even from & late apd bad start. GSome such

assumption is c¢learly necessary, however, for let z, = h(t)(zo) , all t.
“‘r

en ' 4 2' = 7 Tor some n lies zt = 7z 2z
Thno e,()zo and, 0 n x Tmpli o oF Thus

cannot pe improved by finitely many changes, Since it cannot be changed in

only finitely many places. However the assoclated consumption path is

0, so Z is strictly inferior to any other path in j«

con Z

0

Next we consider the effect of finitely many changes in conz

L >
when z € - .

G 7
> ( <

Lemma 4, Suppose z e . If ze {., and z 3 2z for
) . _ f ST, )
t<n, vhile 2 = oz, iden W‘OZ) = «(conz) . Moreover, equality
holds only if o? = ¢ on? *
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Proof. We induce on n . By assumpticn Z, =% s gso for n =1
there is nothing to prove. Suppose the statement is true for n =m : 1
< < = =
and suppose Z, = 2 for t > m while -t ",conz . Ir 2, = 2

then _z = z and the statement holds, by assumptlon. ©Suppose z < z .,
m con m
Choose a path Oz‘ e;iz with z% =z , b f m and z& =z +8,8 >0,

The corresponding value of W satisfies
W2y =W 2) = ¥ (x, a(x)(L + £1(2)) - 11 +& + €(8)-B
o con dx V2 ?

vhere x = £{z) , U =W( y, and €(B) >0 as B=>0. Slnce z ¢ V9:>,

Z
con

the factor in square brackets is positive. Therefore, for small positive B ,

Ww( z') >W(__2). Now z_ <z <gz!, sothereis a convex combination  z"
o con m m o
= x(oz) + (lmh)(oz') with z; =z ., Clearly zg <z for t<m and

uo_ P : s my <
w® = con? + The induction assumption implies that W(Gz ) S W(conz)°

Strict quasi-concavity of W implies that w(oz") > min {w(oz), W(oz‘)] R
[ > fi 1
but W(OZ ) >’W(conz) 2 W(Oz }, so W(oz ) :>W(Oz) . Therefore

W(conz) >>W(Oz) , completing the proof.

<,
A similar argument shows that if 2z € L57 , any change in conz

moving finitely many zy upward is a change for the worse.

We can now prove (b) of Theorem 2. Suppose 2 € d?> and let o%

be the optimal path for =z . We know that oZ is not constant, so it either
inereases or decreases. Suppose it decreased. As in the proof of Lemma 3,

there would be & sequence of paths z(n)e Z? such that z(n) s 2 s
Q /Z o] Q

(n) < (n} _
z, ' 22 for all t , and 2 = . on® for large m . By Lemma kL,
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W(oz(n) §'W(conz) , all n . Therefore W(O%) §'W(c0nz) scontradicting

~

the unique optimality of OE , Ssince z in nonoptimal. 'Thus oz increases.
con
Iet 32! be the smallest number in ~ ~ which is larger than =z .
If z' =7z then certainly z_Sz'. If z'<Z, then con® 18 optimal
for =z' and repeated application of Lemma 2 shows that z + <z' forall t.
Thus again gm : z' ., Buppose gm =z" <z, Then Tg satisfies
ti U
equations (7) for large T and all n, if we write U = W(T-&-n-olz) . But
~ 11 i s I N
£2 * aon? - By continuity con® will also ‘satisfy equations (7) ,
s o - 0 T - = ‘ "o
with U . W(conz )}, so z" e . Then 2" = z', This completes the

proof of (b), and the proof of (c) is exactly parallel.

It OZ is an optimal capital path and l;E is the associated

-~

consumption path, then _x obviously has the following properties:

1
}’Et < f(zt) if 21; increases;
;Etff(zt) if ;:t decreases;
x, = lim x = lim £(z,) .
tereo oo

It is »~t clear whether cur assumptions guarantec that Xy is also
monotone with respect to time, It is monotone when U has the svpecial

form (l), see equation (7).
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5. Construction of optimal paths

We glve two procedures for constructing the optimal capital
path as a 1limit of a seguence of paths each obtained by solving the
optimization problem for finite time. Fach proecedure has certasin dis-

advantages, theoretical or practical.
Given & path  z eﬁ%z and an integer n >1 , 1let Tn(oz)
ve the path z'c ﬁ?z vhich maximizes W(oz') with contraints

t- = 1= i
of'mel = oFnel 7 gel? 412 Thus Tn(oz) is obtained from  z

by making the bé;t feasible adjustment in Z, alone. Then Tn is an
operator from i;é to ??Q . TNote that W(Tn(oz)) g»w(oz) , with

equality only when Tnkoz) = 2

L

Let Sn be the iterated operstor Sn =TT 1

nn-1

and suppose zZ ¢ &Q , 2z >0 ., BStart with some path Oz(o) in i;z

and define a seguence of paths inductively Dby

(n+1} _
o - Sn+1(o

Z(n)) .

Thus Dz(n+1) is obtained by improving Oz(“) in the first n+l

(n)

places, in order. We cannot be sure thal 02 will converge to

~

the optimal path oF in fact if we make the unfortunste initial

choice zéo) = h(t)(z) for all t , +then there is no room for finite



(o)

for all n, and =z is inferior to

(o]

Some subsegquence oz(n’J) will converge to a path oF € i}z.
This path cannot be lmproved by a single change, so it cannot be improved
by finitely many changes. In fact W(Oz(n)) is nondecreasing, and

m {m+l

(m)yy = w( 2ty |

o™ gulm (=) S,

50 W(Tl(oz)) W(Oz) . Hence, by strict quasi-concavity of W , the

fi

adjustment of z. in the definition of Tl(oz) leaves =z, wunchanged,

1 1

and Tl(oz) = % - Inductively, suppose Tj(oz) = ¢ for j<n . Then

T = Sn+l(oz) , and the same argument shows W(Tn+l(oz)) = W(Oz) ,

n+l(oz)

X [,
50 Tn+1(oz) = oz . If Zy <z <z for all t , then, by Lemma 3,

o2 is optimal. Moreover, if i is_optimal, then any cother convergent
subsequence of Oz(n) will converge to a _z' with W(Oz’) = w(oz) .

Hence the whole sequence Oz(n)

will converge to o% - As noted above,
the limit need not be optimal, however.

An optimum can be guaranteed by the following method. Given

Z g LD with 2z >0, choose some z' ¢ kﬂ . {A computationally

~ ~ .

helpful choice of z' is the zZ cf Theorem 2, provided z <2 )
For some N there is a path Oz' € ’E?Z with Nz' = z' . For

any n >N there is a unique oz(n) € ??z maximizing W(Oz) subject
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~

to _z = z" . Let oZ be optimal for =z . As in the proof of
Lemma 3 there is a seqguence of paths Oz(n) > 02 such that, for each

o o(n) t ~(n)y < (m)
n , the tail % is eventually  z' . Then W(Oz ) = W(oz ),

~

so lim W(Oz(m)) = W(OE) . It follows that Oz(m) > 2

The practical difficulty with this method is that it involves
solving optimlization problems for more and more time periods, rather
than for one period at each step as in the first method. ILet us note
that each such problem can be solved by iterating the one period

gsolution. Suppose Oz(o) € C;z and n >1 . A modification of the
argument above shows that Oz(m) = (Sn)m(oz(o)) converges to the

path  z' e %Z which maximizes W(_z) subject to _ z'=  a'%,
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