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l. Introduction

1.1 The purpose of this study is to investigate abstractly the relationship
between the theory of rational decislon-making on the one hand, and the finite
informetion-processing capacities possessed by real decision-makers on the
other. In particular, we wisgh to establish formally that the behavioral
implications of the former are incompatible with the limitations on

behavior imposed by the latter.

By “"rationality," we shall mean simply that the decision-making
agent in guestion behaves as though he were capable of forming consistent
preferences over the set of relevant possible states of affairs, and actsg
in accord with these preferences. This concept of rationality seems an
indispensible component, at least at some level, of any comprehensive theory
of political behavicr. In formal attempts at a pure theory of politics, as
exemplified by the works of Arrow (1963}, Black (1958), Downs (1957), or
Riker (1962), the rationality premise usually is made explicit and plays a
fundamental role in the analysis. IEven in more informal descriptive treat-
ments of politlcal processes, we can scarcely avoid speaking at times in terms

of the interests, or aspirations; or deprivations of various agents in the
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system, and such terminology again suggests that we regard these agents as
entities which possess definite interests or preferences, which they attempt

to advance in their actions.

If the environment in which such a decision-meker must operate
is sufficiently complex, his attempts to attain desired outcomes may be
severely distorted, and indeed it may be necessary to extend or redefine
our concept of rationality for some such situations. Such environmental

complications can arise, for example, because of:

a) limitations on the power or resources at the disposal

of the decision-maker; or

b) institutional or envirommental factors which mske uncertain

the relations between means and ends; or

c) interactions with other agents, who are pursuing their own

interests.

Constraints of the first type can in principle be incorporated
into the analysis by suitable restrictions upon the decision-maker’s cholce
set. In the second case, 1f probabilities can be assoclated with the various
uncertainties, the rationality concept can be readily extended to cover the.
type of situation, of decision-making under risk. If no such probabilities
can be assigned, or if the uncertainty arises from the third type of
complication -- interaction with other agemts -- then serious conceptual
and theoretical problems arise. However, these problems, which form the
subject matter of the theory of decision-making under certainty and the

theory of games, will not be considered here, For our purposes, it will
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suffice to consider the case of a single decision-maker in the simplest of
enviromments, in which there is no uncertainty and in which there is a
one-to-one relationship between the desired outcomes and the alternative
courses of action available to the decision-maker. Hence it will not be
necessary to explicitly distinguish means from ends, and we can use the

term “"alternatives" to refer to either, without ambiguity.

1.2 There is another kind of constraint; however, arising from the

limited information-processing capabilities of thedecision-making agent,

which poses difficulties of & more fundamental nature. Herbert Simon, especially,
has argued that in many contexts the rationality premise is an unrealistic one

on which to base a theory of decision~making, because it fails to take into
account the limited computational capacities possessed by real decisionnmakers.ij
Clearly, if such limitations do exist, and if thelr existence affects the

ability of the agent to pursue its goals, then the viability of the theory

is indeed brought into serious question, since such internal constraints

are not easily reconciled with a theory of overt behavior,

That such capacity limitations do exist, and are important, is
generally taken to be self-evident, or in any event easily Justified on the
basis of casual observation of everyday experience. For example, to
reduce a game of chess to normal form (that is, to enumerate the possible
strategies), which is a necessary prerequisite for any game-theoretic type
of anelysgis, would require some fantastic number of hours on a large, high-
speed computer. BEven at a more prosalc level, for a consumer to determine

the "pest" bundle of commodities compatible with a given budget constraint,



as he is pictured as doing by the theory of consumer behavior, would require
conglderable time and expertise with a sllderule or desk calculator, given
the packaging and pricing practices which typlcally prevail. C(Clearly the
vast majority of chessplayers and consumers do not and indeed cannot perform
such computational feats; hence, the argument goes, the rationality premise,
which implicitly assumes that they can and do, is cleaxrly unsatisfactory for

a descriptive theory of decision-making.

Even if we grant the validity of these empirical observations, how-
ever, the argument itself 1s not necessarily conclusive. For the validity of
the theory of decision-making does not directly depend on whether decision-makers
really have consistent preference orderings, or actually perform complicated
calculations; the theory asserts only that they behave as if they did.

Even if réal decision-makers in everyday enviromments cannot perform the
calculetions required for a comprehensive analysis of thelr problems, and
instead rely on simple rules of thumb or ¢ther devices to guide their
choices, 1t may nevertheless still be that these simpler rules lead them to
behave as if they were acting rationally, at least to a reasonable approxima-
tion. The question of whether they are "really" rational or merely act as if
they were, is surely unimpeortant practically and probably is meaningless

- epistemologically as well., So goes the counterargument.

1.3 In principle, the best way to resolve this guestion of the behaviorsl
implications of informatlon-processing limitations would be with a carefully
designed serieg of experiments; in practice, it has proved very difficult

to design really conclusive experiments, and the empirical evidence is ambiguous.
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The purpose of the present study is to approach this question in a different,
more formal fashion. Specifically, we shall consider a decision-maker as
being some sort of finite information-processing device, or automaton.. We
shall then use a formal theory of such devices -~ the theory of finite
a.utomta. 2/ -- to explore the question of whether such a device is capable
of bt_eha.ving rationally. 'Thus, we will not inquire into the specific decision
rules, or program, used by any particular sutomaton, but rather, we shall ask
whether there is any conceivable program for such a device which could lead

to input-cutput behavior consistent with the theory of decision-making.,

1.4 We can pose the guestion more formslly in the following terms. We
shall say that a decision-making entity behaves rationally Just in case its
hehavior gatisfies the followling conditions: With regpect to a given universazl
set (L of alternatives (a, a*, a", ...} , there is a binary relation kgv\(the
preference-or-indifference relation) defined over W , and a (partial) iﬁputu
output function F (the decision function), where -‘73/ P ‘03 ( u )*u, rwhich

satisfy:
i(a) for any a, a' e ({, either a > a!
or a' > a or both
(v) for any a, a', a®*e L, if a > a'
and a' > &%, then a > a"
(¢) for any AC{{, F(A)eQ
vhere a eaiff a¢ A and

a > at forall a' el .



Bchematically, we consider the decision-maker as a kind of input-output

device:

The input A4 to the device is & set of alternatives, and the ocutput a is
some member of A which is preferred or indifferent to all other availsble
alternatives, according to soﬁe consistent preference ordering >. over the

set of all possible alternatives.

Suppose we now impose the additional condition, that the decisionw
meking entity must be a finite device, which we will define more carefully
below. The gquestion which we wish to lnvestigate is whether thils additional
condition leads to a contradiction; we shall show that, except for some

degenerate special cases, such a contradiction does indeed arise,

2. Preliminaries

2.1 By a finite computing device, or finite autcmaton, &/ we shall mean
a finite apparatus which somehow can accept or receive a symbolic input (the
problem) and can subsequently produce and communicate a symbolic output (the

decision). The device may be mechanical, electrical, or may operate on scme
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other principle; we shall require only that it be finite -~ that is, of
finite extension and composed of finiltely many parts, each of which can

take on only finitely many distincet configurations.

We can think of the symbolic input as being transcribed onto an
arbitrarily long input tape. The tape 1s subdivided into spaces, and on
each space an input symbol (a member of a fixed, finite input alphabet, EI)
is printed. The entire input is written on the tape in this fashion, by means

of the input language, to be described below.

The device itself we can think of as being composed of three
major components: A tape reader, to read the input tape; an output unit,
for communicating the final output; and a central computing unit, which
monitors and controls the tape reader, performs the sppropriate computations,
and eventually communicates its ocutput by means of the output unit. We can
think of the oulput as being printed, symbol by symbel, upon & one~way

output tape, according to some fixed output language. Schematically, we have:

-

~ a4




We assume time to he partitioned into discrete intervals,
t=1, 2, +so + The tape reader at any Ingtant of time is positioned over
some space on the input tape, sensing the symbol printed on that space; upon
command from the computing unit it can move the input tape in either direction
and stop it on some new space, whose contents it then senses and commmunicates
to the computing unit. Thus the reader can "scan" the symbolic input in any
required fashion. We wish to enable reader to anticipate the ends of the tape,
to avold having it run off the tape inadvertently while scanning the input. This
we can do by requiring that every input tape begin with a special symbol "B
and end with another special symbol "E" , neither of these special symbols
appearing elsewhere in the input. Thus an input string of k symbols will
be transcribed onto an input tape k + 2 spaces long. The tape reader behaves
as before, except that it can now avoid running off the tape, by always moving
the tape to the left when it encounters the “B" , and to the right when it

meets the "B , on all except the terminal scan.

2.2 The central computing unit is composed of some finite number p

of distinct parts, each of which can take on, say, My distinet configurations
or positions. When each part is in a specific position, the device as a whole
is in an overall configuration, or state ; when some part changes its config-

uration, then the device as & whole 1s in a new state. Clearly the number of

K
distinct states 1s bounded by I Ny s and is, therefore, finite.
1=1

At any time t , the device will be in some state s , with its
reader sensing some particular input symbol o . The device may then do any

or all of the following: It may produce some output; it may change its
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internal configuration to some new state; or it may move the input tape a num-
ber of spaces in either direction. Hence, the behavior or the device can he
completely described by a set of rules which specify the output, the new

state, and the directlon and distance that the input tape shall be moved,
whenever the device is in a certain state reading a certain symbol, Without
loss of generality we can restrict the outputs to single symbole, and we can
require that the input tape be moved only one square at & time, ILet S be the

set of all states, and let X, and zo be the input and output alphabets,

I
respectively. As noted sbove, I_ i3 augmented with the special symbols "B"

I
end "E" , to mark the beginnings and ends of tapes. We shall also want the
device 0 be able to perform a part of its computation without giving any
output, so we augment ZO with another special symbol “e® , with the
property that whenever the compubting unit specifies adding an "e" to the
output, this leaves the ocutput unchanged -- i.2., amounts to glving no ocutput.
The rles which describe the operation of the device must specify; for each state
s and input symbol o for which the device does not "jam ," a new state s' ,
an output symbol o' , &and an integer m e-{ -1, Oy +¥} the latter meaning
that the input tape shall be moved m spaces to the left (where m = -1 means
1 space to the right). Abstractly we can represent these rﬁles by a finite
set Q of guintuples , of the form (s, 0, 8', ', m) » To completely
characterize the behavior of the device, the beginning and end of its
computation mst be described. We degignate & certaln member 8, of 5 as

the initial state; the computation is begun with the device in B8y reading

the initial "B" of the input tape. If there is a quintuple beginning with

By 9 B then the device goes into the new state, gives the output, and
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moves the input tape as specified by that quintuple. If m = 1 on that
quintuple, the device is now in a state s' reading the initial symbol of the
input string, and it now invokes a new quintuple. The device continues to
cperate in this menner until one of four things happens: It might eventually
run off the tape to the right; or it might run off to the left; or it might
enter a state s reading a symbol o such that there is no quintuple
beginning with s, ¢, in which case it simply halts or "jams"; or finally,

it might go into an infinite "loop" and keep computing forever. For any
string x of symbols in the input alphabet, we shall say that the device
accepts the string x (or the input tape BxE) just in case, when the device
is begun in s = reading the "B" of the input tape BxE , it eventually
does the first of these -- that is, runs off the right end of the tape. If the
device accepts x and produces a string y of output symbols (possibly the
mull string, -/l-) while doing so, then we shall say that y dis an output,

and that the device maps Xx into y . We can summarize the input-output

behavior of the device with a function G ;, defined by

G{x) = y 1iff the device maps x into y ,

not defined otherwise.

Hence, the damain of G is the set of all acceptable inputs, and its range

is the set of possible outputs.

2.3 We must also cheracterize the input and output languasges more
precisely. By a langusge, generally, we mean a system (I, R, Re) , where X
is a fixed, finite set of symbols (the alphabet); R, is a finite set of

syntactic rules (the grammar), which govern the manner in which symbols can
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be combined intc well-formed strings ("sentences"); and where R2 is a set
of semantic rules governing the use ("meaning") of vérious well-formed
striﬁgs.z/ In the case of a natural langusge, for example English, =
might be the set of morphemes of English, R, a syntax or grammar of

1

English, and R2 would constitute a semantic theory of English. As an
example of a formal language, take the usual notation of the theory of

consumer behavior, where commodity bundles are represented by n~tuples of

WWWS(ﬁ,%,”UXJu Mtz={;,§.“,gg,L,L,l},am
let Rl be a set of simple fecursife rules specifying how to combine digits
to form numerals, and how to combine numerals, commas, and parentheses to
represent sets of n-tuples. Finally R2 would specify that the string

representing an n-tuple (xl, Xpy seey xn) shall be interpreted as a commodity

bundle of x, units of some designated first commodity, x,. units of the

1 2
second commodity, and so on.
2. We do not wish to inquire in detail into the structure of the

particular input and output languages used by the device. However, it will
be necessary to place certain restrictions on these langgages, to ensure
that the decision problem is not "solved” by simply transforming it into a
linguistic problem. With respect to the input language Li , Tor example,
we clearly do not want the alternatives to be presented to the device in a
way which depends upon their relative values; just as, in the case of
experimentation with a decision-maker, we would not want the physical
arrangement of the alternatives to reveal the solution, Hence, we shall
require that the input language LI satisfy the followlng condition, with

respect to a given universal set U of alternatives:
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ii(a) every finite set A of alternatives must be representahle

by a well-formed string.
(b) Every well-formed string must represent one and only one set.

(c) There exist substrings w, y, z, and for every finite set A
of alternatives there exists a substring X5 s such that the

string wxi VX Y xi see X, 2 represents Ai () Ai L) sos
1 2 o] k : 1 2

U Al s k>1.
k

The first condition ensures that LI will be rich enough to describe
any set, while the second specifies that the descriptions shall be unambiguous.
The third condition in effect requires that we be able to describe sets by
lists, where the order of listing is inessential. Thus, suppose that Al
is the set composed of cbjects a and b, while A2 consists of object c¢ ;
if we let w be the symbol ( , y be , , z be }, and let x, and X,
be a, b and ¢ , then the usual notation of elementary set theory clearly
satisfies ii{c) , since the union of A, and A, is represented by
{a, b, ¢} orby ({c, a, b) . This listing condition is also satisfied by

"or," and 1t

English, by means of the commutative connectors "and,"
clearly is also satisfied by most other natural and formal languages of

interest.

2.5 Irivial solutions can also arise from the choice of an output
language. For example, the verbal responses "I choose alternstive a3 5"
and "I choose that alternative which maximizes my utility," may in fact
denote the same thing, but in the second case the computational burden of

identifying the alternative in guestion is simply passed on to whoever must
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decode the device's output. We can circumvent this problem by requiring
that the choices be indicated in a uniform manner; more precisely, we

require that LO satisfy:

iii (a) Bvery alternative shall be representable by some well-

formed output string.

(b) Distinct well-formed output strings y, y' shall represent

distinet alternatives a, a' .

Hence, we requlre the correspondences between output strings and alterna-

tives be one-to-one.

2.6 A final degenerate type of solution we shall want to exclude is

that arising from a trivial universal set of alternatives, or from a

trivial preference structure. If the number of possible alternatives is limited,
it would be possible in principle for a sufficiently large finite device
(large relative to the number of alternatives) to simply memorize them,

and behave consistently in this uninteresting way; hence we reguire that

the number of alternatives be infinite. It will suffice for cur purposes

to consider a denumerably infinite universal set L of alternatives (that
is, a set whose members can be put into a one-to-one correspondence with

the positive integers). We also wish to preclude the uninteresting
situation in which the decision-maker is indifferent to all the slternatives,
or in which he has only a limited number of categories of preference; thus
we shall also reguire that the nmumber of preference categories be
(denumerably) infinite. More formally, we require that the relation of

indifference, . , which is an equivalence relation defined by a ~ a'



-1k -

if and only if a Z a' and also a'Z a , be of infinite index.

3« Procf of the Result

3.1 With respect to a given automaton, the set of all input tapes can be
partitioned into finitely many classes Tl’ T PLAREY Tm » 8uch that the
members of each class are equivalent with respect to the transitions they
produce in the device. More precisely, for any tape x , define the

functlon é/

1, (where T SX{-l, +l} —>[s X {“l, +1} ]U{ O} )

as follows: To find Tx(S, -1} put the device in state s reading the
leftmost symbol of x , and let 1t begin computing., If it eventually runs
(s, +1) ;

and if it does

off x to the right, in state s' , then set TX(S, -1}

|

AL

if it exits to the left in s" , set Tx(s, -1) = (8", -1)
neither (that is, jems or goes into an infinite loop), then set

Tx(s, ~1) = 0, We obtain Tx(s, +1) similarly, beginning the device on

the rightmost symbol of x . Thus T, summarizes the transitional behavior
of the device with respect to the tape x , and we can define such a function
for each possible input tape. However, each such function has the same

finite domain, -1, +%} and its range must be a subset of the same

finite set,X[S -{ 1, +%} -{ }« Hence, only finitely many distinct

T, are possible (at most, (2n + l) , where n 1is the number of states),
and the set of input tapes can therefore be partitioned into finitely many

classes which are equivalent with respect to the transition function Ty
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3.2 For any output string x , we define A(x) as the number of
symbols in the string. We now wish to establish the following proposition,
which relates an input tape Bxlx2 +ea xkE to the length of the resulting
output string G(xlx2 ves xk) :

iv With respect to the automaton (8, 8. Q) with associated

eguivalence classes Tl’ T2, vea Tm s let Pys Pps eees N

be & finite sequence of integers such that 1 < p; <m, Form

th
an input tape Bxlx2 ‘e xkE » such that the i segment; Xy

is a member of the pith class, TP « Then either:
i

(a) the device will fail to accept any such tape, or else
(b) the device will accept every such tape, and moreover

there exists a sequence of functions -fl, f2, see 3 fk

(where fi: Tp - *{ 0, 1, 2, see }-) such that

i
k
L(G(xlxeo..xk)) = 121 £ (xi) for each such tape.

More informally, from any tape accepted by the device we can form a
new tape, by segmenting the original tape in any fashion and then changing
some or all segments by substituting another member of the same equivalence
class. Part (b) of the proposition assures us that this new tape will also
be accepted, and that the effect (upon the length of the resulting output)

of each substitution can be measured independently.

To establish the proposition, note that from the definition of 71 ,

if = =1, then = =1 , .+ Thus, in particular, if we let
¥ y wyz wy'z



- 16 -

w Dbe Bx1x2 sea X, o and =z be Ki+1 P xkE , and let xi be from the

-

s

same class T as X, , then T (5, L) = :wx'z(so’ -1) , sand
i i

either both tapes anre rejected, or both are accepted. 'This establishes (a)
and the initial part of (b), To establish the remainder of (b), consider the

aovement of the readl heed goross the houndary between wx and z : It
v i

will cross first to the rignt, then to tne left, and so on until the computs-

tion terminates., Jet s , & s B_ 3 Ba 5 eess B be the sequence
rl 1- r. 1, I,

3
a fad < =<

of etptes the device 1s Iin zfter egch successive crogsing, Clearly the cutput
. . . .th - . " . . :
produced during the 17 passage through 2 is complecely devermined by the

state 8 at the beginning of the parsage and by the segment =z 1tself,

3
e

and does not depend on wx, directly, The gzbove seguence of states is

1

Zefined by ithe recursive condiilons:

2) t(s_,-~l)= (s, ,~l), i<k
Z I‘i -4

= (g%, +1) , i =&k

If we now substitule another segment x! for %5 s such that Tee TT.0
- i i
then (2) is obviously unaffected, and since < . =7T_. , &s noted above,
b i

conditions (1) and (3) are also unaffected. lience, the seguence of states,
and therefore the amount cf outdut produced by the device while scenning

the segment 2 , is uacsenged by sucn a suwstltution. By an analogous
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argument, the amount of output produced while scanning w 1is also unchanged,

and the only effect of the substitution is in the output produced while

actually scanning the substituted segment, x{ . Thus, if we define fi(xi) as

the amount of.output produced. while scanning x! , for any xi € Tpi s 1 3,1, veey B,

then the remainder of (b) follows immediately.

Ze3 We now return, finally, to the original question, of whether a finite
device is capable of behaving rationally. An input-output device which
behaves rationally must satisfy conditions (i), {ii), and (iii), while a
finite device must satisfy (iv). We now show that these two sets of
restrictions are inconsistent, so that a Tinite device satlisfying proposition

(iv) is indeed incapable of also satisfying the rationality conditions.

let A = (a, a*, a", ...} be a denumerably infinite set of
slternatives such that no two of them are indifferent. Our assumptions concern-
ing the universal set Li. and the preference ordering ” , in Section 2.6 ,
guarantee the existence of such a set. From condition (ii ¢) on the input
language for each member a of A there must exist a substring x which
represents the singleton set ({a) . Hence corresponding to A we have an

infinite set X = {x, x', x", ...} of substrings.

If the decision-making device is finite, it has asscclated with it
the equivalence classes Tl’ T2, ey Tm « If we partition the set X of

stbstrings into these classes, cleerly at least one of the equivelence

classes will ccntaln infinitely many members of X . Iet = {xl, Xpy eeey X cesl

i’
be this infinite subset of X , and let A" = [al, By cees By ess)] Dbe the

corresponding set of alternetives, where X, corresponds to [ai} for 211 1 .
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Let ay and aj be any two distinct members of A* . Since

no two members of A (and therefore of A*) are indifferent, one of these

two must be strictly preferred to the other; let us suppose that aj is

the preferred one. From condition (ii c¢), there exist substrings w, y, z such

that wxiysz and wxjyxiz both represent [ai} L){aj} = {ai, aJ] , while
wx,yx, 2 and VX VX (2 represent {ai} L)[ai] = {ai} and {aj} » respectively.

If the device behaves ratiomally, in the sense of (1), then it must give an
cutput corresponding to alternative aj when given as input any description
of the set {ai, aj} , or of the set [aj} . In view of (iii) this
alternative must be always represented by the seme output string, so the

device's input-output function must satisfy
G(wx z) = G{wx .2) = Glwx yx .,z
(v, yx 2) = Gl ;) = Glwx ¥ 2)

Let the length of this ocutput be I ; from proposition (iv), this length

can be decomposed in three ways:
L= l(G(WXinjZ)) = fE(xi)+ fl{.(xj) + ﬁ
= M0(wx yx,2)) = £(x,) + £)(x;) +B

= L(G(wxjysz)) = fa(xj) + fh(xj) +B ,

where B = fl(w) + fB(y) + f5(z) . From the first and third lines, we

have fe(xi) = f2(xj) s while from the second and third fh(xi) = fh(xj) .

We obtain the same result, clearly, if we suppose that X, is the

preferred alternative, by interchanging =x. and xj throughout. This

i



- 19 -

implies that

L(G(wxiysz) fe(xi) + fh(xi) + B

fB(Xj) + fl&(xj) +B

]

L(G(wxjysz))a L.

Since this holds for all i and Jj , it follows that every input of the
form WX.yX,2 causes the device to give an cutput of the same length,

namely L .

However, the output alphabet is finite, say of size n , s0 there can
be at most nL distinet output strings of length I . Thus if we consider a
sufficiently large number (larger than nL) of different inputs of this form,

there must be at least two such distinet inputs, say
WK % Y¥x B 8Rd WH ok YEsw Z where i* # j*¥ , for which the device

gives precisely the same ocutput. This is clearly a contradiction, however,
since these two inputs represent disjoint sets of alternatives, namely

[ai*] and [aj*] , from which no common choice is possible,
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FOCTNOTES

See particularly Simon (1957), pp. 196ff., 2L1ff,, and also Simon (1959).
See, for example, Rabln and Scott (1959).

Here@ () 1s the power set, or set of all subsets, or. UL . By the
notation F: A-»B we mean that T 1is a mapping from A into B , tThat
is, a function with domain in A and range in B .

Cf. Rebin and Scott (1939), and Shepherdson (1953).
Cf. Chomsky {1957) and references cited there, and also Krulee et.al., (1964).

Cf. Shepherdson (1959). The cross-product A X B denotes the set of all
ordered pairs <a, b >, where a ¢ A and be B.



