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THE APFROXIMATION OF FIXED PCINTS OF A CONTINUOUS MAFPING
by

Herbert Scarf#*

-1, Introduction

Brouwer's fixed point theorem states that a continuous mapping of
& simplex into itself has at least one Tixed point. In this paper I shall
describe a numerical algorithm for approximating, in a sense to be explained
below, a fixed point of such a mapping.
‘n |
Let S be the simplex ‘{ | & n, =1, x, >0 }-.
=] i i -
A continuous mapping of the simplex into itself is given by & collection

of n functions fl(n), - fn(ﬂ) ,. continuous for all = ¢S , and having
n

the properties; I fi(ﬁ) =1, and fi(ﬂ) >0 . Brouwer's theorem states
1=l

that there exists & n ¢ S such that f£(7) = 7 .

The theorem may be demonstrated by means of a combinatorial result
known as Sperner®s Lemms [1}, which it will be useful to review, Let ﬁlﬁ .
be 3 sequence of dlstinct points selected arbitrarily on the simplex S .
By connecting- ﬁl to each of the n wvertices of 8 we partition- 8 into n
subsimplices, We then connect na to the n vertices-of each subsimplex to
which it belongs; and contimue the successive refinement with ﬁ5, oo ﬁk .
The result is a particular type of partition 6f S intoc a number of
subsimplices, whose maximum dismeter can be made arbitrarily small by a

sulitable selection of the sequence xl; cae nk .

The resegrch described in this paper was carried ocut under a grant
from the National Sclence Foundation,



We associate with each vertex nJ an index i such that ng >0

and fi(nj)‘s ng . There clearly will be at least one such index for
each vertex and if there are several we make an arbitrary choice among thenm.
Sperner®s Lemms then states that at least one subsimplex of the partition
has all of its vertices indexed differently. In other words a subsimplex
may be found so that at each of the n vertices a different coordinate

is not increased by means of the mapping £ .

As vertices are'added the partitlons become more refined, and the
vertices may be selected in such & way iﬁét the maximum diameter of the
subsimplices appearing in the partitions tends to zero. Eaéh partition
contains a subsimplex all of whose vertices are labeled differently, and a
subsequence mey be found whose vertices converge to a single point .

for all i , and therefore

Since the mapping is continuous, fi(g) < ﬁi

% is a fixed point of .the mapping.
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We can think of approximating T numerically in two distinct
ways. The first, is to attempt to determine & region of small diametér
in which % must necessarily lie. This approacﬂ requlres us to anticipate
the limit points of a sequence from a finite amount of date and is non-

constructive for general mappings.

An alternative approach is to determine, for arbitrary ¢ , a point
n whose image is at a distance less than ¢ from itself., Sperner's Lemma

may be used to approximate a fixed point of f in this sense. Since f 1is

continuous, for a given ¢ >0 there is a & such that | f(x') - £f(x") | <
whenever | n' - x" | <& , where the norm |x| is . taken, to be specific, as
max. (| x|, ...~|xﬁ|) . - If the maximum diameter of the subsimplices in the

partition is & , then any point = in & subsimplex whose vertices are
labeled differently will satisfy | f(a) -~ n | < (n-1)(e#s) , and will

therefore serve as an approximate fixed point in this sense.

There is a very serious practical difficulty however in this
approach. The number of vertices required to determine a parﬁition of
small diameter is enormous even for moderate values of n . Fé% example,

if n is 7 pnd if the vertices are selected as the lattice points
. _ n
nonnegative integers satisfying Z ki =D,

then some 80 billion vertices are required for D = 200, and the number of

(/D5 <. k'rl/nﬁr, with k

subsimplices in the partition is of course larger. Moreover Sperner's Lemms.
suggests no procedure for the determination of an approximate fixed point other
than an exhaustive  search of all subsimplices until one is fouhd with all

vertices labeled differently. Clearly some substitute for an exhaustive
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search must be found if the problem is to be considered tractable, and
the current proofs of Spermer's Lemma offer no suggestion in this

direction.

In this paper I will describe a new combinatorial theorem,
wvhich may also be used to demonstrate the Brouwer fixed point theorem.
This theorem involves, as does Sperner's Lemms, the selection of a fine
grid of points on the simplex S , but it differs from Sperner's Lemma
in that .a systematic algorithm is used to determine the sequence of
points to be examined. The algorithm has been appliedrto a number of
examples and seems to work remarkably well. The computational experience, which
is discussed in Sections 5 and 6, suggests that the algbritﬁm@is quite

practical for the approximation of fixed points of certain mappings, when

n  is less than 15 or 20.

Section 7 discusses the generalization of this glgorithm to
continuous mappings of a closed, bounded, convex polyhedron into itself.
It is somewhat more complex than the rest of the paper, and can be

avoided by the casual reader.

Though it may not be apparent from the arguments of this paper,
the algorithm is intimately related to the procedure described by
Lemke [2] for the determination of Nash equilibrium points of two person

nonzero sum games.

2.- A Combinatorial Theoren

We conslder a finite set Pk of vectors ul, PN un, .Q.ﬂk

+
in n dimensional space, The vectors ﬂn l, cas ﬂk are selected
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arbitrarily on the simplex § = { x| Z n,o=1, 1y 2> 0} . The first n
i
vectors, which are nct on the simplex, have the following specific form:

1
n

I

(0, M, .. M)
(ME’ 0, ... Me)

x = (Mn’ M ...0 ),

A
il

with the Mi_ satisfying Ml > M2 - S Mn >1 .

5 J

Definition: A set of n wvectors =« ™, ... =« % 4n P will be called =

| k
‘primitive set if there are no vectors aY in P, vith

J J J
1 n
. > min (:r(l ) aee Wy )
J . J J
1 n
nn>min (Trn s ane M ).
*
There is & simple geometric interpretation of a primitive set.
J J
Let = l, ... n> beaset of n vectors in Pk and consider the
subsimplex of B defined ‘by
. 'jl n .
stiz mln(sri s eee Wy ) for i=1, ... n,
and Z Ty o= 1. If the subsimplex contalns no vectors of Pk in its
J J

interior, then the n wvectors = 1, ces N n form a primitive set. 1t

will be useful to refer to such a subsimplex as a primitive subsimplex,

In {3] the term "ordinal basis" was used for a primitive set of vectors,
in order to suggest a conmection with the use of "basis" in linear
programming.



In the sbove figure the vectors at s 7 , and: 0 form &

primitive set, since no vector nJ in Pk is interior to the small
subsimplex in Figure 2 which contains ﬁu ) a5 and .ﬂ6 .

As the figure illustrates; ue s n9 and wll also form a primitive

get, since no vector in Pk is interior to the subsimplex generated by n9 R

ﬂll , &nd the edge of S in which the second coordinate is zero.

It will be convenient to make the following assumpticn which

‘can easily be brought about by a perturbation of the vectors in Pk .

Non Degeneracy Assumpticn: No two vectors in Pk have the same

~ith coordinate for any 1 .



With this apsumption, a primitive subsimplex will have each of its n
bounding faces pérallel‘to one of the coordinate hyperplanes, and each face will
contain precisely one vector in the primitive set, nameiy, that vector in which
the corresbonding coordinate is smallest. If the primitive set contains ﬂi
with 1 <n , then the primitivé subsimplex contains that face of. 8 ‘with

the ith coordinate equal to Zero.

In our applications each vector in Pk will have associated with it

an index selected from the integers between 1 and n . The index associated with
a vector is arbitrary except for the first n wvectors in the list, We shall
require that nl have the index 1 , ne “the index 2, etc. The combinatorial

theorem may now be stated.

Theorem 1. There exists a primitive set, all of whose vectors

are indexed differently.

J

When Theorem 1 is applied to Brouwer's theorem, each vector = ,

other than the first n vectors, is given an index 1 for which

fi(ﬂJ) 2’“£ . A primitive set of the type referred to in Theorem 1 will

contain some vectors from the first n , say {ﬂj] with - ] in ah_index

set I, and some from the remalning vectors in Pk . The primitive subsimplex
asébciated with this pr;mitive set will be bounded by an_édge A, = 0. for each
ieIl , and by an edge passing through each remaining vectpr in the primitive
set. The latter vectors will have an index not in I , so that for every 1

there is some vector in this subsimplex for which fi(u) 5331 .
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An appropriate sequence of vectors may be selected, so that ec
k tends to infinity the meximum diameter of a primitive subsimplex tends
to zero, since no veckqrs in Pk are interlor to such a subsimplex.
Therefore & sequence'of primitive subsimplices may be found which converge
to a single vector % . Using the continuity of f we see that |

£,(n) >%, forall 1, so that % is a fixed point of the mapping.

3. A Preliminary Lemma

The following lemma is the main tool in our algorithm.

J J
Lemma 1. Let =x l, es. 1 ' be a primitive set, and let
S |
x © be a specific one of these vectors. Then aside {rom one

J

exceptional case, there is a unique vector = ¢ Pk," different

J J J J
from =« a’ and such that (= l, ses T & l, o, N y eas X

form a:primitive set. The exceptional case occurs when the n-l1

J . ;
vectors =« 1 , with. i #a , are all selected from the first

n vectors of Pk , and in this case no'feplacemenﬁ is

possible.

The lemma states that aside from the exceptional case, if an
arbitrary vector is removed from a primitive set, there is a unigue
replacement 80 that the new set of vectors is a primitive set. The new

J 3 ' '

vector =w  which replaces =x o may be found by a simple geometric

construction. To illustate this construction let us assume that

h| 3 J
b 1 : n
noo= min‘(ni s e xi.) so that
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Js .
x © is on that face of the primitive subsimplex on which the ith

91
coordinate is constant. Assume moreover that = is being removed.

dyx
let = 1 be that vector in the primitive set with the second

smallest value of its first coordinate. Ji* will be greater than n
J
unless the exceptional case arises. To find the vector to replace = 1
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Ji» .,
we move the face containing =« 1 parallel to itself, lowering the i*Lh

.

coordinate until we first intersect a vector' xJ in Pk with
5 .
J Ja
i .
ny >y for 1 f£1, 1¥
znd :
J Jiw
oy > gt s

or the face of the simplex § in which Tow = 0.
J-i
The rule is applicable except when the vectors = with

i ﬁ 1 are all selected from the first n vectors of Pk » and it clearly

produces a new primitive set.

In order to finish the prootf of Lemma 1 we must ask whether there

dJ

is any vector nz other than " which ylelds a primitive set when it

J1
replaces =« © .

_ £ 2
Observetion 1. Tf (n , = 2, cvo 1 1) forms.a primitive set,
J
tMnﬁri%l,f,wemﬂhweni.mtmtmmﬂmfmeﬁtan
primitive subsimplex whose it? coordinate is constant.
: : ji
If this were not the case for some such .1 , then x would

be on none of‘the bounding faces of the new primitive subsimplex and this

is impossible.

As a consequence of this observation we see that the new primitive
set satisfies

J £ J J
i min(:ri y ﬁie s ses X n)‘ for 5 # 1, i¥ .

in i
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There are two alternatives to be considered for the remaining

two cocrdinates. Either ug is on that face with constant first coordinate,

i .
and = i on that with constant i*th coordinate or vice versa.
- | ' £ 2 In
Observation 2. If (r , n ", «co ) forms a primitive set and

£ J 2

T £ x L » then = must be on the face of the new primitive subsimplex
 .xth o

whose i"— coordinate is constant, and = on that face with constant

firet coordinate.

If this were not correct, then the new subsimplex would have

J
% 1 on that face on which the ith coordinate is constant for 1 =2, ... n .
jl )/ 2
But then if % <#y o, the old subsimplex contains = in 1ts interior,
£ jl
>'nl the new subsimplex contains = in its interior. It

J

follows that nl = ﬁll and since no two different vectors have the same first

Jdy

wherees if “1

coordinate we must have £ = j and we are back where we started,

Jl,

£ ] J
Observation 3., If (n , = 2, eee 1 1) forms & primitive set

£ J 2 J '
and n #x 1 , then =n must be that vector xn  described above.

3 :
This follows since we have already shown that =« 1 is on that
face of the new subsimplex with constant iEE coordinate for 1 # 1, 1*

Jye
and that x i on the face with constant first coordinate.

The reader may easily finish the proof of Lemma 1, by demonstrating

that no replacement is possible in the exceptional use.
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., The Algorithm for Theorem 1.

We recall that each vector in Pk has associated with it an index
selected from the first n integers. In the application of Theorem 1 to
Brouwer's Theorem the indlces depend on the particular mapping, but for the
pregent the assignment of integers is arbitrary aside from the assumption

that for j =1, ..o 0, 2! is mssociated with the index Jo»

Our purpose is to determine a primitive set all of whose members are
indexed differently. The algorithm will begin with a primitive set whose

membere are indexed differently with the possible exception of one pair of
s
vectors with the same index. Consider the set of vectors (xe s sun ﬂn, n? )

*
with nj selected from those vectors beyond the first n so as to maximize

the first coordinate. Clearly
e
J 2 n
min(ﬂi 3 in 3 e ﬁi)

+ ¥
is given by ng for 1 =1, and zero for 1 >1, and this set of vectors

is primitive since no vector in Pk can have all of its coordinmtes

%
strictly larger than those of (a¥ , O, ... O) .

=¥
If the vector 1Y were associated with the index one, then the

problem would be over since all members of this primitive set would have &

.j*

different index. Generally this will not be the case and = will share

an index with one of the vectors ﬂe, vee m . Our algorithm will aelways be
involved with primitive sets of this type. In other words at each step of
the algorithm we will have a primitive set whose indices have the following

properties:

1. The index 1 will not be assoclated with any vector, and
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2, All vectors in the urimitive sct will be indexed ifrcrently.

exrept for cne palr of vectors with the sawe index.

The algorithm proceeda i taking one of the two wrctors witr the

primitive cet with the same properties or else terminsting wivw: - solutioa.
If we are not at the initial primitive set one of the two vectors v:th a
commor: index will have Jjust been introduced in order to arrive .at the current

position. The algorithm prireeds by eliminating the other member of the pair.

In other words, at each stage of the algorithm after the first,
there are two possible removals that will take us t¢ a primitive set with
the same properties. One of these steps has been taken to 22t to~ the current

position. We therefore take the other step. There 18 only one vector which

can be removed from the initial primitivs set, namely tha: ve~tor ﬁJ
<%
(with 2 < j <n) with the same index as 7Y . The other possi' .lity,
- ¥
dJ

that of removing = is the #xcepticmal case vreferr=d to in Lemma 1.

The algorithm can only terminate whén 5 primitivé set 'is found, all of
whose vectors dre indexed differently. It should be clear that the algorithm
can never return to a previous primitive set, for if fhe first return is made
to a primitive set other than the initial cne, then there would be Egzgg, rather
than two, ways to emerge from that particular primitive set. On the other hand
if the first return is to the initial primitive set there would be two ﬁays

of emerging from the initial set.

Since there are a finite number of primitive sets, "he al;iorithm must
terminate in a finite number of steps with all vectors indexed differently.

This demonstrates Theorem 1.
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5. .Some Computational Techniques

The algorithm has been programmed for an IBM 7094, and several
examples have been tried. Before describing the results of the computations,
it might be useful to indicate a few of the special techniques that have been

incorporated into the pfogram.

The first problenm encountered in progreamming the algorithm is that

of selecting.an_appropriétejset of vectors P Each stage of the algorithm

k d
involves a primitive_sét of n of these vectors. A specific one of these

vectors is elimirated from the primitive set and its replacement found by

calculating a vector a and & specific coordinate i* , examining all

vectors in Pk with ni D’ai for 1 # 1i* and selecting that vector with

the largest value of ni* .

It is clearly quite useful to congtruct Pk 50 that the selection

of the new vector can be done without an exhaustive search of all of the

vectors in Pk - - For example if Pk- consists (aside from 1ts first n

members) of all vectors (kl/D ) ese kn/D) with k, positive integers

will be an integer divided

a 1
128 %5

1 +oee. F kh =D , then each &,

by D , and the new vector ﬁj' will either be given by =

satisfying k

for 1 f i* ana ng* w ]l - Z (ai + %) s Or else ve one of the first n

144%
members of P .
k
If Pk' has this special structure, the selection of the new vector
may therefore be done by a simple computatlon, rather than a search over an

enormous number of vectors. On the other hand, this choice of Pk does not
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satisfy the assumption made in Section 3 that no two vectors in Pk have the

same ith coordinate for eny 1 , an assumption which ls indispensable for

the application of the rule given in Lemma 1., In order to avold tﬁisr'
difficulty some systemstlic procedure for resolving ties between two vectors

must be used. The particular procedure that I have used is to comstruct

at each step in the algorithm a matrix

e+l
0« ¢ o + 4 Mh ﬂl‘ . . e ﬁl
. »* in+l -ﬁ
M o *

consisting of the first n vectors of Pk and all other members of Pk
which have previously been introduced into a primitive set, in the order in
which they have been introduced. Then, if twoﬂédiumns in this matrix ﬁave
identical elements in the: ith row, the first is aésumed=to be larger, and
if a vector Eg'the'matrix has an identical entr& iﬁ'the ith row with some
#ector ggg“in the matrix, the former is assumed to be larger, it _may be

demonstrated that this procedure for resolving ties also leads to a finite

algorithm.

*

In the:determination of ﬂJ

a search is then made only over
those vectors which have been used in some previous Steé; the'remaining
vectors in Pk qre-gxamined by a single algebralc caiculation. The number
of vectors to be examined expliqitlyAéan be no lsrger than the number of
iterations plus n ; and if the number of iterationsris‘relatively small

this search is quite manageable. There are, of course, other ways to resolve
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ties which surely involve even less computation, and which will be introduced

in subsequent versiens of the program.

The algorithm terminates with a primitive set all of whose vectors are
differently indexed and any point in the geometric subsimplex of S
corresponding to-this primitive set will serve as an appfoximgte fixed point.

In order to select a unique point, I assume ﬁhatﬁthe‘functions fi(x)- are
linear in a region aroﬁnd this subsimplex, and select & point which minimizes
the maximum of (fl(x) -y e fn(ﬁ) - ﬂﬁ) ; or some other measure of
closeness. On the basis of computational ekperience, this seems to be a very

useful way of terminacting the algorithm.

6. An Example from Economics

The particular examples of Brouwer's Theorem that I shall describe
arise from an important problem in mathematical economics, that of determining
equilibrium prices in & general economic model of exchange. Fixed point
theorems have beén-invqked by many authors to demonétrate the existence of
equiiibrium prices but have never been used for the purposes of explicit

calculation.

Tet n be the number of commodities in the economy and m the total
ndmber‘qf'economic'agents. The £th‘agént ig assumed to respond to a vector

of:npnhég&tive;pficeS‘ R= (nl, ...'xn)-“by a vector of excese demands
gf(ﬂ) 5 ees gi(n) for the n commodities.

More explicitly the function .gi(n) represents the net increase in

commodity i desired by the Eth agent at prices x . If gf(x) <0
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the ﬂﬁh agent wishes to decrease his holdings of commodity i and to.
use the proceeds for the purchase of those commodities with positive
excess demand. The following assumptions are customsrily made about

excess demsnd functions.

1. Bach gf(u) is homogeneous of degree 0 , an assumption
implying that demands are determined by relative rather than absoclute
1eveLsfpf prices. This permits us t6 restrict our attention to prices

nll, n 20] .

i

on the simplex S = (% | &= 4

2. For each individual £ we have nlgf(n)'+ res nngﬁ(n) g0,
or in other words purchases of commodities with positive excess demands are

Tinanced exclusively by the sale of commodities with negetivé excess demands.

%. IEach excess demand function is continuous on the éﬁhnlex- s .
For each commodity i we define
m

g, () = I gl(x)
Bl

to be the market excess demand for that commodity.

A vector of prices is in equilibrium if at these prices the market
excess demand for eadh commodity 1s less thap or equal to zéro, and actually
equal to zefo if the price assoclated with that commodity is strictly
positive. It 'is a simple matter to demonstrate, by means of Brouwer's
Theorem, that an econamic model satisfying the above assumptions does

have at least one eguilibrium price vector.
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The mapping used in Brouwer's Theorem is defined, for prices on the

simplex S , by

n, + A max(0, g, (x))
fi(ﬂ) = ;

1 + A\ £ max(0, gk(rr))
k

with ) - a small positive constant. The mapping is clearly continuous and
takes the simplex :Lnto\:_'.‘bself , 80 that Brouwer's Theorem -is applicable.

Let 7 be a fixed point. Suppose, first of ali,‘ that & max(0, gk(?c)) >0 .
Then 7, + A max(0, g (%)) =Cx, with ¢ >1, and it follows that

gi(ﬁ) >0 for every 1 with E:L >0 . Since this violates the assumption

that =

|
o

lgl(ﬂ)i+ vee T ﬂngn(ﬂ) = 0 , we may conclude that i maX(O; gk(ﬂ)) =

|
o]

and therefore éi(ﬁ) <0 for each i . Again appealing to ﬁlgl(ii') + ... o=

~

we conclude that gi(ii) =0 if 7, >0, so that a fixed point of this

i
mapping does indeéd yield an equilibrium price vector.
In the application of our algorithm a vector x will be labeled

with an index 1 for which fi(n) >n or

i >
mex(0, g,(n)) >n, »1"?; max(0, g, (x)) .

It will clearly be sufficlient to select an index i which maximizes
gi(ﬂ)/ﬁi >

In order to proceed with the algorithm we need to specify the
individual excess demand functions gf(z{). « I shall select the following
from the many thet have been described in the economic.literature, Let

W o= (W,ék)' and " A 5=(a‘ék) be. two strictly positive matrices with m rows
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(one for each agent) and n columns (one for each commodity). Also let

b, ... b be a strictly positive vector. We define gf(ﬁ) as

g1 i Yok Tk
Y %

i o y)
1 i Sox M

n

Aside from a possible discontinuity on the boundary of the' simplex,

the assumptions previously made are satisfied for these excess demand functions,

and the algorithm may be applied. For those readers who are curious about

economics these excess demands arise from & model cf‘gxchange in which the

£th individual initially owns Vo unite of the kth ~éommodity, and hes

a utility function given by

A
l.g a 8
_ A £ £
uy(x) = (Z (ay) 7 n)

B

with bz = 1/(1 = aﬂ) » Other readers may find it sufficient that we are

studying a class of continuous mappings which are highly nonlinedr, and to

which simple gradient methods do not apply, [4]. ILet us consider the following

examples.

Example 1.

In this example the number of commodities 1s five and the number

of economic agents is three. The parameters of the excess demand functions
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are given by

1. 3. 10. 1. 2.

15 5 3. 5. 10.8

2. 1. .8 1.5 1. [- .9

i
A =] 3, .5 1.2 1.6 18| b= i 1.3
! 09 08 20 l‘ lu8 1: .8 |

The set Pk aside from its first five members consists of al

-
vectors (EE%*, cen igg—) with ki positive integers summing to 160.

There are some .26 x 108 such vectors. The algorithm terminated afte:
only 158 iterations, with the following primitive set:

R PR

101 102 105 102 103

13 12 13 13 12
6 6 6 6 6

25 25 25, 24 25

15 15 1 1 |
| 2 A

where the compdnents of each vector edd to 160 rather than 1.

When these five vectors are averaged according to a linear
programming problem which treats the excess demands as locally linear,

the following price vector is obtained



- 21 -

X = (104.9, 12.3, 5.2, 23.6, 1.1} ,

and the market excess demands are gliven by

(g,(x)) = (.02, -.02, -.27, -.0L, -.00) .

The image of 7 under the mapping is given by

Mt A max(0, gi(n))

| -
n’i—

Ay
1 + A% max(0, gk(ﬁ)) o
k

after the prices have been divided by 160. The .degree of approximation of

the‘mappiﬂg'dérenﬁs on the choice of A, but the excess demands are a very

small fraction of total supply (the column sums of W), and this 15 the

relevant consideration.

Example 2.

3. 1,

.1 10.

W= .1 9
.1 .1
.1 «1

1. 1.
2. .8
A= ; 1. 1.2
E 2. 1
| 1.2 l.2

3
1.2

2.

1.

1.2

1.

2.
1.

+1

'l.

.1

il

+1
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Here there are eight commodities, and the vectors were selected

It k-~

us (5%5 s e 5%5) , with Ik, = 200 . There are some .22 % 100

such vectors and the algorithm termineted in 640 iterations with & primitive

get given by

51 53 55 5a 55 52 53 53 i

b 13 13 1k 1k 1k 1k 13

=]
[93

-

-3

! -
-]

.|

|

20 20 20 .19 2 20 19 20}
1 15 1+ 13 1% 13 15, 15 é
8 56 58 58 8 o7, 38 58
25 23 23 235 22 23 22 25

ifter averaging, the following price vector and excess demands were

obtalned:

% = (56.4, 6.3, 12.7, 18.5, 13.6, €0.0, 21.5, ‘11.1)

(g,(7) = (-1, -.2, .05, .05, .03, .07, .05, -.Uk)

The answer here geems not to 'be as close a fit as the answer to the first
problem, but my impreésion is that this can be Temedied by either en extension
of the terminal linear programming problem, or the imposition of a finer grid

“cr the first two commodities.
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Example 3.

This final problem terminates quite rapidly with a remarkably good
fit, even though it is & larger problem than the previous ones, involving

10 commodities, We have

6 .2 .2 2. L1 2, 9. 5. 5. 15.

2 11. 1a. 13, 1k, 15, 16 5. 5. 9.

w = .’4‘ 99 8-.. 7- 6- 5! ll'v 5‘ 7. 12¢
1. 5a 5 5¢  5e 54 5 8. 3. 17.
8, 1. =22 10, 3 .9 5.1 .1 6.2 1,

1. 1. . 3. 1 .1 L2 2, 1. 1. ;;W
[ li ll l. lt .ll lt .lo lv l- '1-
A = 9-9 ol 5n 12 65. . . 02'. 8. lo .l. 1-2
. 2. 3 4o 5. & 7. 8 9. 10. |
! , ]
: 1. 150 11, 9’ )4'1 69 8! lp ) 2. 10, :
L . . ‘ o
and
- ]
2.
1.3
b = If 30
i
! vl
¢
N




.ok

10 '
The prices were selected by E'ki = 250 ., There are some .87 x 1016
1 ‘

such vectors and the algorithm berminated with L68 iterations. After averaging
the ten vectors in the primitive set, the following prices and excess demands

were obtained:

x = (h7§o 28.5 240 10.0 26.7 19.3 29,4 25.7 248 12.6)

(gi(ﬁ)) = (-.07 Ok L0300 ,02 ,00 ,02 .02 .02 -.07)

The excess demands for this last example are very close to zero,
when compared with the total supply. What 1s even more surprising is that
the total time on the 7094 required to do all three problems was one minute
and 36 seconds. This suggests to me that with improvements in the algorithm
and its programming, the approximétion of fixed points ofwmappings involving

15 to 20 dimensions might very well be feasible.

7. Some Extensions of Theorem 1.

The argument that has been given for Brouwer's Theorem may be extended

+
to a more general problem. As before let o l, vas ﬂk be a sequence of

vectors on the simplex S5 , and let nl, s ﬂnr have the special form

previously described. Consider alsc the system of equations

with A an n x k matrix of the form

p—— sy

vee 8

0 ... 0 al,n+l 1,k

sre
*
* v a

(=)

sve 8

a
n,n+l n,k |
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and b a strictly positive vector. A feasible bagis for this system of
equations (in the sense used in linear programming)} is a collection of n
columns “Ji, ..;-ﬁn , which are linearly independent and such that the

equations

have a nonnegatlive solution.

As I have shown in [3] the arguments of this paper may be extended

to demonstrate the following theorem:

Theorem 2. If the set of nonnegati#ersolutions of Ax =D form

. , J J
a bounded set then there exists a primitive set «x l, cee % * such that

(jl, ves jn) is a feasible basis.

In %3], Theoren 2 was used to provide general sufficient conditions
for the core‘ég'an_:n. person gﬁme to be honempty; It may also be used to
demonstrate Brouwerfs Theorem for a mapping‘of & bounded polyhedrgl comvex
set, other than the simplex, into itself. To do this we. proceed by means of

an inmtermediary theorem which has some interest in itself.

Theorem 3. Let Cl’ - Ck- be closed sets on the simplex & ,
whose upion is the entire simplex, Assume that . C, D {xe 8| ng = 0]
for i =1,... n, Then,_if the set of ‘nonnegative. solutions to Ax = b

form e bounded set, there is a feasible basis (35 .+ 3,) such that the
) i\ |

intersection (]"C

3 is not empty.
=1 [0
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To prove this theorem we take a finite set of vectors nn+l, <o nz

on the simplex, which, as £ tends to infinity, will become cverywhere
dense on B . The vectors ﬂl, ... " are constructed as before. We
define an mnxf wmatrix A to which Theorem 2 will be applied, as follows.

The first n columms of A form a unit matrix, To determine the entries

incolumn r , with r >n , we select one of the sets Cj which contains

T
7 , and enter

\|

%15 %

k)

a_,
nJ

~

in the rth column of A . As we see, A is composed of some of the

columns of A sultably repeated,

~

The hypotheses of Theorem 2 are clearly satisfied by A , and ve
may therefore find a primitive set of sn's which correspond to a feasible
basis for the egquations Ex = b . Buﬁ since the columns of a baéis are
necessarily linearly independent, no two such colurmns can be identical, and
a basls for Ex = b will also be a basis for Ax = b . If the columns of
the basis are denoted by jl, .,; jn s the primitive set described in Theorem 2

will consist of a single vector from each of the sets Ci ) e Cj

“1 n

Tf we lot £ tend to infinity in such a way that the vectors

nt+l .
b PR Hﬂ become everywhere dense on the simplex we may select a

subsequence of £'s s0 that the bases for Ax = b do not change and such
thet the vectors forming the primitive set converge. But these vectors must

21l converge to the same point =n . If some of the first 'n vectors are used



in forming the primitive set, then the corresponding coordinates of = are

equal to zero. =« 1is thereforé contained in (ﬁ) Cj , and Theorem 3 is
' Q [0/

demonstrated. It should be realized that the vector x may be approximated
by an algorithm quite similar to that used in apprdximating g fixed polnt of

a continuous mapping.

Now let C be a convex polyhedral subset of the simplex 5
defined by C=f{nx| nes, I n;8; 4 20 for §'= ol .0k} 5 and

{n) = (fi(ﬂ)?rgo, fn(ﬂ)) a continuous mapping of C .into itself. We assume,

as before that the set of nonnegative solutions to Ax =1 is bdunded, where

eesw O a aes &

1 1,041 1,k
A=1: . : :
0 l B -nﬁ'a
| n,ntl n,k.___l
It will also be useful to assume that the equations X aij Xj = 1 have &
h _ _ o Yo .

strictly positive solution if jl, .,g.jn“is e feasible basis. This is a

nondegeneracy assumption quite familiar in linear programming.
Define the sets. Cl’-

vectors in § with I “iaij <0 . Moreover, if- ne C, then n € Cj if

wew Ck as Tollows, Cj contains all

Lnma,, <L fi(ﬁ)ai Clearly L‘)CJ =8 .

i1 J -
If Theorem 3 1s applied we obtain & feasible basis jl’ suw jn
for the equations Ax =1 , and a vector =« ¢ c; Cj « I claim that = ¢ C ,
0]

for if it is .not, then I n.a <0 forall o, But if x, 1is the
‘ i ijcr- o

positive solution to the equations Z &ij xj =1 , we obtain
[0 (04



O>LLn 8, x, =
“qi * lig g 1

Since =« € C , we have I x, ai.ja <LZ fi(n)aija

for all & . But then

l1=Zxa, =ZZx

i}
1 at

i z
Py o~ ai

and since x, >0 we see that I (x, - f (n)a,. =0 for ell « . But the
Ja SR R €
columns of & basis are linesrly independent, and therefore n, = f i(rr) . We

therefore have a proof of Brouwer's Theorem for continuous mappings of C

into itself, and an algorithm for the approximation of a fixed point.
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