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SOME MODELS OF DUOPOLY

Martin Shubik

1. Introduction

Ever since the work of Cournot v various models of duopolistic
competition have been formulated using different strategic variables.
The best known are models with quantity as the strategic variable or price
as the strategic variable. The former was the—original model of Cournct,
the latter has been formulated and studied by Bertrand, Edgeworth and

others.gf

There are two major sets of considerations which must be taken
into account. They are the formulation of the market model and the

selection of a solution concept to apply to the model.

Solutions can be subdivided into four broad categories: static
or dynamic; cooperative or noncooperative, Static solutions are usually
concerned with equilibrium positions or other types of stability. Most
of the economic writings on duopoly have been devoted to static or what
can at best be described as "conversationally dynamic" models in which
adjustments are described but time periods are not specified, nor are

payoffs described in terms of discounted income streams.

“Research undertaken by the Cowles Commission for Research in Economics
under Contract Nonr-3055(00) with the Office of Naval Research.
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Dynamic solutions must deal explicitly with adjustment processes
over time. A linkage between dynamics and statics can sometimes be made
when steady state solutions exist, i.e., when the dynamic solution
reaches a state in which the same actions are repeated every period.
Behavioral models often associated with computer simulations have provided

recent examples of dynamic duopoly solutions‘gf

As a first approximation solutions can be broadly classifiad as
ccoperative or noncooperative. In the former, it is assumed that the firms
will attempt to jointly optimize. Hence the outcome will be on the Pareto
optimal surface of the profit possibility set for the firms. Other solutions,
notably the nonccoperative equilibrium of CournotE/ generalized by Nashéf
do not involve an assumption that th2 outcome will be necessarily jointly
optimal. It is evident that in the lengthy period of coexistence between
two large firms any state between and including outright cooperation and
warfare may exist. Quasi or partial cooperation is hard to define, but

especially in dynamic behavioral models this type of distinction can be

mace.

In this paper we are primarily concerned with extending some
static models and epplying a noncooperative solution to them. Before
doing so the problems of model construction and the definition of solution

are considered in more detail.



2. Models of Ducpoly

When we construct models of ducpolistic markets we may divide
difficulties into two categories, those concermed with dynamics or

statics and those involving the selection of strategic variables.

2.1. Statics or Dynamics. The simplest,most compact general description

of a duopoly is given by the normalized formg/ of a tvio person non-zero

sun game. Let each player have a set of strategies S1 and 82

respectively. These strategies may involve pricing, production, product
variation, promotion, advertising, or other actions or any combination
of them. A payoff function is associated with each player. If the first

selects a strategy 81 and the second S, then their resultant payoffs

are Pl(sl’s2) and PQ(Sl’Sz)

A simple and direct extension of this general static model to

a dynamic case can be made if we consider time to be divided into a set of

discrete intervals, say, years or quarters. Let there be a discount rate

p, applicable to the tth time pericd. Let the period payoff to player i

t

i . where 5 2 5 arce the strategies
be given by Pl,t(sl,t’ RT nt) whers 1t and 2.t rc the strateg

bl

for each player in the tth pericd and n, 1is any exogenous influence in

t

this period. The overall payoff to each player is given by:
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If the discount rate were constant this zimplifies to:

<]

P. = z ptP

. (€
1 i3 1,t

81,00 S5 00 Ny

For this to be adequately defined we may require conditions which bound
the values of these sums. Implicit in a model such as this are the values

attached to bankruptcy and to survival,

Even at this level of generality and abstraction it may be
argued that a dynamic strategic or game theoretic model of competition
obscures many of its major features. Lack of knowledge, uncertainty,
learning, and the shifting of one's values and aspirations as functions

of previous behavior are not reflected in this type of model.

2.2. The Economic Variabies . Limiting ourselves to static models and

accepting this degree of unreality we are still faced with the problem of
describing the strategic variables which are manipulated by the firm and

specifying the market structure. The criticism of Bertrend and Edgeworth
of Cournot's model was on the point of the realism and relevance in using

quantity as the strategic variable.

In different industries, different variables appear tc be

dominant. When products are highly similar, when they present few production,



inventory, or transportation problems and have a demand that is relativily
insensitive to advertising or other promotion, then price may be the

dominant variable. Salt appears to be such a product. For various
agricultural crops the problems of timing and technology make production the
basic strategic consideration. With items such as fashion goods, production,
promotion, and price may all be of importance simultanecusly. In competition
between brands location and inventory pesition may be the dominant competitive

Weapons .

A partial list of variables which are of strategic importance
individually or in combinations in different markets is given by: price,
production policy, product variation, advertising, promotion, distribution,
location, service, quality control, and financing. Some of these categories

overlap and the list is by no means exhaustive.

Economic theory and measurement in marketing are still at a
sufficiently early stage of development that not a great deal is known
about strategic aspects of advertising, promotion, and distribution.
Although in many markets they are undoubtedly the most important factors, they

are not discussed further here.

Most of the econcmic anaiysis of duopoly has been carried out in
terms of price or quantity as the basic strategic varizble where the firms
are regarded as selling either identical products or products differentiated

by lecation, technical properties or scme other factors. It would seem
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that by now analysis based upon these variables would have been completed.
There is, however, cne important class of models which has scarcelv been
investigated. They are those in which both price and production are
regarded as independent strategic variables simultanecusly. This can
happen when firms have to commit themselves to a production policy

in advance, before selling to a price sensitive market. They have to run

the risk of being caught with inventory or being caught out of stock.

Section 4 of this paper deals with price~quantity ducpoly and

contrasts it with models involving only price or quantity.

3. Solutions

In the discussion of duopcly it is often desirable to make clear
the distinction between the structure of the market and the behavior of

the firms. Referring back to 2.1, the sets of strategies Sl and 82 and
the payoff functions Pl(sl, 52) and PQ(sl, 82) describe the market

structure but they do not specify the behavior of the individuals. A
solution concept applied to the structure of the market will serve to

delineate the behavior of the participants.

A desirable property of a solution should be that it picks
out a single outcome. If this is the case then the solution provides a
unique prediction. Some solutions have this desirable property, others fail
to possess it. An example of an important solution which fails to yield a

unique cutcome is the contract curve of Edgeworth.
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In a previous paper Z/ the profits assoclated with a number of
different solutions were indicated. Here we list some of the solutions

which have been proposed.

Cooperative Solutions

(1) The Pareto Optimal Surface: This may be regarded as a weak form

of solution which prescribes that the duopoliiste be efficient in
their exploitation of theily market. It should be noted that if
the welfare of the customers is Included explicitly then poirts
which are on the Pareto optimal surface of the whole group are
not necegsarily on the optimal surface for the subset consisting
only of the firms. Thie 1s illustrated in Figure 1 which is
dravn for two firms and one customer. AlAE is the optimal
surface for the duopolistsz. It lies on the three dimensional
surface EAIAE where E 1s the efficient point which is

efficient for society as a whole, but certainly not for the duopo-:ii..

lists as it maps into the point O in the PlPé plene.

/ ﬁ' e N -
// /sz‘é__ - i;;;u:vél P
Agtj;g/ E— M’
ng



-8 -

The Parsto optimal surface for the firms may contain

extensions beyond Al or AZ in the Ple plane. Group

optimality dees not preclude one individual accepting less than he
could cbtain by hims=1f.

(2) The Contract Curve: This consists of that part of the Pareto

optimal surface which satisfies conditions of individual rationality
as well as joint optimality. This solution is more generally

known as the core E/.

YWe may note that the Pareto optimal surface may change
depending upcn whether the strategic model of the market involves
price, quantity or price and quantity as strategic variables.

The contract curve may also have somewhat different end points if

the different market models have different threat possibilities.

(3) Joint Maximization: If the two firms could compare profits they

would be in a position to select a specific outcome on their Pareto
optimal surface as is indicated by the point M in Figure 1. This

is usually not influenced by the strategic struciture of the game.

(4) The Value: There are several different definitions for the value
of an n-person game 2/; however, they coincide for the two-person
case. The calculation for the value has been illustrated in a
previous paper }9/. In essence the value embodies principles of
""fair division,' or equity as a method for “solving the conflict

in the market. The calculation of the value depends upon the
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determination of the threats of the players and these depend
explicitly upon their strategic possibilities. This is discussed

further in Section 4.

Noncooperative and other Solutions

The Noncooperative Equilibriim: This solution is very sensitive

to the strategic formulation of the game. In Figure 1 the point

c (which lies under the Pareto optimal surface) is the noncoopera-
tive equilibrium point for the Cowrnot or quantity strategy modal
of ducpoly. The price and price-quantity models have considerably

11/

different solutions as 1s shown elsewhere =~ and in Section 4.

(a) Beat-the-Average,(b).Maxmin-the-Difference, (c) Maximize

Profit Share: These three solutions are closely related inasruch

as (b) is a special case of (a) which occurs when there are only
two players, and (a) is a special case of (c) }2/‘ All depend

explicitly upon the strategic formulation of the game.

The Threat Qurve or Pareto binimal Surface: One way in which the

Pareto optimal surface is defined is by:

maximize P.(s., s5.)
© 271 72

subject to: P, = c.

1
oL

This calls for the satisfaction of the first order condition:

BPl aPl
95, 3s
i i .
BP2 3P2
le 882
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The threat curve might be reparded as its inverse inasiuch as it

may be defined by:

minimize P.{(s,, s,)
2 71

2

subject to: P.=c.

This satisfies the same first order conditions but different

second order conditions.

The Competitive Equiliibrium: In many ways the competitive

equilibrium is a misnomer as it is cbtained when each individual
ceases to believe that he has any competitive influence whatscever
and acts as an individual maximizer taking prices as given... In
ccneral, duopoly models abstract from the entry of new Firms
whereas the competitive solution includes the possibility of entry.
Without entry it is more appropriate to call the solution in which
the individual equates marginal costs to price, the efficient
precduction solution. It serves as a benchmark to indicate the
producticn and prices which would prevail if the firms were run
sclely for the benefit of the consumers. This is indicated by
point E in Figure 1 which lies on the Paretc optimal surface of

soclety as a whole but gives all gain to the consumers.

Partial Cooperation: A general sclution which includes several

of the solutions discussed above and may be used to reflect any

level of ccoperation can be obtained in the following manner.
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Assume that the individual payoffs of the players are Py
and P, . However, their social payoffs are given by TTi

and TTE where:

it

1T = 69P; + 0,
1Ty = €,9P + 0,,P,

where the Qij is a coefficient of "concern' or interest that

the ith individual has in the size of the payoff to the jth
individual. If the players try to maximize TTi amd TTé
it follows immediately that when all Oij = 1 this is the Jjoint

maximum; when 0,; = 1 and G,. = C for i # 3 this is the
J

non-cooperative equilibrium. The "maxmin the difference" sclution

is given by @ij =1 and Gij = -1 when 1 # 3 . Other values

of 9. reflect various levels of competition or ccoperation.

Behavioral Solutions

Behavioral solutions are cast in a dynamic context. They involve
the specification of reaction functions which may be based upon
aspiration levels, learning, search procedures, survival, uncertainty
minimization, the reduction of cognitive dissonance and so forth.

As we limit ourselves to a static analysis at this time these

types of solution are not discussed.
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k, Price and Quantity Duopoly Models

For ease in discussion and computation in this section we use
symmetric models with quadratic payoff functicns, These involve constant
average costs and a demand that may be represented by a linear function.
Scmewhat more general nonsymmetric models have been analyzed previously for

the price and the gquantity games.}é/

4,1, Quantity or Cournot Duopoly

Let demand be given by:

C=p

= - + o+
p=o-platay) or (qFq,) ==

If the average cost to each is k then their payoffs zre:

‘p = - - = + .
p, = (0 -PBa-kjg, where q=gq, +gq,

If we wish to consider a market where guantity is the strategic variable
we need to specify the range of production over which the firms can operate.

We select two possibilities, they each have a capacity limit of:

(1) TE o (2) &

In the Tirst case each is capable of supplying the whole market at the

efficient or competitive price, ln the second case each is only capable

of supplying half of the market at that price.

If, in the first instance, both firms produced up to their
capacity the demand function would give a negative price. As this 1s

unreasonable we define demand conditions somewhat more precisely
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P=0-pBg Tor g < & ) Pp=0 for g > a .
- B B

The Pareto optimal surface and the threat surface are both
given ty:

Oé-k-Eﬁql-qu ﬁql

-Bq.2 a-k-EﬁQQ"ﬁql

or (- k- 2B(gy +a))) (@-k-play +a,)) =0

The first factor set equal to zero gives the Pareto optimal
surface, and the second factor gives the threat curve. The joint maximum,

noncooperative equilibrium and the efficlent point are given respectively by:

Lo L Gk U o S _ . . ok

(k)2 (o-k)°
B op

with profits of and O respectively.

These are shown in Figures 2 and 3 where we illustrate the solutions

¢ =12, Bp=1, k=1 where the capacity of each firm is M = 11 and

Me 5 % in the two cases we examine
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In Figure 2a the strategy space for M= 11 is glven by the large

1 .
rectangle OTIWT2 and that for M= 5 3 is OAlEA2 . These give

rise in the first instance, as is shown in Figure <b, to a payoff
space consisting of AlAEE and, the area EVlWV2 « In the second

instance the paycff space consists only of the triangle ZEA The

1%
area for "corational” threats has been cut out owing to the lack of

capacity for the firms. The various labeled points in Figure 2a map

into the points labeled with the same letters in 2b, The line TlET2

and the peoint O in Figure 2a g1l msp onto the polnt E  in Flioure 2b,
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L,2. Price or Bertrand-Edgeworth Models. For the price ncdel we take

precisely the same market structure as zbove, except we must specify
demand when the same good is offered at different prices. The problem

of contingent, ratiomed or oligopolistic market demand has been
lnvestigated previously by Shubik LE/ and Levitan lz/ . A general
treatment has been glven by levitan. Here, as in a previous paper we make
the simple assumption that unsatisfied demand is scaled down in proportion
to the price named by the high-priced firm. This is indicated in

Figuire 3 where the point M 1is the proint at which the firm charging

the lower price, say »p , reaches its capacity limit leaving an
unsatisfied demand (at that price) of MA ., At the price Ps

the unsatisfled demand is scaled down to EF .*

price

e quantity

Figure 3

Tmplicit in this analysis i1s that the customers do not sel up
secondary regale markets to any significant extent.



- 16 -

It is cbvioue that if each firm has the capacity to satisfy the market at a
Price equal to its cost then there will be no residusl unsatisfied demand
for the firm with the higher price., This implies thal capacity considera-
tlions are critical %o the threet possibilities when price is the strategic
varizble. In particular using the same parameters ag [or the quantity
game, when @ =12, p =1 and M= 11 it follows that demand for the
higher priced firm, at any price equal to or above cost for the lower

priced firm, will be zero.

The three solutions presented for the guantity game, joint
neximum, noncooperative eguilibrium and the efficlent point were the same
for M=11 and M= 5 % (if we had restricted capacity to even less
than M =5 % then the efficient point and eventually the noncooperative
zquilibrium would have been influenced). This is not the case for the

price game, When M= 11 it is easy to see that the solutions are as

follows;
Joint Max, Non Coop. Eg. Efficiency
price 6 % 1 1
. 1
production 5 3 11 11
rofit Lzt O 0
P =

The joint maximum and efficiency solutions are the same as for the gquantity
strategy game however the noncooperative equilibrium hes been changed

and now coincides with the efficient sclution. This is the Bertrand
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Solution to duopolistic competition.

When M =5 %- the Jjoint maximum and efficiency solutions are
not affected however the nonccoperative equilibrium is changed., It no
longer exlsts as a pure strategy but is manifested as a probability mix
over a range of price. This solution is relsted to the existence of the

Bdgeworth Cycle or range of price fluctuation suggested by Edgeworth.

Before we calculate the Edgeworth Cycle and the noncooperative
equilibrium it is necessary to consider the precise meaning of a strategy
in a price strategy game. Having done so we will be in a position to draw
dlagrams similar to Figures 2a and b describing the strategy spaces and

payoffs.

Given that each firm names a price as its strategy how are the paycffs
to be calculated? There is nothing stopping a firm from naming a negative
price, however as even the desire to damage one's competitor mitigates

agalnst this we will limit prices to being nonnegative.

Suppose that one firm has named the lower price for the identical
commodity that both are selling; what are its commitments to its customers?
We may adopt several conventions. The first is that found in the selling
of items such as turbines or other heavy machinery. The firms esach bid
by naming a price; after one has cobtained the order it then produces the items.
The other has no inventory problem as prcduction is not started before a bid

has been accepted.

What happens if a2 firm wins a bid but does not have sufficient
capacity to do the job? This is an insitutional guestion and depends
in great detail upcn the specific market mechanism. In some instances the

bid may include a penalty for failure to deliver. In other situations,
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such as when a department store announzes as a "special” a very
attractive buy, it may also specify that it has only a limited mumber
of units for sale at that price. If it does not do so then it mey be
liable to legal action if it faile to supply the demand. We examine

three conventions:

(1) A firm makes a bid in terms of price, but it does not have
to commit itself 4o production witil it knows its demand.
It is not penalized for failure to supply. Thig is the

. 6
rure price or Bertrand-Edgeworth game %-/.

(2) A firm makes & bid in terms of price, simultaneously it commits
itself to a level of production and a maximum smount that it is
prepared to supply. In this case it may not supply all of its
potential demand or it may be caught with excess inventories.

This we call the price-quantity game.

(3) A firm makes a bid in terms of price and commits itself to
production after it knows its demand. It is penalized for

failure to supply.

Although we are presenting a static analysis it isg evident
that the actual problem calls for dynamic models. Thus the interpretation
of the inventory and out-of-stock penalties must be in terms of Tuture

consequences.
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4,2,1, The Price Game. We set up the price model first. Given this

it becomes considerably easier to discuss the other two. Using the same

structure as given in 4,1, for the quantity game, we must add conditions

to describe the market for different prices. We select tlie capacity limit
=k

as M= =5 This gives each Individual precisely encugh capacity to

produce half of the totel demand at the efflcient price.

The payoff to Player 1, as a function of the two prices is

gliven by:

(1) 2 <p, P, = M(p,~ k)
¢ -p \\;
- — __...___...1 i -
(2 p =0», P, -< 2l (py- k)
(Ot-pg-fsM ¢~ P
(3} Pl >P2 Pl = “——m; S (pl- k) .

Taking the same example as before with =12, B =1, k=1 and

M=5.5 we have:

= - >
(1} », <p, P, =5.5(p,- 1) for p, >1
(2) p, =p P, = % (12 - p,)(p,- 1)
17 P 1% 32 1/\Py
6'§ - Pe -
(3) 2 >p, P, = T, (12-p, W(p,- 1)  for p, >1

Using this information we may draw two dlagrams, Figures 3a
and 3b showiug the price strategy space and the payoff space. ‘e may
limit prices to the range O < p; <12 . Figure 3b which shows the

pavoff space illustrates that the Pareto optimel surface is not concave
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in this case (i.e.,the payoff set is not convex).

As the payoff functions are not continuous we cannct use the
Jacoblan condition *o derive an equation for the surface. Ve know hovever
that if the players charge different prices, the optimal price for the
higher priced player is invariant ot 5.9; however his profits decrease
with the increase of the price of the other player. Suppose Player 2

charges the higher price, then for
(65 - p) 7y

=5 = i : = 5.5 {po- 1
M= )o5 P2 (12 — ':'P;l‘y . I | ; and Pl DD ‘pl )
2O o b /
whlch gives the relationship P. = ;gz-u_igk) i EEE
2 \ ‘U - ‘I— l \ /
Ag | Pl Al
i
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The attainable set of payoffs are given by the area P]_EPEL and
the 1ine 1L to J.M. This strange shape 1s caused by the discontinuity
around P; =Dy e The Pareto optimal surface is not continuous, it

consists of three parts, the lines A By and A,B, and the point J.M.

1 272

The points 1llustrated in Figure 3b are as follows:

Py Py Py Po
Al(and Aa) Monopolistic Maximization  121/4% O 6.5 > 6.5
J.M Joint Maximizetion 121/8 121/8 6.5 6.5
B, (and 132) Maxmin 121/16 121/86  3.75-¢ 3.75
Q 363/32 363/32  3.75 3.75
c Lower bound of 25.1/2 25.1/2 3.1 6.5

Edgeworth cycle

Figure 3a shows the strategy space for the two players. The
points marked in 3a map into the points with the same merking in Figure 3b.
Owing to the discontinuity in the payoffs some care must be taken in in-

terpreting the disgrams. The half open interval A, to J.M (excluding the

point J,M.) in Figure 3a maps into A, in Figure 3b. The line J.M

1
2

Bdgeworth Cycle) is not on the Pareto optimal surface as it 1s dominated

2

to B, maps into Ajc . The point ¢ (which is the lower bound of the

by the equal price joint maximum, it is however the "connection” between
the two parts A.c and cA, of The surfaece which first have Flayer 1

1 2
and then Player 2 ag the lower price campetitor.
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The Edgeworth cycle can be celculated by noting that either
firm will be Indifferent between just undercutting its competitor or

ralsing its price considerably. Let the lower bound of the cycle be o .

We have
6.5 - & ) e
(*3351:75 (5.5)7 = 5.5(0-1)
glving: of - 18.5a + 191/k = O

or: a=3,1,

The dlagrams for the case when M = 11 , i,e,, vhen each

firm is capable of satisfying the demand from the whole market by itself

are somevhat different as 1s shown in Figures ha and 4b., The only

A,
2 P
| P L
l S
! /
! e
; 7
, J. M
- S Al
./E E \\'_\.
———— P e e A
2 E
2 P2

Figure 4a
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points left on the Pareto optimsl surface are Al’ A2 and J.M, The

Payoff set consists only of the three lines EA EJ.M and EA

1’ 2

(both in Figures 3 and 4 we have left out the small negative part of

the payoff space which exists when a price of less than 1 1s named).

In Figure 4b E 1s not only the efficient point but the noncooperative
equilibrium as well. In Figure La although the strategy set consists of all
(pl, pg) such that 0 <p, <12, i =1 or 2; ve only note some points

vhich correspond with those in 4b. As before, the line A_ to J.M ,

2

excluding the point J.M, maps into the point A2 v
It can be seen from Figures 3 and 4 that differences in

capacity have considerable influence on the shape of the payoffs set

in prilce competition.

Reverting to the case with M =5 % we noted that there was
no pure gtrategy noncooperative equilibrium sclution. In order to
obtain a noncooperative solution in this case 1t is necessary to solve
for the mixed strategy equilibrium which amounts to solvirg the

integral equation

Py 6.5-p2 b

P,(p), ) = (p)-1) [ =5, (12-p,Jdo(p,) + 5.5 [ (p;-1)ae(p,)
= B,=P
pe-a 271

5.5(a~1)

I

for a < Pi < b . We investigate this equation further in the Appendix.
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4,2.2. The Price-Quantity Game. In this game each player has a two-

dimensional set of strategles. This gives them considerable flexibillity
in the obtaining of payoff combinations. It is evident that excess
capacity has the same effect in the price-guantity game as in the

price game. Reverting to cur example, if M = 11 then the nonccoperative
solution is a pure strategy at the efficient point with P =3, = 1l

and q; = = 5.5 »

Glven that each individuzl names not only a price, but commits
himgelf to a level of production we must specify conventions concerning
out-of ~stock and excess inventory situations. We pick the simple rule
that if an indlvidual is unable to supply a demand he suffers no penalty
beyond that implieit in losing a part of his potential market. For ease
in the treatment of inventories we may imagine the item to be perishable
or a fashion good so that if it is not sold it is worthless at the end
of the period. Given these conventions we may write the payoff functions

for the case with M = 5,5 as:
(1) », <p, P, =q,(p,~1)

= min f(lg_Pg'qg

The same type of convention as before ?a-needed for the case of Py =P, -

We omit meking this explieit as it is not used in our subsequent discussion.

The condition which must be satisfied for a mixed strategy

noncooperative equilibrium is as follows:
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Let the ranges for the mixed strategy be 8, < Py <b

then: b

1
P (P> Pps 995 ) = [ a;(p -1)dp(p,)
PPy

12=-p. ~q
17
Pl b
+

f [( 12'1’2“12) 7 2
p I qua 12-p, (12"91)1’1‘91” W(ap [pp) + [ ay(py- l)d‘”(qgl 2,) }d"(Pg,
0~ (12-p N 55— =

= 5- 5 (al"l) -
Where i(q2|p2) is the conditicnal probability function
that 4 will be produced given p2 . This equation is discussed

further in the appendix.

4,2.3, The Price Game with an Out of Stock Penalty, This alternative

was suggested to the suthor by K. J. Arrow in a discussion, It is
evident that if the firms each individually have enough capecity to
satisfly the market this game is equivalent to the price game with
large capacity. In terms of our example the case M = 11 is of little

interest, however M = 5.5 poses a problem.

If we assume that there is a penalty of ¢ per unit out of

stock then the payoff function to this game is given by:
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(1) P, = 5.5(py-1) - t(6.5-p;) for p, <p,
1
(6' 5-p2)
(3) P, = 33;:5; (12-P1)(Pl-l) P, 7D, .

The tendency to cut price will be modified by the penalty.

Suppose that both players charge the same price, when will

neither be inclined to undercut his competitor. This is given by:

$(12-p)(p-1) >5.5 (p-1) - (6.5-p)
or
- p%+ (2-2k)p - 1+ 13k >0 .

Neither will be motivabted to raise price if

4
1 6.5~ ) 121
3(22-p)(p-1) 2 (ﬁ )\
or p >3.51 vhich yields a profit P = 10.65 ,

The previous inequelity glves us

- 12,33 + 3.51(2-2%) - 1 + 13%t >0

or k >1.05.

This indicates that if the penalty is less than + = 1,05 per
unit then there will be motivation for one firm to undercut the other
at prices p < 3.51, however the optimal reaction for the other will

be to raise his price to p = 6.5 . This means that a modified
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Edgeworth Cjele or stockout cycle exists for 0 <t <1.05. This

iz shown in Figure 5 where A, is the lower end of the cycle when

1
t = 1.05. As is to be expected when k -+ 0 the stockout cycle

approaches the Edgeworth Cycle.

When t > 1.05 a new phenomenocn is encountered, a continuum of

equilibrium points appears whose range ic given by »p = 3.51 at

the lower boung snd p = (1-t) + % & 11t et the upper bound. For

example, for k = 11, all pairs of equal prices in the ramge:
3.51 <p <5.56

are equilibvrium points. As t + «» we cbserve that p + 6.5.

5. Conclusions

We have attempted to present an exhaustive examinastion of
the model:s that can be conutructed by considering price and/or guantity
at the strategic variables. These included the Cournot, Edgeworth
and Bertrand cases as well ss two further models reflecting the effect of
Inventory costs and penalties for failure to supply. Each model had a
different noncooperetive solution. The difference between Bertrand and
Edgeworth hinged upon capacity conditions. Given limited capacity the
price, price-quantity and stock penalty models all gave rise to an
instability menifested by the existence of the BEdgeworth c¢iycle (which is
of the zame length for both the price and priceuquantity models) and
the somewhat different "stockout cjcles" when the stock penalty is

sufficiently low in the stock penelty model.
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When the stock penally is high not only is the price instability
removed but a continmuum of equilibrie is obtained. It is of interest
to note that although in the duopolistic merkets we find strikingly
different solutions as the number of firms in the market is increased
in the appropriate manner the price and price-quantity solutions converge
to the competitive equilibrium (this is well known for the Cournot model;
the other cases are covered by a theorem on the price model }E/) .
Although each model is highly abstracted and "unrealistic" they all
have their counterparts in different mearkets. The strategy space is
dependent upon tiie specifics of technological and institutional
structure. The stockout game does not converge. This appears to imply

a weakness in modeling a fixed penalty for many firms.

A static analysis aslways strikes one as unsatisfactory in the
description of duvopoly. It has been offered here primarily in associa-
tion with presenting an exhaustive description of the strategy cets and

payoffs to the firms.

One ney lhave & distinct discomfort with the Edgeworth Cycle
as being too "unrealistic" even il we consider it as well defined dymemic
model. It seems unreasoneble to consider a competlitor doubling his
price. Customers might be influenced by too much price variasbility.
Competitors might be induced to enter by & ¢onsiderable rise in price.
Ignoring entry, we limit our remarks to price change. It is possible
to concider a limit to the amount that a price can be changed in a period,
or alternatively we might wish to consider demand not only as a function

of price but of previous price changes as well.
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The limit on price change is considered. When we introduce a
limit to the largest size for /Jp we can see immediately from Figure 5
that the price instaebility is not removed in the price or price-quantity

models. The range is merely limited by the maximum size of Ap.

(1) & > C,C, : This leaves the Edgeworth Cycle intact. Prices

will fluctuate between ¢ and C..

1l 2

(2) &< C,C, : The cycle exists but its base is moved down along
OFlCl and its length will be the largest A&p possible,

for example suppose Op = s then the cycle will be s_s

1°2 1% -

All of the results above depend neither upon linear costs
with capacity restrictions nor upon the firms selling identical products.
Increacing costs with differentiated products would still lead to the same

qualitative results.

It is of interest to note that when the stockout penalt: is
large the resultent equilibria yleld higher payoffs to the firms than
they would obtain noncooperatively without the penalty. Ve may regard
the penalty as providing an extra threat available to help enforce the
equilibrium. The power of competitive price-cutting becomes so great

that neither wishes to risk using the weapon too much.
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APPENDIX

The mixed strategy equilibrium for the price game can be
obtained by solving the integral equation:
B, 7
1 /6.5-132) b

k -3535; de(p,) + 5.5(pl-l) [ as(p,) = 5.5(a-1) .

(py-1)(22-p,) J
P,=P;

=

P 2_

It is necessary to solve for a, b and ¢(p). As this
equation must have the same value for a < Py < b we may differentiate

it repestedly with respect to Py obtaining:

s

) 6. 5“..91 Pl !/6. 5—_’92 \i a-l)
(12-p, (-3-_2—:-5]? p(p,) - p';:a (\Tgf’;) o(p,)dp, - 5.50(p, )= -5.5(Pl

or (6.5-p1) (
(1-p))0(p)) = @(py) - —— o(p;) = 11 oLl

= (1-p. )5 (. ) '2p)-18.5 ) (.} = 11 {a1)
1= + —————— =
)9 (2, L - ] oley =t

this can be evaluated,

The equation for the price-quantity equilibrium given in
4. 2,2 can be somewhat simplified by cobserving that after differentiating

twice with respect to 9 it reduces to:
Py
=0
I ¥ p)e(p,)ap,
py=a
this implies that W(k|p2) is not a density, but that g, = f(pa) .

In other words there is a specific level of production assoclated

with any price selected.
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