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INTERTEMPORAL DISTRIBUTION AND "OPTIMAL"

AGGREGATE ECONOMIC GROWTH

Tjalling C. Koopmans

see it 1s asgumed that we do
not discount later enjoyments
in comparison with earlier ones,
a practice which 1s ethically
indefensible and arises merely
from the weakness of the imegin-
ation, ... "

F. P. Ramsey [1928]

"On the assumption ... that &
governeent 1 capable of plan-
ning what is best for its sub-
Jjects, it will pay no attention
to pure time preference, s
polite expression for repacity
and the conquest of reason by
passion, *

R, F, Harrod (1948, p, 40]

¥ ... we feel less concerned

about future sensations of joy
and sorrow simply because they
do lie in the future, Conse-
quently we accord to goods
which are intended to serve
future ends a value which falls
short of the true intenslty of
their future marginal utility,"

E. von BShm-Bawerk [1921,
II, p. 2681

"In such an ideal loan market,
therefore, where every indivi-
dual could freely borrow or
lend, the rates of preference
or impatience for present over
future income for all the dif-
ferent individuals would become,
et the margin, exactly equal to
each other and to the rate of
interest, "

Irving Fisher (1930, p. 106]

"Most people are of the humour of an old fellow of & college, who, when
he was pressed by the Soclety to come lnto something that might redound
to the good of their successors, grew very peevish; 'We are always doing,'!
says he, 'something for posterity, but I would fain see posterity do

gomething for us,' "

Joseph Addison, The Spectator, Vol. VIII, No, 583,

August 20, 171k,

* This paper has resulted from research under a grant from the Na-
tionel Science Foundation, An earlier version wes presented at
a Jjoint meeting of the Econometric Society and the American
Economic Assoclation held at Boston, December, 1963, In its
present form the paper s sgubmitted for inclusion in a volume of
essaye, to be published by Yasle University Prese to commemorate
the 100th anniversary of the birth of Irving Fisher, I am in-
debted to Koen Suryastmodjo for very fine draftsmanship,



Scratch an econcmist and you find a moralist underneath,
The clearest exception to this rule for once truly proves the rule:
Some of our most illustrious British colleagues have cast all dis-

simulation aside. No scratching is needed: in their case.

It is true that, in the quotations given, Ramsey and
Harrod were commenting on possgible time preference underlying
governmental planning. In contrast, BYhm-Bawerk énd Irving Fisher
were concerned, in a more detached manner, with the cbservabdle
time preferences of individuals, and with analyzing the market
effects of these preferences. However, the context makes clear
that Harrod haes little use for a positive "pure time preference"
under any circumstances, |

"Mime preference in this sense is a human imfirmity,

probably stronger in primitive than in civilized man. ™

* Harrod [1948], p. 37.

Moreover, in all societles where, in one way or another, individual
wvants and desires do have an effect on government action, indivi-
dual and socilal time preferences are inevitably connected. ©&o we
do have an ethical problem here, either at the individual level,

or in explicit regard to planning.



What is at issue is clearly an intertemporal distribution
problem: that of balancing the consumption levels of successive
generations, and of successive stages in the life-cycle of a given
group of contemporasries. The most pertinent decislons — individual,
corporate, or governmental — are those that determine investment
in physical capital, in human capital, and in research and develop-
ment. Investments In physical capital, if well made, augment future
consumption via an increase in future cepital-labor ratiocs. Invest-
ment in human capital raises the quality of labor and, one hopes,
of life. BSuccessful research and development augment future output
from given future capital and labor inputs via the development of

better techniques of production.

Recent research on models of optimal growth has clarified
the boundaries within which there is scope for ethical judgment re-

garding time preference.*

¥ Gee Koopmans [1965, 1967] and papers by Cass, Inagaki, Malinvaud,
Mirrlees, Phelps, Samuelson, von Weizsdcker, there cited,

The ﬁurpose of this essay is to make the precccupations and some
of the findings of these researches plausible to a larger readership,
through & diagrammatic analysis of one particular model of "optimal"
growth that is highly stylized and simplified, yet representative
of more realistig models in regard to the particular question at

issue. The esgsay concentrates on exposition rather than evaluation



of the findings. For scme evaluative remarks, and a survey of a

wider range of findings, see Koopmans [1967].

We shaell make no assumptions about the particular insti-
tutional form of the economy discussed. The simplest interpreta-
tion is in terms of an economy in which growth rates ére centrally
planned in a manner capable of implementation. It is hoped that
the anslysis can also serve as background for the discussion of
growth policies in an individual or corporate enterprise society,
or under conditions of less perfect and dependable planning. In
either case, the main aim is teo obtain insight Into the effect of,

and the setope for, time preference.

1. Assumptions regarding production and population growth.

Qur model has & single good, capable of serving as consump-
tion good or as capital good, as desired. The net excess of its out-
put flow over its consumption flow automatically becomes a net addi-
tion to the capital stock, which in turn affects output from a given
labor input. Technology and the quality of labor are constant over
time. Hence only the first of the three types of investment decisions

mentioned above ariges in the model.

Technology is represented by a production function F(L, K)
giving the rate of output as & function of the labor force L and
the capital stock X . This function, defined and assumed twice
differentiable for all nonnegative L , K , has the following

further properties:



(a) F(L, 0) =0, i.e., no capital no output,
(b) Fp(L, X) >0 forall L>0, K20, i.e., the

marginal productivity of capital is positive for all

factor combinations with some labor ...
(c) FI'&(L, K) <0 forall L>0, K>0, ... but de-

creases as capltal is increased while labor is held

constant,

(a) ¥(0, K)

I

0, i.e., no labor no output,

(e) F(L, K) =L F(1, K/L) = L £(X/L) , say, i.e., con-

stant returns to scale.

The popularity of assumption (e) is due more to the analy-
tical simplifications it permits than to its claim to realism. In
the present case, (e) opens our problem up for the use of diagrams
on the printed pege. It allows the production function of two vari-
ables, L , K, to be derived from the per-worker production func-
tion f(k) that depends only on the single variable k = K/L ,
caplitel per worker. To prepare for these diagrams, we translate
the assumptions (a) through (d) in terms of that function £(k) .

Using (e) we derive® from (a), (b), (<),

(a') £(0) =0, (b') £'(x) >0, (') £"(k) <O .

T H l "
* Since Fp = £'(X/L) , Fp=% f (K/L) .




The per-worker production function fF(k) therefore has a form as
indicated in Figure 1 below. Beginning at £{0) = 0 , it rises

for all k >0 , but at a decreasing rate as k increases.

We did not specify counterparts to (b) and {(c) that refer
to increases in lebor instead of in capital, because thése counter-
parts are implied in (b), (c) and (e) —- which shows the force of

(e). However, (d) gives us new information about £{k) ,

(a) 1im£(51 = 0

n , 1l.e., the average product of capital
koo

tends to zero as the capital per worker is increased

indefinitely.*

F(0, 1) = Lim F(L, 1) = lim L £(1/L) = 1im 28

Proof: © "
L+0 In0 koo

14

-

taking L

1/k .

Geometrically (see Figure 1), any rising straight line y = Ak,

A >0, through the origin will eventually cross the curve Yy = (k) ,
as k is made larger and larger — no matter how small the slope
Aos

We ghall assume exogenously given exponential labor force
growth
(1) L, =&, a>o0,



cheoosing the initisl labor force gt time t =0 as the unit of

labor force, LO = 1 . We shall speak as if the labor force is

the

entire population, merely to avoid the extra symbol that would be

required if we assumed the labor force to be a constent fraction

of the population.

Using a continuous time varisble t , and using dotted

o

symbols for time derivatives such as X = Q% , output is allocated

t d

to consunption Ct and to net capital formation Ki according

the identity

Kt)=Ct+K .

(2) (L "

The corresponding identlty in terms of per-worker capital kt

consumption ¢, = Ct/L , 1is obtained® by dividing through by

(3) £(k,) = cg + A K+ K -

-\t : -At
(Kte )=(Kt-LKt)e = t/Lt-xl-:t .

* R
Because kt T

This identity, basic in all that follows, says that per-worker

put is allocated to three ends, (l) per-worker consumption Cy

to

and

out -

2

(2) an investment of A k, needed if one merely wants to keep the

t

3



per-worker capital stock constant (that is, to keep the absolute

capital stock K% growing in proportion to the labor force), and

(3) & net rate of increase ky (positive or negative) in the cap-

ital stock per-worker.

The formula (3) assumes that capltal does not depreciate.
A simple reinterpretation will cover the case of exponentisl depre-

ciation at a rate 8 as well: One replaces A in (3) by

(4) = +5 .

2. The golden rule of accumulation.

Before discussing the choice of the objective of growth
policy in genersl, we look at a special problem so defined as to

leave only one obvious choice of the objective.

Suppose that the economy of the island Roswesrd. Adelphi
satisfies all the assumptions we have made. Upon its admission to
the United Nationg, the World Bank offers, as a once-and-for-all
gift, to supply whatever additional "capital" is needed to bring
the total capital stock at t = 0 to any level the newly sovereign
government specifies. This generous offer is subject to only one
condition, deemed indefinitely enforceable by all concerned: the
people of Roswesr 1 Adelphi must at all times t =20 allocate just

enough of their output to investment to keep the per-worker capital



stock constant,

(5) k, =k forall t >0.

What initial capital-per-worker k should the government ask for?

Inserting (5) in equation (3) shows that consumption per worker

(6) e, =c¢ =TF(k) - A k

t
has also become a constant. Figure 1 shows the construction of e
[Figure 1]

as the excess, at the point k , of the curve f(k) over the straight
line A k . Obviously, the only sensible objective is to maximize

¢ , once-and-for-sll. This requires (Figure 1) choosing that k = k
for which the slope f£'(k) of the tangent to the curve f(k) equals

L
(1) £r(X) =2, e =f(k) -2k .

Among all paths with a constant per-worker capital stock, the high-

est consumption per worker is attained and maintained by that path

on which the marginal productivity of capital eqguals the (constant)

rate of populstion growth.

This simple but important proposition was discovered many
times over in the late fifties and early sixties, Nine independent
discoverers are listed by one of them, Phelps [1966, pp. 3,41, in

whaet is by now the fullest discussion of its many ramifications.
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The nine papers vary in the generality of their assumptions. Some

af them permit laboer-

sl

ugnenting tecnnical progress. The policy of
maintalning the per-warker capltal stock that, once attained, per-
mits the highest consumphbicon per worker has been celled the golden
rale gg_ggfggy%%Eggg by Fhelps, because then

~es ®ath generation saves (fem future genersations) that

fraction of income which it would have past generations
save Tor it ... "F

*oheenl, pe H.

The path resulting from the policy has been called the golden rule

path.

I, by way of comparative dynamics, one conslders sn
arctiipelago with different populstion growth rates on different
islands, then ms A spproaches zero the capltal-per-worker K
prescrilted by the golden rule approaches Che unattainable infinity

woless one reintyoduces & vositive rate of depreciation.

3. Choice of the objective.

The golden rule wath is, of course, avallable anly after
the required initial cspital stock has peen atvalned. For any dif-
ferent, nistorically given, initial capital stock one needs a more

diseriminating eriterion. But even if the requisite per-worker
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capital stock were to be on hand, we must remember that the rule
was derived from an asrbitrary condition of the unchangeability of
thet capital-lebor ratioc. We must still explore what an economy

not bound by such a condition might want to do.

We shall first discuss this problem for a constant popu-
lation. The criterion most used is the sum over time (literally a
sum for discrete time, an imtegral for comtinuocus time) of future
utilities discounted to the present time. One postulates a utility
function u(c) that expresses the utility flow generated at any

time in the future at which consumption flows at the positive rate

¢ . 'The function is assumed to increase with ¢ , but at a decreas-
ing rate,
(8} u'(e) >0, u"(c) <O forall ¢ >0 .

Finally, to avold the possibility that a zero rate of consumption
could temporarily be optimal, we give the utility curve a vertical
tangent at ¢ = 0 ,
(9) lim u'{e) = «

o0

Figure 2 indicates & possidle form of ufe) , with u(0) finite,

Ancther form, with 1lim u{c) = -=', has been used in Figures 5 to
0 : '

8 velow.

[Figure 2]
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As the objective of growth policy we now consider & utility

functional that depends on an entire consumption path cy

in the form of an integral

(10) Up = fg Pt u(ct)d‘t , 0<p<1l.

p 1is the constent (instantaneous) discount rate, e P the discount

factor for one unit of time (one year, say).

Note that if we choose to make a linear change
(11) vic) = aulec) +B , a>0,

in the utility scale, similar to the change from Fahrenheit to cen-
tigrade in the measurement of temperature, then the utility function-

al is rescaled in the same way,
_ T _-pt _
Vp = jo e v(ct)dt =0Un+ 7 .

Therefore, & path optimael with reference to the u~scale remains

optimal if the v-scale is used instead.

If ¢

£ is & continuous consumption path, the quantity

5 u‘(co)

(12) Cp = R E—,-(qy

is the ratio of the present marginal utility of one small extra unit
of consumption now to the present marginal utility of the sure pros-

pect of an extra unit of consumption one year from now. Its excess

, 0st<T,



“ 13 =

over unity, -1 , represents what Irving Fisher [1930, Ch., IV]
has called "time preference" or, synonymously in his usage, "im-

patience.” If consumption is the same at the two points in time,

c. =0C

0 then ¢ = eP is the reciprocal of the discount factor,

l E

and @-1 is Harrod's "pure time preference,” of which he disapproves.
If on the other hand p = 0 , so pure time preference is absent,

but c, f ¢, , then Fisher's impatience ¢-1 arises solely from

the fact that the higher rate of consumption entails the smaller
marginal utility. In this connection Harrod argues persuasively
that a society anticipating rising consumption would exhibit g

positive interest rate even in the absence of pure time preference.

Since the second factor in (12) is a ratio of marginal

utilities, time preference is likewise unaffected by any linear
scale change (11)}. However, & nonlinear scale change would affect
time preference as defined above. This did not worry elther Fisher
cor Harrod, since both attribute a natural cardinal meaning to utility.
If, like the present author, one is reluctant to 4o so, then one
rmust fall back on the statement that there is one specisl class of
scales, all linearly related, in which the utility functional (10)
has the simple form of an integral over discounted "utilities" (so
scaled). If thereafter one uses the expression marginel utility,
it 1s to be tecitly understood that one uses the term "utility"
with reference to a scale of that special class. While the use

of such a scale is not obligatory, it brings the benefits of pos-
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tulated simplicity.

This point deserves emphasis because the simplicity of (10),
and with it the seeming cardinality of the utility scale, are bought
at the price of an implication of noncomplementarity of consumption

levels at different points in time.* That is indeed a steep price!

In the present state of our knowledge, For axiomatic discussions
of the form of (10) and of some of its alternatives see Koopmans
[1960, 1966], Kocpmans, Dismond and Williamson [1964], and
Diamond [1965].

In maximizing the integral (10) under a technological con-
straint, the extent to which u'(c) decreases as c increases
acts as a redistributive device. That is, the slope of the function
w'{e) = hence the curvature of u{c) -- regulates a shift of con-
sumption from well-provided generstions to poorer ones, much like
a progressive income tax redistributes income among contemporaries.
If we want agaln to exploit the simplicity of (10) we must express
also the progressiveness of the redistributing effect of u'(c)
in a form unaffected by linear scale changes. The expression
1 =-u'{c + y}/u'(e} for given ¥ would do, but still depends on

an arbitrary < . This can be avolded by taking

(13)

Lim AT u'{c + y)/u'(c) _ u'r" c)
¥ u'(e

a
==72 log u'(e) = q(ec) , say,
y+0
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which depends only on ¢ , &s it should. The measure n(c) will

be used below.

As to the time horizon T in (10), for social planning

an infinite horizon, T = « , naturally expresses the fact that
no end to society is ever planned. Under present assumptions this
ereates no complications as long as positive pure time preference
is present (p >0) . But if p = O there is no inherent reason
why the utility integral (10) should converge for all paths of in-
tcrest. Ramsey saved his ethical principle (for a constant popu-
lation) by the ingenious though somewhat artifical mathematical
device of & bliss level ¢ of consumption: to exceed that level
was by his assumptions either not desired, or preductionwise not
sustainable. Instead of maximizing {10}, Ramsey then minimized

the integral,
(14) I (u(e) - ule,))at

of the excess of bliss utility over attained utility. This integral

converges for the optimal path gt (which satisfies 1lim gt . )
T

and for all alternative feasible paths worth comparing to it.

Our present purpose iLs better served if instead of Ramsey's
device we employ its modern variant proposed by von Weizséicker [1965]

and nemed the overtaking criterion by Gale [1967]. This criterion

achieves the essential compariscns of consuwuption paths over an in-
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finite future while using only integrals of type (lO) for finite

values of T . A path c, 1is declared better than an alternative

t

path cé 1T there exists a time T  such that

a |

]

(15) fO Pt u(ct)dt >=fg e P* u(c:)dt forall T >T .
From tise T° onward, the utility integral (10) for pash c, has

overturen that of path c: . The fact that for p =C not every
salr of contending paths is comparable under this criterion will

Tturn out to be innocuous.

When the discount rate p 1s positive, use of the over-

taking criterion is equivalent to the maximization of (10}.

Neither Ramsey nor Harrod indicsted in the references
cited how the prescription against discounting is to be interpreted
i mopuletion growth is anticipated. The most highly principled
interpretation would seem to require applying the overtaking criterion

to
(16) [o Ly ule,)at .

Here ¢ is again per-worker consumption, u(c

N the utility there-

»
of — or, more precisely the utility level of each individual, were
consumption to be equally distributed among all contemporaries, ard

were the same utility function applied tc all of them. The product

Lt u(ct) then represents the sum of individual utility flows at
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time t , which (16) integrates over time., Inserting s discount
_p*‘t
factor e in (16) would give the criterion

*.
(17) fg e Pt L. u(c,)at ,

to be called the sum of discounted individual utilities.

In (16) and (17) generations are weighted according to
their numbers. An alternative to (17) is to give equal weight to
per-worker utllities of different generaftions, regardless of their

size,
(18) 12 ™ u(e,)at .

For the same discount rate, p = p* , these two criteria are ob-
viously quite different. In fact, if the labor force grows by a
constant rate A , as in (1), then the two criteria are mathemati-

cally identical if and conly if
(19) p=p"-a.

In that case, the criteria are distinet in their interpretation

but not in the effects cof their implementation.

For definiteness sake, most of the discussion below is
couched in terms of the criterion (18), interpreted literally as
the sum of discounted per-worker utilities. However, we shall
occasionally use (19) to reinterpret the same findings as applica-

tions of (17), the sum of discounted individual utilities. 1In
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particular, the existence of this nlternative interpretation will
lead ue to take an interest also in negative values of p in {18),

which would go esgainst intulition in the literal interpretation.

4, Propositione Concerning Growth Paths Meximizing the

Sum of Undiscounted Per-Worker Utilities.

Analysis of dlagrams with common coordinate axes placed
side by side can carry us a long way toward understanding theorems
proved elsevhere’ about growvth paths "cptimal' under the various

criteris.

* fThe exposition most closely follows Koopmans [1965], where the

i's are dotted and the *t's are crossed.

In this section, we assume a positive rate of population
growth, unless the conbrary is specified. In Flgures 3 to 8 we con-

sider the objective (18) of a sun of undiscounted per-worker utilities.

The analysis of Section 2 has shown the importance of the

function

(20) (k) = £{k) - Ak ,

'
the excess of the curve f(k%) in Figure Z over the sloplng straight

line Ak . It represents that part of per-worker output available

for distribution between per-worker consumption c¢ and net increase
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k in the per-worker capital stock,
In particular, if during any period kt is constant, kt =k,

then ¢ = g(k) 1is the constant per-worker consumption resulting !

therefrom.

Figure 3 shows this function in the left hand diasgram,
with the independent variable I set off on the verticale axis,
the values of the function g(k) on the horizontal axis, increas-
ing toward the left. The curve g(k) has a vertical tangent at
the point k = ﬁ corresponding to the golden rule path., Since
g"(k) = £"(k) <0 for all X , the curve slopes toward the left
for k <k , toward the right for k >>§ , everywhere bending to

the right as k increases,
[Figure 3]

In the right hand diagram various alternative paths of

capital-per-worker k, are drawn, with % on the horizontal axis,

t

kt on the vertical. All paths start, at time t =0 , with the

given initial per-worker capital stocl: . . Tle begin by conror-
ing the paths labeled (1) and {Z). ¢Cn path (1) the ver-uoricr
capital kt = kO maintains the initicl level fovever. On path

(2), kie) inereases over an initicl weried ¢ <4 <71 to a level
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K?) held constent therearter, kEE) - x®) for anr ¢ >t .

Because of the way in whieh the two diagrams are aligned,

the constant per-worker consumption flows c(l) R c(a) associated

with the level segments of the two paths are read off from the curve

o - )

0 , say, and k(e) » respectively.

g{k) at the same levels

If the initial per-worker capital is belcw the golden rule level,

~

ko <k, and as long as also k(e) < ﬁ , we must have c(l) < c(

2)

because of the shape of g(k) already discussed. Since u(c) is

increasing with ¢ , we must then have a corresponding relation
o) _ @y < o)y L (@)

for the utility flows on the level portions of the two paths.

On the other hand, over the initisl time interval [0, 1]
the investment on path (2) exceeds that on path (1). It is there-

?
fore to be expected that this entalls a sacrifice of consumption,

c£2) < cﬁl) for O < t <1 , which is reflected alsc in the cor-

responding utlility integrals. We therefore have the following tab-

ulation;:
Table 1 J u(edas ir [T, 7] 1is
T
[0, t] [, T] [o, T]
path (1) Tu(l) (T-T)u(l) Tu(l)
path (2) Tu(l) -x, say (T-T)u(g) Tu(e) -y, say
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While we expect x >0 , neither the value of x , nor that of

v o= (u(E) - u(l))r + x , matters for the outcome of the compari-
son. By the overtaking criterion we must determine whether, for

large encugh T ,

T
Of (%(c£2)) - u(cél)i>(it = (u(e) - u(l)) T - ¥

is positive, BSince u(e) - u(l) >0, this is the case for all
T >T" if
T* = the larger of the numbers 1 and _Tiﬁ_z——(ij + 1,
u -u

surely a finite positive number. Hence path (2) is better than path
(1).
Note that this reasoning is independent of the length of

the time interval [0, 1] , and of the level k(e) at which path

(2) becomes constant, as long as k(l) < k(e) < k . Therefore path
(3) is again better than path (2), and so on. Thus, given any path

such as Et in FPigure 4 which rises from kO and elther approaches

the golden rule level k as an asymptote, or attains, and remains
at, that level from a certain point in time on, we find that eny

path initially colnelding with ﬁt and then branching off to re-

main constant at some level below k is overtaken by any other such

path that branches off later, at a higher level below k .
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If, on the other hand, kO >k , a simllar result is

it It

obtained in which the word "rises" is replaced by "falls! "below"

t

by "above," and "higher" by "lower."

These comparisons are made within & highly restriected
class of paths. Could a path that fluctuates, finitely or infinite-
ly often, be better than any path that moves in one direction or

stays put?
[Figure 4]

Figure L ghows that a path kt that has at least one

fluctuation, let us say extending below the golden rule level k s
must contain a bulge. This is defined as a time interval [t, t)

in which kt attalns the same below-golden-rule level kat its be-

ginning and its end, thkzht <k , and lower levels for t <t < T .

*
Compare kt with a path k: remaining constant at kt = kt for

t

HA

t <t , and coinciding with k, at all other times. Then,

- *
over the interval f{t, %], g(kt) averages less than g(kt) .
Over the same interval, the net increase of kt , as well as that

of k: , equals zero, hence averages zero. Therefore, by (21),

: .. But since u(e) is concave and ¢

c, averages less than ¢ "

t

fluctuates, u(ct) averages at less than u(average of ct) s

* .
whereas u(c:) averages to u(average of ct) because c: is
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constant. Therefore k: has overtaken kt from t =%t on Similar

reasoning precludes mirror image bulges above § .

Not even a flat segment at a level k different from k
can be part of an optimal path. Figure 4 further compares the above

path k: > which 1s now assumed to attain the golden rule level

k from t = T on, with another path it defined by
"t.—.kt, 0<tgt,
L = k.t+T R tgt, T=%t-1

which anticipates the post-t future course of kt immedistely fol-

lowing t , thus omitting the flat segment, and attaining k from
time T-t on. The comparison is made in Table 2, omitting those

parts of the future for which the two paths coincide.

T
Table 2 J ule)at if [T, T] is
I
[t, t] (¥, Tl [t, T-t1  {[T~r, T] [t, T]
path k. tu(g(k)) | x, say tu(g(k))+x
path k: x , again Tu(g(ﬁ)) 1u(g(§))+x

From time T on, path kz has overtaken path k. by

r(P(g(ﬁ)) - u(g(k))) » @ positive amount whenever k # k. As is
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seen below in another case, this reasoning can be refined for s

path k.t that approaches the level k asymptotically instead of
attaining it at some finite time.

We now know that, if an optimasl path kt exists, it

must approsch k monotonically in a finite or infinite time. We

can determlne the required shape of k, 1if we can find out how the

t

slope kt of the path kt depends on the level attained at time

t . There is no loss of generality in looking at this problem just

for time t = 0 , for variocus alternative values of kO .

This time the question raised cannot be answered without
bringing the shape of the utility function u{ec) into the diagram.i
A beautifully simple reasoning, suggested by Keynes to Ramsey [19528]
for the case of a constant population, can readily be adapted to the
present case of population growth. It is one of these intuitive
heuristic arguments that convey the simple answer in a flash to a
reader willing to be persuaded as to which quantities of "first
order of smallness" need to be carried along, and which quantities

6f: "higher order of smallness" can be ignored.

Assume that a smooth optimal path kt a8 shown in diagram

A of Figure 5 exists. For the moment the datum 18 the initial per-

worker capltal ko s the unknown its initlal rate of increase ko R

the slope of 1<:.t at t =0 . Choose a time unit small enough that,

on the interval [0, 1], k.t can be treated as a straight line



segment, hence the variation of kt ignored. Small enough also

that the variation of g(k(t)) for 0 <t g1 can be ignored.

Then, at t = 1 , per-worker capital "equals" kO + ﬁo_, where-

as per-worker consumption up to that time rmns to
Co"‘ g(ko) - ko 3

the consumption ¢, = g(ko) that would have occurred in one unit

of time had kt remained constant, less the actual increment RO

to kt in that time. The numbers cO and 80 are transferred,

with the help of a mirror suitably positioned in diagram 5B st a

45° glope, to the c-axis in diagram 5C.
[Figure 5]

In tracing utility implications of alternative paths in
diagram 5C we use our option to change the utility scale linearly

by adopting the scale
v(e) = u(e) - u(e) =ufe) - u,

in which the golden rule consumption level 3 produces & zero flow
of v-utility. The wv-utility accumulated in the First unit of

time along the path ﬁt is then v, = V(EO) as shown in diagram

5C. To make clear thet this is the product of a rate 30 with the

length 1 of a time interval, we represent it by the ares of the
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rectangle abde in diagram 5D.

A(abde) = 30-1 .

(Being below the horizontal axis, this area is to be counted as a

negative number.)

Next we choose a T Wwhich in turn is absolutely small

compared with 1 , and compare ﬁt with a path kt which attains

-

the level ﬁl =k, + k, at the slightly different time lit

(s1ightly later if t >0 ), while following a straight line path

up to that time. Thereafter k_ 1imitates ﬁt with a delay 71 ,

t

Then, on the interval ([0, 1 + 1] , the rate of increase in k,

is

k

0 .~ y y /
—f_l_—;,ko(l'-'l’) = ko - l{OT s

consumption flows at the rate 30 + kyT v-utility at the rate

~

~ - -~ A"
v(cO + kyt) 5 v+ v kT,

taking the tangent, with slope ;6 = v'(SO) , a8 if it were the

curve; v-utility aceruing over the period ([0, 1 + t] 1is there-

fore
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A(afhm) = (vO + v kor)(l+1) .

Finally, we choose T s0 large that kT-T has become

equal to, or at least "equal" to, the golden rule level,

g = kT = k ?

80 that any remaining difference between Rt and kt for t 2T

can be ignored. Table % shows the comparison of v-utility accruals.

T
Table 3 / v(ct)dt if [T, T] is
I

[OJ l] [l: T'T] [T'T: T] [O: lﬂ] [l+7, T] [O, T]
path it A{abde)x, say ¥t =0 Vol x

= vyl
path kg A(afhm) = X VotV oK THVTHX

(v0+v6kof)(l+1) §

By time T , path kt is "shead" of path Et by

(22)  A(afhm) - A(abde) = A(bfpd) - A(mnde) = (GO " ;6&0)1

)
(throwing in A(nhpd) , proportional to 2 , Tor good measure)., -

Though'. 1 rust be smell in absolute value, it can be either posi-

tive or negative. Hence, if the coefficient of 1 in (22) were



to be different from zero, an absolutely smsll enough T of the

same sign would make kt slightly hetter than ﬁt . The vanish-

ing of the coefficient of 1 1in (22) is therefore a necessary con-

dition for the optimality of k

o &8 the slope of Et at t =0,

(23) Y. +¥

Geometrically, this says precisely that the tangent to the curve

v(c) in diagram 5C at the point ¢, must pass through the point

0

(e,v) = (co, 0) . (To see this, let 1 approach 1 in diagrams

5B and 5C. ) Reversing the reasoning, the construction of the optimal

~

initial consumption rate Cq proceeds from the given ko via the

curve g(k) in 5B to the point marked c¢. in 5C, from which a tan-

0

gent to the curve v(e) is drawn, with ¢. as the c-coordinate

0

°

of the tangency point., Then ko =Cqy - 30 .

As said alresdy, the same construction applies to deter-

mining the optimal slope it from any given value ﬁt reached by

the optimal capital path at some given other time + . Reverting

to the orliginal utlility scale, we have therefore found

. u(e) - u(gt) v
(24) k, = e

to be the differential equation connecting any Jjointly optimsl con-
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sumption and capital paths. For the determination of both paths

from a given k, , (24) has to be conbined™ with the identity (21)

incorporated in the construction of Figure 5.

Since elimination of k_ from (21) and (24) produces a relstion

between St and, kt directly, the optimal paths are determin-

able from one differential equation of the first order.

[

Diagrem A in Figure 6 suggests how the values of kO

vary with alternative (unlabeled) initial values of ko . It also

illustrates how the slope it' of the optimal path ﬁt at any

time t = t' can be read off from the diagram. Furthermore, using
the negative u - u(c) = -v(e) of the v-utility function used
in Figure 5, 1t indicates how the optimal consumption rates

Fal

e} Et,, .esy determined from tangency points can be transferred

OJ
from diagram 6C to 6D (using lines of 45° slope) to construct the

entire optimal consumption path ¢, assoclated with kt . If fol-

t

lows from the construction that 3

% rises monctonically to approach

the golden-rule per-worker consumption level as an asymptot.
[Figure 6]

Finally, Figure 6 shows how an initial per-worker

capital kg Just encugh larger than the golden rule value k to
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* L] -~
make g(ko) = g(ko) leads to a construction of kg and cg based

on the other tangent to the curve, drawn out of the same point

¢y = g(ko) , using entirely similar reasoning.

Finding a unique pair of paths k B 3

+ Jointly meeting

t
necessary conditions for optimality does not prove their optimality.
It has been shown elsewhere® that the pair of paths meeting these
conditions is indeed optimal, and that the golden-rule levels k s V/

~

¢ , a&are approached only asymptotically.

Koopmans [1965], Proposition (C), and Inageki [July , 1966].

If one lets the growth rate of the labor force approach
zero, then under prgsent essumptions the golden-rule cspital stock
ﬁ approaches infinity; so the present sclutlon evaporates. How-
ever, if for A = 0 we mdopt Ramsey's assumption that the per-worker
production function f£(k) (now = g(k) ) reaches a maximum for
a Tinite per-worker capital stock k (capital saturation), then

our solution reverts to the Keynes-Ramsey formula: Along an optimal

path the rate of saving (= investment) equals the excess of the

maximum sustalnable utility level over the utility of the present

optimal rate of consumption, divided by the marginal utility of con-

sumption at the latter rate. We have phrased this rule in such a

way that it can be spplied to positive rates of lebor force growth

as well, by the mere insertion of the adjectival "per-worker" in
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.

suitable places (and by interpreting 'per-worker investment” as kt s

the rate of increase in per-worker capital).

5. Comparative Dynamics

The diagrammatic procedures developed in Section L can be

~

used to study how the pair ﬁ s C

. of optimal paths changes if

t
one varies the production function f(k) , the utility function

u(c) , or the discount rate o , in some given manner.

5,1 Effect of the marginal productivity of capital. One

would expect that, in comparing two production functions T , r*

with the same per-worker output f(ko) = f*(ko) at the initial per-

worker capital ko , but different marginal productivities

(25) £1(ky) > (k) s

the smeller marginal productivity would, by diminishing the future
increments in consumption attainable through an extra unit of
present investment, lead to a larger consumption in the present.
This is confirmed by Figure 7, where f(k) and £¥(k) have been
chosen so as to lead to the same golden-rule per-worker capital

ﬁ = ﬁ* , but different golden-rule per worker consumption rates,

(26) e =g(k) >&¥(k) = *.
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Rather than drawing two different parallel curves a - u{c)
and u* - u(c) in diagram 7C, we draw one curve and refer it to
two different vertical scales, identified by the origims O , 0% ,

respectively. Then the point (g(ko), 0)* referred to 0° is
vertically above the point (g(ko), 0) referred to O . In view

of the curvature of the graph of 2 - u{c) , the point of tangency

determining 33 then is necessarily to the left of that determin-~

~
ing ¢ 50 we have

O H

as anticipated.

~

Further analysis shows that 3: must fall below c_ from

some positive t' on, for two reasons. In the first place, mince
g¥(k) represents a less productive technology than g(k) for

higher capital intensities k >k, , ¢, has by {26) a higher asymp-

0 t

tot than cjc‘ . In addition to this, if in the technology g(k) =a path

&, started out with the initial consumption rate &, = cg >>30 , it

would on feasibility grounds alone have to pay for this higher

immediate consumption by lower rates of consumption, Et < ST at

gome later time.

~

The two optimal capital paths, k.t and ﬂ: y have the

same asymptot E = ﬁ* by our assumption, with E* trailing behind

t
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'Et at least initially.

5.2 Effect of the "curvature' of the utility function.

It was observed in Section 3 that the "curvature" y(c) of the
utility function affects the distribution of consumption between

periods of markedly different rates of consumption. In diasgram 8cC,
[Figure 8]

the curve u - u(c) 1is contrasted with a curve u - u*(c) which,
whatever its original scale, has been so (linearly) rescaled that
the two curves intersect precisely at the golden-rule consumption

rate ¢ and again at the consumption rate ¢. optimal if u{e)

0

defines the criterion of cptimality,

1= u(d) = u*(e) , ufey) = u*(e,) -

It then is immediately apparent that the more highly curved u*(c)

leads to the higher consumption rate Et at the time t =0 {(and

for some time thereafter), when per-worker consumption is, in both

paths, relatively low. Since this also causes ﬁt to rise above

~ ~

k* . the consumption paths ey ¥

t r are bound to cross again at

some later time t°' .

gjf 5.3 Bffect of discounting. To discuss the effect of a

positive discount rate p , we revert to the type of analysis of

Figure 4 in which only the monotonicity, not the shape of uf(c)
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is used, and only the monotonicity and the asymptot, not ctherwise

the shape of k.t are determined.

[Figure 9]

Figure 9 compares paths similar to those of Figure L,
but differs only in that it applies the utility funetional (18) with
g poslitive value of p . While using the same nctations asg before,
dk

we now specify that both 1 and the slope EEE of the tentatlve

rising capital path shall be small. 5Small T allows us to ignore

discounting on [0, 7] . If the slope of Et

is also small, 4if-
ferences in utility flows between all segments of paths to be com-

pared are small enough for us to replace the utility curve u(c)

by its tangent at the point c(l) = glk

O) The criterion can then

be simplified to the integral over discounted rates of consumption

instead of the associated utility flows, as shown in Table k.

T
Table 4 [ e Pt c,dt if [T, T] is
T
[0,7] {1,e]
path (1) {1 (e /p)eH)
path (2) e (B xy | (Pt )2
excess, (2) over (1) u(k(e)uk(l)) (c(e)-c(l))/p
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The difference between the first column entries for paths (1) and
(2) arises, of course, from the additionsl investment made on path

(2). The second column entries are

o«

e at = c(l)(e"pT/p) , i1=1,2.

RO
T

Since c(2) - c(l) is itself of the order of 1 , the difference

between e P and 1 can be ignored in the last entry of the

table.

Path (2) is better than path (1) if the sum of the en-

tries in the last row is positive, that is, if

() _ )
(27) W>p.

This says, understandably enough, that the ratio of the additiocnal

(2)

perpetual per capita consumption flow ¢ - c(l) to the initisl

per capite consumption sacrifice k(2) - k(l) that made it pos-
gible must exceed the discount rate applicable to per ecapita utility.

Figure 9 shows that this will be the case as long as both k(l)

and k(z) stay below that value @(p) for which

, so f£'k(p)) =p+nr.

g' (k(p))

[H
°

We conclude that, 1f Et is a path rising sufficiently slowly from
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ky to an asymptotic level k{p) , then among the paths branching

off from Et to remain constant from some time +' on, the path

branching off later is always better. (In this case, the pertinent
integrals converge on the interval [0, =) , and the overtaking
criterion and the maximizstion of the utility functional (18) on

[0, @) give the same answer. )
For the pair of paths (Et’ Et) to be optimal, it must

now satisfy a system of two differential equations of the first

order examined elsewhere¥,

*  Koopmans [1965), Propositions (I}, {J), and Section A.7.

As explained above, the optimal per-worker capital and
consumption paths found by maximizing the sum (18} of per-worker
utilities discounted at a rate p >0 can also serve as optimsl
paths with reference to the sum of individual utilities discounted
at a rate p* =p+ A=A

f
Vy 6. The Splurge That Gains From Postponement.

The examples of Section 5 have indicated how "optimal"

intertemporsl distribution depends on specific‘traits of the pro-

duction function and of the utility functionsl. In particular, we

have seen that “posterity" is favored, ceteris paribus, by a high
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marginal productivity of capital, by a low discount rate, and -

if initial capital falls short of the golden-rule level — by low
"eurvature" of the utility function. The point to be made in this
Section, again by an example, i1s that slanting the data of technology
or of policy too much in favor of posterity can be self-defeating.

We shall show this by considering a negative discount rate, p <0 ,
as applied to per-worker utilities. As explained, this can be more

naturally interpreted as the case in which a discount rate
D*‘()\fa

smaller than the rate of labor force growth, is applied to indivi-

dual utilities (17) before their summation.

[Figure 10]

In Figure 10, we consider a long but finite horizon T ,
and specify (just to choose something) that the terminal per-worker

capital shall be at the golden-rule level,

We shall argue that the path k, "optimal" under that additional

constraint will bulge out as shown, and will if T dis large enough
gpend most of the period close to that level k(p) where the
tangent to the function g(k) has the (now negative) slope p .

Compare the paths k X

L M that short-cut the bulging
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curve k, by level stretches at levels k = Et'- ;= %t and

T !1+’r i

, = kt“ , respectively. Take ¥¥ >k , but take the 4if-

Ference k* - k so small that the variation in the discount factor

can be ignored within [ttar ;£'), and agdin within [, t"+"), Writing o=-p>0 for the
negative of the discount rate, Table 5 compares the discounted

utility accruals.

T
Table 5 Tf ot u{c,)dt if [T, T] is
[t"'f';ttl [t'at“] [t"Jt"-""T"]
t" ot!
path c X , say -§~(eU -e ) Ng
L} x -t" t .t"
p&th C: x-—(k*-k)edt g-_(ed -EUJD ) y+(k*—-k)ec
1 *_ 1t .tr tlr
excess, e: over ¢, u(k*-k)eat EB-—S-(edt % ) (k*-k)e®
gt ot!
Since e - e >0, the sume of the entries in the last row
i3 positive if and only if
c - C*
(28) ——— < (= -0)
kK" - K

a condition different from (27) only in the way it is written. In
turn, (28) holds as long &s both k and k* are below k(p) ,

which confirms the bulging shape of kt .
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It is instructive to compare the optimal path ﬁt with

the path Et that branches off from ﬁt as soon asg ﬁt reaches

the golden-rule level, and remains at that level from there on.

Note that Et generates more (discounted) utility than ﬁt s {(a)

during the remainder of the ascent of ﬁt to the vieinity of k(p) ,

and (b) during the part of the horizon — for large T by far the

largest part¥ — when ﬁt hugs ki(p) .

See Cass [ 1964], samuelson [ 1965].

The superiority of Qt aver k

, Tor the entire period [0, T]

must therefore arise from the final descent of kt Jjust before

the end of the horizon. The reason is most easlly grasped if we
interpret the maximend as the sum of individual utilities discount-
ed at the positive rate p* . The initlal buildup and the long
sustenance of an intrinsically excessive per-worker capital stock
are justified only by the splurge of consumption thus made possible
toward the end of the horizon., The criterion used pushes the
splurge toward the end of the horizon because the number of con-
sumers increases at a rate exceeding that by which their indivi-

dual utilities are being discounted,

It is clear that such a criterion could conceivable} make
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sense only if there were indeed a foreknown final reckoning at a
specific time T dimposed on the economy independent of its volition.
If the length T of the horizon is voluntary, any postponement of
the splurge 1s desirable by the criterion under discussion. But
postponement forever mskes no sense at all., A limiting path of

k = Et(T) , say, as T approaches infinity does exist, has k(p)

as its asymptot, and is inferior to the path Qt in regard to the

rate of consumption at any time after the two paths have bifurcated.

Tt has been shown™ that under the present assumptions, & /

path optimal under the overtaking principle does not exist.

*  Koopmens [1965], Proposition K and Section AS.

The finding of a minimum discount rate below which an optimal path

does not exist recurs in more general models¥.

*  Tnagaki [1966], Koopmans [1967], Mirrlees [1967].

Tn models with exponential technical progress, product-asugmenting
(Inagaki) or labor-augmenting {Mirrlees), similar critical points
have been found that depend on the rate of progress, on the shape
of the utility function for large rates of consumption, and, if

progress is product-sugmenting, on the shape of the production
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function for large capital-labor ratios.

T. Concluding Remark

The morsl of our story is that ethical prineiples, in the
subject-matter in hand, need mathematical screening to determine
whether in given circumstances they are capable of implementation.
Only principles that have passed such a test present ethical, or

policy, problems,
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