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Structure of Preference Over 'I‘ime*
by

Tjelling C. Koopmans

1. Introductory remarks.

A gtandard model in the theory of consumer's choice agsumes that the

consumer maximizes e utility function under glven budgetary constraints. In

thinking sbout optimal economic growth, it seems natural to extend this idea
to the maximlzaetion of s social welfare funetion under congbraints of

technelogy end initiel capital stock.

Even in the case of the individual consumer planning for a single
period’s consumption, however, the time-honored concept of a utility function
is not an entirely setisfactory primary concept. ©One may wish to look on it as

e numerical representation of an underlying preference ordering, a more basic

concept to be more fully defined below. Once this step is made, one will also
want to know which clase of preference orderings permits such a representation.
Moreover, one will not want to exclude g priori the consideration of yreference

orderings that do not permit such a representation.

These considerations have still greater force with regard to problems -
of evaluative comparison of growth paths for an indefinite future. If one

interprets this as an infinite future, neither the concept of a utility function

This paper reports on research carried out under a grant from the Natj;onal
Science Foundation.



depending on infini'belyl many variables, nor that of a preference ordering

on & space of infinitely many dimensions, have an obviocus intuitive u:nder-
standability about them. To start from the more basic one -- the preference
ordering -- is therefore even more desireble in that case, In that it helps avoid

implicit assumpbtions one is not aware of.

This paper is a dlscussion of the cholce of a criterion for the evaluation
of growth paths that starts from postulates about a preference ordering.
Technlical parts of the reasoning in some sections are set off in staried. sub-
sections bearing the same number. These can be passed up by readers interested

.i‘n results rather than proofs. Equality by defipnition will be dencted by =

2. Preference orderings and representations therecf.

We shaJ..'.L now define and describe the mathematical concept of =8

Ppreference crrd.ering on a prospect space,

The prospect space% is the set of all alternative prospects between
which choice may conceivably arise. The term "space" is, of course, a geometric
metaphor, and the prospects will sometimes also be called "points.” In the

static model of consumer's choice, the prospects are 'bundlés‘ (or véctors) of

‘censumption gééd.s imagined available for consumpfién in a stated period. (A
"bundle specifies an amount for each good on the l:f.st) In the simplest
mod.el of preference over time the prospects are p_rograms, that is, sequences
of bundles imagined available in successivg periods (finite or infinite

in number as the analysis requires).
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A complete preference ordering is a relation (%o be denoted Z ) between

the prospects =, ¥y, +.+. in Z s considered pairs:rise, such that

(transitivity) if xZy end yZz then xZ 2z,

(completeness) for any pair of prospects x, y of Z

‘either xFy or y £x or both.

The relation x - y 1is inberpreted as " x is at least as good as y ," or

synonymously " x is preferred or eguivalent to y ." Preference (>—) and.

equivalence (~) are.again transitive relations, derived from Z by-

"xV¥Yy" means "x 7Ty butnot yZx ", and is also denoted
Pyl x |
“x-y"m_.ez;.ns‘“xx?:y and also y o~ x " .

A partisl preference ordering is obtained if we substitute for the

completeness requirement above

(reflexivity) for all x e:f‘Z , XTI X .

Completeness implies reflexivity (take x =y ), but the converse is, of
course, not true. Hence, in & pafbially ordered space ‘,there may be pairs of

 prospects that are not 'com;ga.rable.l

What is called a “preference ordering” here is called a “preordering” by
Debreu [1959, p. T}. Arrow [1963, pp. 13, 35) uses “weak ordering” for

our "complete preference ordering,” and “guasi-ordering" for our “partial
preference ordering.” In mathematical literature, the term "weak order,”
or "weak ordering," is used whenever (as above) eguivalence (x ~ y) does
not necessarily imply equality {(x'=y). : _
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2
By a numerical representation of a complete preference ordering ?
we mean a function f , defined in all points x of the prospect space Z R

and. whose values f£(x) are real numbers, such that
(2.1) £(x) 2f(y) if end omly if xZy -«

Using the above definitions of preference and of equivalence, one sees readily
that this is logically equivalent to

jf(x) >f(y) if and only if x ¢y , and
(2.2) o

Lf(x)wf(yj if and only if x -~y .

The usefulness of a representation by a continuous function, if one
exists, lies primarily in the availability of stronger mathematical technigues
in that case. There is a temptation to look on the values, and the differences
between values, assumed by a representing 'utility function" as messures of
satisfaction levels, and of differences 'bhéreof » associated bwith the prospects
in questlen. Buch interpretations may have heurdstic usefulness becaunse of
the brevity of pharasing they make possible. However, thelr observational basis
is not really clear. An observed cholce between two prospects reveals at' beét
the fact and the direction of preferén‘ce, not its strength. A descriptive:

theory of cholce thus steys somewhat closer to what is verifieble by observation

2 If the preference ordering is not complete, a numerical representstion is

a function £ such that £(x) 2f(y) if x4y , together with a.specifica-

tion of the set of pairs (x,'y) of prospects x, y in X, which are indeed
comparable., Such representations have been considered by Aumann [1964].
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if it is built on postulates about the underlying preference ordering. A
similar remark applies to normative theory. One can better inspect and
appraise a recommendation coached in terms of actual cholces in various
situations, than one derived from meassures of “satisfaction" whose operational

significance is unclear.

We sghall now describe the results of two postulationsl studies in the
literature, as illustrations of the points just made, and for use in what follows.
In Sections 3, L4, we shall discuss only complete preference orderings, without

always repeating the adjective.

3. Representation-of a continuous preference ordering.

Intuitively, one would call a preference ordering continuocus if a small
change in any prospect can not &rastica.l.ly change the position of that
prospect in the ranking of all other prospects. Starting from a sharp definition
of this concept, Debreu [1959, Bection 4,6] has shown conditions under which &

i %
continuous preference ordering can be represented by a continuous utility functicn.

In subsection 3% we show that the definition used by Debreu is logically equiva-

lent tc¢ the following one.

The notion of s "small® change in a prospect can be made precise by

assuming a given distance function in the prospect space. This is a function

d(x, y) , defined for all pairs (x, y) of points in z , with the following:

propertiies usually assoclated with a distance:
a(x, Y) = d(ys x) 50 for all x, Yy,

(3.1) qa(x, y) =0 implies x =1y,

C‘;(x, z) s a(x, y) +a(y, z} forall X, ¥, z »

See also Wold [1943].



-6 -

We shall call the preference ordering 7 continuous on :Z ir

and

for any X, ¥y ofz such that x =y , there exists a number & >0 such that

(3.2% (8) z %y forall =z m}f such that d(z, x) 8 .

\(b) x 7w foreaell w in % such that d(y, w) 58 .

(In particular, this is the case if all prospects in Z are ‘equivelent)}. The
same continuity concept may be obtained from many, but not from all, different

choices of the distance function. We now have

Propesition 1 [Debreu, 1959]. A con‘bir:uous c@lete preference ordering r

defined on g connected. subseth](ect’ n—d.imension.a.l Buclidean space é (n finite)

can be represented by a utility function u{x) defined and <:c>n1:i:1u.cmfzs3 in Z .

Not every conceivable preference ordering is continumous. TIf any increase
in this year's food supply, however small, is deemed preferable to any increase
in next year's food supply, however large, we have an example of the disconfinuous

lexicographic ordering.

If u(x) is a contimuous represemtation of 7, and if ¢ is any

3 Contimuity of £ eand of w(x) is defined using the same distance function,
for instance da(x, y)=ma.x[x-yi| if x i=1, ..., n, arethe

coordinates of x . While this distance function depends on the units of
measurement of the smounts X s 1=1, ..., n, the continuity concept is

independent of these units.
h Depending on the interpretation, the prospect space ,xf may be the set of all
points x with all coordinates Xy £ 0 , or any other representation of the

range of alternative prospects suitable in a given problem. Z is called

(arcwise) comnected if any two points of & can be connected by & contimuous curve
contained in



_7_

continuous incressing function defined for all values assumed by u(x) on

X, then

(3.3) w*(x) = gfu(x))

ie likewise a continuous represenmtation of ¥ . Conversely, if' u(x) and

w*(x) are two contimuous represenmtations of 2 , then such a function ¢ exlsts
for which (3.3)holds. Therefore, only the notion of higher or lower emong the
‘levels of u(x) has significance, not the numerical values u(x) themselves or the
differences thereof. In particular, even if 7 should possesé a differentiable

representation u(x) , there is no intrinsic meaning in the "marginal utility"

Su_

ax

an ordinal, not s cardinal uwtility. However, even if wu(x) is only ordinal, for

of any cormodity. This is often expressed by the statement that wu(x) is

given wnits of commodities 1, j, the ratio

* 1% ¢ t
(3.1) du {x) du”(x*)
, 1 / a_xs

of two “marginal utilities® in the same point (x = x') , or in two equivalent
points (x . x') , is invariant. That is, the ratio (3.4) is independent of the
choice of & differenmtiable ¢ in(3.3), hence is & quantity meaningful in terms

of the given ordering 7... .

By suitable choice of @ in (3.3) one can make the ra.nge il 2/) of u¥(x)
coincide with any finite nondegenerate interval, including the left and/or right
endpoint depending on whether X contains & vorst and/er best element of z .
w*(A) can be unbounded from below and/or ebove only if no worst and/or best

elémeﬁt exists.
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*
%" Equivalence of two definitions of continuity of an ordering. The definitions
to be compared are:

D If Mmy =y and x?:,yn‘.-‘.’z forall n, then xZy 2z,
e

D' If y¥rx there exists & >0 such that
(a) a4 (y, w) S& implies w¥»x

(b) & (w, x) S5 implies y > w

Assume "not D." Then there exists y, with x z y, £z forall n but
either Ziﬁ':% yn =yZ7%x or z>y. Taking the case y 7>~ x , we choose & 1in
D' such that d(y, yn),§ 8 implies y,» X, and N in the definition of
limit such that a(y, ¥y) S8. Then y ¥ x T yy » @ contradiction. The
cage z > y is similaxr.

Assume next "not D' ," and take B = -1‘5 . Then, though ¥y ~x
2 .

thére exists either a sequence y, such that a(y, yn) < 5 bub xI y,» ora
sequence x~ such that d(xn, x) S 5 but x &y . By D, both cases imply x
contradicting y ¥+ x .

Two statements such that the negation of either contradicts the other
are equivalent.

L, "“Cardinal" representation in the presence of

independent sets of commodities

The problem of deriving special f§rms for a utility function from
sssumptions about independence in groups of ccmmodities has been studied by
several authors, ix;cluding Leontief [1947 a, b] and Sammelson [1948, Ch. VII].
We shall follow Debreu [1960] beca.use he avoids assumptions of d:i.f‘:t‘erent:.a‘bility

of the utility function tha.t seem unrelated to the essence of the problem.

o
“ ¥
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To illustrate the independence concept to be defined more sharply
below, one msy wish to assume that preferences between food bundles are
independent of the amounts of clothing and of other commodities consumed, and
similarly for preferences between clothing bundles, etec.; furthermore that preferences
between food-and-clothing bundles sre independent of the amount of other

commodities consumed; ebc.

In this Section we shall consider only the case of a partition of t}ne
list S into three independent sublists, P, Q, R, indicating at the end
- of the subsection 2*why a similar result holds for a partition into more than
three sublists. ILet x = (x?, g5 ;;R) denote a commodity bundle extending

over the entire list 8, with x, = (xPl, I xPnP) extending over P , etec.

Iet 7 denote a preference ordering on the space Z of all bundles x such

that X5 ig in a given space :kp,.xq in % > *p in ;%R" We

shall call Z— sensitive in P if there exist Xp s ¥p » xQ » Xp such that

(4.1) (XPS X XB) >’(yPs s XR) o

To express the required independence assumptions we use an arbitrary but

fixed reference bundle

(b.2) x° = (x5, Xgs Xg)

to define six orderings induced by Z on subgpaces of z . To be dencted

¥° o 0 YO )

9 b
x o "R’ “pg’ ~QR'’ "P,R’ all orf these orderings a;‘e derived )

from 7. s, &8long the following lines:
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Xp ?.'g Yp means (xP’ ixgs xg) £ (yps xo: X.g) 3

(XP’ xQ,) tg’q (yp.i '.Y'Q) means (xP’ Xns x;) E (yp, yQ, X;) 3 etc.

(4.3)

In general, these orderings depend on the reference bundle x° s in the

sense that ?.; depends on (xg, xg) , eto., and that ?:;,Q depends on zg , etec.

The required independence assumptions will say thet in the case of five out of the
six orderings this dependence-in-principle is not a dependence-in-fact. We can

now state

Proposition 2 [Debreu, 1960, 3 sublists only, modified]

let 7 be a continuous preference ordering of all conmodit‘;‘y bundles

X = (xP, g2 xR) such that x,, Xy, X, belong to spaces ZP s 7{@; s zR s

which are gonnected gubsets of Euclidean spaces of Dps nq, n, dimensions,

respectively. let > be sensitive in each of P, @, R, and let

s °

o o] o o] '
> > > _
P’ ZQ » g %pq s “q,r (as defined above) be independent of ‘x .

Then there exist functions u*(xP) s v*(xq) , w*(xR} , defined and continuous

g_n___-kp , Z’Q , ¥_, respectively, such that ! 1is represented by

(4.1) wi(x) = w¥(xp) + vi(x) * v (xg) -

This representation is unique up to a linear transformation

(k.5) u'(xP)?.BP *ou(xg) 5 vUxQ) =BG+ vi(xg) 5 wixg) =

=Bg + 1 (xp) ;7 >0 .
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A similar proposition holds for any partitieningof S into four or more
independent sublists. However, for a partitidning into only two sublists the

statement of the proposition 1s not wvalid. .

In prineiple, the representation (4.4h) is still ordinal. That is,
any function u''(x) obtained from u*(x) by (3.3) is likewise a continuous
representation o £ . However, unless q: ha,pi)ens'to be linear, the
representation u' (x) cannot be written simply as a sum of functions each
depending on one oi the bundles Xps Xq» Xg only, as u¥(x) is written in (L.%).
It is only in this limited sense that the representation by u*(x) can be called
cardinal. To argue from this that in the presence of at least three independent
subsets of commodities one can meaningfully compare the utility differences

between two pairs of prospects would definitely go beyond the assumptions

made so far.

*

k. Proof of Proposition 2. We shall follow the general ideas of Debreu's
beautiful geometrical proof, and of the work of Blaschke and Bol [1938] on
which it is based., We modify his reasoning in one respect in order to aveid making

the assumption that {the sixth induced ordering, is also independent of x° .

>0
"R ?
This minor strengthening will be found useful in the application we shall make
in Section 7.

Since the Cartesian product

Xe X x 22,

is a connected. subset of a Euclidean space of n = nP + nQ + np dimensions, the
premises of Proposition 1 are satisfied. Hence =2 is represented by some

continuous function

(4.6) U(x) = U(xP’ Xns X'R)
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defined on % . Since an additive constant does not affect the representa-
tion, we shall anchor U(x) by requiring

(4.7) (") =0 .

: z 7 > b 7 _ °
The five induced orderings <j , 0’ "R’ “P,g’ ~q,R {superscripts

have been dropped because these are now independent of xo) are therefore
represented by the continuous functions

u(xP) = U(xPJ xg, x_g) » V(xq) & U(x;, xQ: xg) » V(X-R) = U(x;: Xo: XR)’
(%.8) : . ) )
. W(XP, XQ) = U(XP, X, X—E) s Ulx,, xR) = U(xgs Xns XR) >

respectively. Since the domainsof all these functions are connected, the range of
each is an interval. For three of the ranges we introduce the notations

by Uy, Vs TraXy .

Since I 1is sensitive ineach of P, Q , R, none of the five intervals
collapses to a point, and, by suitable choice of %° , ©ne can ensure that
the point '

o © ) O Oy _ .0 _O
(4.10) ulxp) = v(xg) = wlxp) = Wlxp x5) = Ulxg, x5) = 0
is interlor to all five ranges.

Iet x, ¥y De bundles such that

w(x,, xQ) = W(¥p YQ) s owlxp) = wlyg) .

Then we have

(xps %q» X3) ~ (¥ps ¥g» X3) 5 (xps %Q» Xp) ~ (xps %gy ¥p) »

and, since’ Z.P,Q s ?"'R are independent of the choice of "x° s

X = (xé, g Xg) ~ (¥ ¥g» %) ~ (vp yQ,_y'R) =¥,

hence U(x) = U(y) . Therefore, there exists a function F(W, ) having the
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intervals W( ;KP X%) an 7} as the domains of its variables W, w, and the

interval U(Z) as its range, such that
(4.11) U(x) = Pty ) wlxg) -

By (4.8), using sgain the independence of fP Q° Z‘R , F is (strictly)

. 2 R
incressing in each of its arguments. Then, since U(x) is continuous, F
is continucus in each of its arguments and in both jointly.

To avoid repetitlon in the several similar arguments to follow, we anncunce
in advance that all of the functions G, F~, g, £, H, b %o be imtroduced below
are likewise continuous and Increasing on the intervals, or products thereof,

over which these arguments range.

ke that

Similarly to (4.11), we have from reasoning involving fQ R’ ~p°
3

U(x) = GGI(XP) » U(x,, XR)>

Taking x, = x; here and in (4.11), we have

F.rér(xl,, =) o)= G@(XP), vaQ))

and, if F1 is the inverse of F(W, 0) ,

W(xp %) = F‘l@@(xp),. v(xg)) = eulxp), v(xQ))),

say. Therefore

(}*'12) U(x) bl F(S@-(XP): V(XQ)) ) V(XR))
and, symmetrically, o |
(k.13) U(x) = GG(xP), iG(xQ), W(ﬁ))) .

We shall study level curves of the funcdtion

(L.24) F @(ua v), W) = G@’ (v, wp = H(u, Vs W), = H(t) ,
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say, defined on the three-dimensional cell W/ & 2X7X"f s of which the
origin o = ( 0, 0, 0 ) is an interior point. The ordering 7 on XPX IQXIR

represented 'by U(x) induces an ordering on . ; s Which we likewise denole
by Z , and which is represented by H(t), where t = (u, v, W) .

In the plane w = 0 we arbi'trariljr select (see Figure 1) an indifference
curve !'. not passing through o© , but close enough to © for all the intersection
points sought in the following construction to exist. If K intersects the u- and
v-axes in a = (u', 0, 0) and b = (0, v', 0) , respectively we have

(k.15) a.b, implying g(u', 0) = g(0, v')

by taking w = O in the first member of (4.14). At most one intersection

point exists in each case because g(u, v) is increasing in each variable. Pre-
cisely one will exist if X passes close enough to o , because of the
continuity of g(w, v) .

It will save words to refer to two points s, t of 7&5 u-congruent if {hey
differ only in their u-coordinate,

(1)

8= (u 2 v, V) 3 t_\"" (u(E)_, v, v) .

Similarly we shall speak of v- and w-coOpgruence.

We f£ind ¢ & (u', v', 0) , v-congruent to & , u-congruent to b ,
and draw through c an indifference curve )\ in the plane w =0 , which
intersects the u-axis in a' & (u", 0, 0), the v-axis in 4 & (0, v", 0) .
In particular, : : :

(4.16) ¢c.a' implies g(u', v') = g(u", 0) .
Finally we find c' & (u%, v', 0) , u-corgruent to a' , v-congruent to b ,
and 4' = (u', v%, 0) , wu-congruent to 4 , v-congruent to a .

We now wish to prove that 4' ~ ¢' ., Since Proposition 2 does not hold
for a partitioning with only two sublists, we shall need to go into the third
dimension to prove this.
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On the indifference curve 1 .through d in the plane u =0 , we find
b* = (0, v', w') , w-congruent to b . Then

(4.27) a4 ~p*, implying f£(v", 0) = £(v', w')

by the second member of (4.1%). Finally we find o" = (0, Q, w') on the
w-axis, v-congruent to b" , and a" = (u', 0, w') , u~congruent to o" ,
w-congruent to a . Then, by taking w = w' in the first meaber of (4.1kh), we
see that (4.15) in its turn implies a"~ b . (In fact the indifference curves
¥ and K' are point-by-point w-congruent). Hence ¢ ~ 4 ~ d" ~ a",

and therefore

(%.18) ¢ ~a", implylng f(v', 0) = £(0, w') .

The second round of the construction is similar to the first. It
employs the points a'" = (u", 0, w) , u- and w-congruent to o" and a’
respectively, and c" = b'" = (u', v', ¥') , u-, v~ and w-congruent to

b", a” and ¢ = Db' , respectively. We have

3

(4.17) implies 4' ~ b'"
(L.16) dimplies 'c" ~ a'” so a4t ~ e' .
(4.18) implies a'“- c!

Hence 4' and ¢! are on the same indifference curve j in the plane w =0 .

The rectangle acc'a' has the following characteristics relative to the
curves ., A, B

incidence ‘ congruence type of
a ¢ c! a' a,a’ c,c’! a,c a'c!t
ison X A n A is u u v v

We shall call such a rectangle inscribed in the curves X, A, @ . Since

/‘\ +
the origin could have been chosen anywhere in f , we have found the following
result, illustrated in Figure' 2. ' )

Result 1: If three indifference curves X, A , W possess an inseribed

rectangle acc'a' then X, ) , p possess adjoining inseribed rectangles
bdd'bt , b' =c , and eff'e' , f' =a , provided only thet the intersection
points required by their consbtruction exist.
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Fizure 1
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The remainder of the proof is based on the "textile geometry" of
Blaschke and Bol. On any three indifference curves X , A, | One can
construct a sequence of such rectangles as indicated in Figure 2, going as far
in both directions as the intervals/a( and. ﬁ/ permit. If there should be
an infinite sequence of such rectangles inscribed in K, A, Bk , such a sequence
cannot have a point of accumulation ' in g , Dbecause by the continuity
of H(t) such a point would belong to each of X, A, p, vwhichisa
contradiction. Hence if 2( and !y‘a.re bounded, an infinite sequence of
inscribed i'ectangles can only have an asccumilation point on the boundary of

A second sequence of rectangles can be inscribed in A, p , v if ¥
contains, for instance, the point g , u~congruent to c¢' and v-congruent
to f' . In this way the intersection of with the plane w = 0 1s covered
by rectangles inscribed in a sequence of indifference curves ..., Wy MR 5V,
+s+ , eXcept possibly for uncovered margins near the endpoints (if finite) of

3 -

Furthermore, one can interpolate an indifference curve 7 "between"
x and A , say, by choosing p on eh (Figure 2) so that q ~.r ; and
drawing vy through ¢ and r . This construction can be extended over the full
length of X and A , repeated between A and u , ebc. and possibly into the
uncovered marginsr, and repeated agaln between X and 7y , ete.

Let ”Z(,' be the set of all u-coordinates (0, ut, u", ...} of vertices
of inscribed rectangles occurring in this construction repea.ted indefinitely, '
that of all v-coordinstes. Then /Z(, is dense in @‘ 2/0
We assign new coordinates (u , v,_) to all points of’Z( X% in the manner
indicated in the margins of Figure 2. Then

(h 19) w = ﬁ(u) , Vo= o(v)

are continuous and increasing functions on éf. and Iy respectively,
for which

(1.20) 2(0) = @(0) = ©

£} Rt
These functions are extended to % ’ Z/ , while retaining these properties, by
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u¥=
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Figure
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wu) = sup x{u') , o(v) = sup o(v*) .
u! S - vt Svy

Ii‘ 62(: v eﬁf"

It follows ﬂfI‘Oln the construction that, for any two equivalent points (u, v) ,
] gt
(u?, v!) o U v/' one has : .

W v = g(u) +oo(v) = oa(ut) + p(v') = ut* + vr*

By continuity of H(w, v, 0) this property likewlse extends to/?{){?i
Therefore, if we now define functions

) = i) V) = o)

the ordering 2, restricted to pointe of 2/1‘01' which w(xR) =0, is
represented by the continuous function -

(%.21) _u*(xP) + v*(-xQ) .

To extend this representation to all of Z » we return to Figure 1 to
note that (4.18) also implies b ~ o* . Tt follows that, had we carried out the
breceding constiuction in the plane u = 0 instead of in w = 0 , starting fram
{ instead of from 0, we would have errived at the same demarcation points o,
b, d, ++. on the v-axis, the same interpolated polnmts, the same functions ¢(v) ,
and hence the same function v*(xQ) s &long with a similar funcbion W*(XR)'. ‘
It follows that I is continuously represented on those points ofz for which
u*(:z:P) = 0 by

* *
(h.22) v (xQ) + W (xR) .
We shall show that 2 is represented on 2by the 'continuous functicw

(k.23) UH(x) = w{(xp) V() + W (xp)

Consider two bundles x = (x.P, Xg? x.R) y X' = (x.l!,, x!, xﬁ) . By (15.12), (‘11-019),

? ?here is an affinity between the following reasoning and s study by Arrow’
1952]. '
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their order depends only on the corresponding utility vectors

(4.24) (u*, v*_, W), (¥, v'¥, w*) , where u* = u*(xP) , ete.

Extending the usual notation [z, z'] for the imtervel z Su S z' to

o [z, z*] if =z Sz
|z, 21| &
{z*, z] 4if 2'<z,

we consider the set

o o1, x| o5 v el o, w1 ]

This is a block (rectaz;gular ;parallelépiped) of Whic];l. each vertex has each
coordinate in common with' one or the other of 4he points (k.24k) , as shown

in Figure 5. On the points of each edge of »J the ordering < is (strictly)
monotonic as indicated by arrows, because of the monotonicity of H' in (4.14),
and each such edge ordering is répreseﬁted by the correspénding term in (4.23).

We must show that, for all possible dimensions of the block, the ordering
Y of each of the pairs (a, h), (b, e), (c, £), (&, h) dis represented by (k. 23).
"For (a, h) this is already implied in the edge orderings a b ¥f »h.-

" Assume first that v* # v'™ . Then 1f either u* =u'* or ¥ =w',

the remaining comparisons are likewise setﬁled by edge orderings. Assume

*
therefore that the block J 1s three dimensional, We shall make use of the
eqguivalences

(h2h) (%, v, W)~ (u* e p, v o p, W)~ (W ke, V- p g, W o-g) -

implied in (4.24),, (4. 21), (4. 22), as long as we make sure that all points so

*
compared are in )j " . fThis means that all points of any line segment in )X *
parallel to either K or t are eguivalent, and these equivalences are represented
by (4.23). o -

AS an example, Figure 4 shows the comparison of b and e . We intersect
)f with a plane through b parallel to both X and { . Since a, h are
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on opposite sides of @ the intersection 1s a two-dimensional convex
polygon LQ;J with sides ;parallel toxC, ¢ or ©. Now @ and hence \/3’

mst mtersect the broken line h e d a  in precisely one point k .

Figure 5, dravn in @ shows & broken line in ’Lp with a finite number of
segments parallel to X or t , connecting b and ’k + 'This esgtablishes

the equivalence of b and k , and its representation by (%4.23). The
comparison of ¥k and e then is made through the edge ordérings on he d a ,
again represented by (h,_25). In Figure 4, b . k »e . It is clear from the
two-dimensionality of ¢ and the condition on the slopes of its sides, that the
above reascning can be cé.rried. through regardless of the dimensions of
and. of the pair of opposite vertices compared.

L

Finally, if v* = v'¥ | we first use (4.24) with either P £ 0O or q #0

to obtain
(u"*, vrE, w“"9 ~ (_u*,l v, w*) , say, with v"¥ £ v%* |

and continue from there with the above reasconing. This procedure is unavailable

only if .
a3, A ? .
* {J* t 2 * e ’
ﬁ = (/{_ % // X » where?é = u¥ (ZP) ete.,
were to be bounded,

and iIf we had
(v¥, v¥, v*) = (u'*, v'*, w*) = either (u, v, w) or (u, v, w) .
In either of these cases equality implies equivalence, represented by {L4.23).

Finally, to discuss the uniqueness of (4.23), we note first from (4.10),
(%.20) that

u*(xp) = v*(xQ.) = ( xg) =0 .
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Now assume that » is also represented by the continuous function
U (x) =t (xp) + Vi) ()

We define N
Bpeu’(xg) » By V! (X ) s ﬁBssW'(xg) )
u'(xp) = ul(xp) - By, vU(xg) = vi(x) - By wi(xp) = vi(x) - By

Then there exists h(u®) such that, for all x in z s

wilag) + i) + wlag) = n(i*(xg) ¢ V¥Cg) + ) -

Inserting Xy = x.g s> @and thereafter Xg = xg or Xp = xP or both, we have

w4+ v = h(u¥ +v*) , uw' =h(u¥), v"=h{*), 0=1n(0),
hence

h(u* + v*) = h(u¥*) + h(v¥*) , n(0) =0,
7; 91 *
for all (uv*, v¥) in /‘j

This in turn lmplies

h(n u*) = n(u )
",:',‘:{'

* such that uw* and nu* are inm the interval '/

for all integer.n and all u
Among continuous functions h(u¥) , +this property is possessed only by the

linear functions
h(U*) = 7“-* P

wvhere ¥ >0 because h is increasing. This establishes the transformation

(k.5).

The proof of Proposition 2 is now complete. To indicate 1is extension
to a partition of 5 into k sublists, k¥ >3 , consider the case where

there is a fourth sublist N in which 2° 1s sensitive, and such that t;; P t&N
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are independent of x° . Then by Proposition 2, and

0 N
“PyQR "Q,R,N

can be represented by
u*(xP) + v*(xQ) + w*(xR)
and vi(xg) = WH(ap) + 2¥(xy)

respectively (using if necessary a linear transformation to obtain the same
functions v*(xQ)', w*(xR) in the representations). We now repeat the part
of the above proof beginning after (4.22), replacing

xP’xQ’xR by‘xPJ (xQ,’xR)’ xN’
v, vE, W by w*, vFaw*, ¥,

a procedure which can be repeated an indefinite number of times.

5. Questions of interpretation and spplication.

Before going on to the discussion of possible representations of
preferegce orderings over time, let us stop to ask ourselves whose preference
is beiﬁg studied. This question concerns the relevance of the enslysis, and
is'indeééndent of the logical connections between the properties of the orderj
ing and the mathematlcal form of its representation. In regard to preference
over time, the simplest interpretetion of the orderings that have been studied
most thus far is the normative one considered in Section 1. One looks at various
possible preference orderings that may be adopted, by whatever decision process,
for the planning of an economy with a constant poyulatién size. New problems
arise if population is expected to grow indafinitely'éf to keep changing in

other ways.

Anpther possible interpretation is that one wishes to study descriptively

the preference ordering of an individusl with regard to his life-time consumption
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program, assuming that such an ordering is implicit in his decisions. For
this interpretation the bequest motive needs to be considered as well. For

applications of such a preference ordering, see Yaari [1964].

Finally -- the ultimate goal of a theory of preference over time for
an economy with private wealth -- one may wish to examine whether an aggregate
preference ordering over time can be imputed, on an “as If" basis, to a
society of individual decision makers each guided by his own preference

ordering over time.

In all these interpretations, normative or descriptive, the most
intriguing problems arise from the faet that the future has a beginning bub
no discernible end. In contrast to this central problem, the guestion whether
to use a discrete or & contimuous time concept seems in the present state of
knowledge primarily a matter of i'esearch tactics rather than of substance.
So far the indications are that axiomatic analysis is somewhat simpler if one
chooses discrete time. ©On the other hand, the maximization of a wtility
function of a given form under given technological consiraints
is often simpler with continuous time. We shall therefore here choose discrete

time on the basis of expedience without further excuse or explanatlon.
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6. Postulates concerning a preference ordering 7 over time

We shall now adopt a set of five postulates sbout a preference ordering

?,' on a space lx of programs, that is, of infinite seguences, denoted

(6-1) 1x = (xl, xe, XB’ sean ) >

of commedity bundles

(602) xt = (X_bl, Xta, LR X 3 th)

assoclated with successive time perieds t =1, 2, 3, ... . The program space

1 Z is the space of all such segquences, in which each bundle X, iz a point

of the same (single-periocd) commodity space 2’ ; referring to a list of commodi-~

tles which is the sanme foi' all + .

The postulates are modeled after those used in two earlier studies by
Koopmans [1960] and by Koopmans, Diamond and Williamson [1964]. The main
difference is that the former studies postulated the exiétence of & cenbtinuous
representation. In the present study, the postulates refer to a continuous
ordering, and the proximate aim -f the study is to derive the existence of a
continuous representation. A second difference will be noted in connection with

the third postulate.

It will be useful to employ brief notations for finite or infinite

segments of the program sequence, as follows
(6'3) lx ‘E (x 2 2X) = (xl) teey :_ct-l’ tx) f (lxt"-l, tx) -

In an infinite-dimensicnal space such as Z s the choice of the

1
distance functions is crucial for the meaning of the continuity concept
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implied in i%t. We shall adopt the function6
(6.4) p(,x, \¥) = szp alx,, v,) »

where d.(xt » y_t) is the distance between the +%-th period imstallments Xos Vi

of the programs, x , .y , according to the definition
I

(6.5) alxe, ¥,) = macx | %y = ¥eq | oo

P, (Postulate 1, Continuity). The program space,Z is the space of

all progrems ,x such that x is in & metric space 2’ for all t . The

preference ordering 3' on the program space 12 is complete; and 1s continuous

with reference to the distance function (6.3). The (single~period) commodity

space Z on which the program space 1;( 1s based is a connected subset

of the n-dimensional Euclidean space R .

P, (Sensitivity). There exist a program .x in 1//\% and a bundle

1
yl in Z such that

lx = (le xe.! xj! "'")}’(le xa} x}) “')

The first purpose of P2 is to exclude the trivial case where all
|

programs in l/ are equivalent. However, P2 does more than that. It also

lx relative to other

programs is independent of the bundles X availa.ble in any specific period +

exeludes orderings in which the standing of any program

& denotes the largest of the numbers dt’ t=l, 2y 3, ces g

if there is a largest, or the smaellest number not exceeded by amy dt if .
there is no largest. Such a number exists whenever £ is bounded (see
footnote ). IF 2 is unbounded we admit the possibllity of D@;, ly) = ,

The symbol q%lp a
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but dependent on the asymptotic behavior of Xy,

as t tends to infinity.'
Next we introduce two independence postulates, F3' and " , of

which the first will be maintained throughout this paper, whereas the second,

malntained in most of the paper, will be dropped in Bections . For their

formulation and anglysis we employ an arbitrary but fixed reference program.

o (o) (o).

to define five orderings, induced by < on subspaces of lx s, and denoted

Zg » 2?.'0 3 1?; 3 3?.'0 3 e as follows:

Z;
4 o
x, C; Yy means (xi, 2}{0) r (yl, oX )
oF 220 oY means (xz, 2x) & (x;j, 2y)

(6.7) <(x1, xa? 1..*3 (Yl, ya? means (xl, X, on_) r (yl, Vo 3x°?

50 o _o (O O
5% 5% 3V means (xl, 3¢ Z)x) z (xl, X5 BJ)
o
- o Oy % (© 0
X, Ty ¥, means (xl, X 5% )z (xl,‘ya, 3:( )

7 A simple example of such an ordering r satisfying aJ.l postulates except P2
is that in which Z is one-dimeneional and I is i-epréfsented. by

im sup X,
T  £2T ©
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P5' (Limited Independence). The two orderings rg R Eko are in-

(o)
x .

dependent of the reference progré.m 5

P3" (Extended Independence}. The ordering l?.‘g is independent of lxo

For convenient reference, we also introduce
P5 (Independence) Both P3' and P3" hold.

Whenever one or both of F5', P3" sre assumed in what follows, the corresponding
orderings will be denoted Z, , X, lr,é . Note that 1?"2 would have been
denoted Zl’a in Section L.

In the earlier studies referred to above, the implications of F3' were
persued at length, those of P3" only mentioned ﬁriefly. In this study, the

emphasis is reversed-

Neither P3' nor P3" cen be regarded as realistic. Between them, they
will pe found to preclude all complementarity between commodities available
in different periods. P3' by itsgelf will be seen to permit a limited
complementarity among the utility levels to be associated with éuccessive
reriods, but still no complementarity between individual commodities in
different periods. P35 or P3' sheuld theréfore be looked”upon ag £irst
approximations, made to facilitate explorations of the implications of the

fourth postulate, the real objective of this paper.

_ P4 (Stationarity). There exists a first period bundle x‘:l*_ in ,7(_

with the propérty that, whenever the programs




,_50”

K= (xl, 2x) = (x”{, X5 5:5, cees)

lY = (xl’ 2Y) = (XIJ 32, 339 "')

are such that

z ¥ » then the programsa

12 = (zl’ 259 25: cee) = (xa: XBJ xh’ cos) = oF
W= (wi: Wé, Wiy see) = (y2’ y3) Yux 00') = Qy 2

defined By z, = Xy, » Wy = Vg » ¥ =1, 2, es. , are such thet ,z ?:lw .

Before interpreting this postulate in less formal language, we nole that,
if one particular x, = xI in ;(f has this property, then by F3' every x; in

jk has this property. Using this, P4 says that if two programs .x , l‘y have

1

a common first peried bundle Xy =Yy s then the programs 1% s ¥ obtained by
deleting %y from 1% and from o respectively, and advancing the timing

of all subsequent bundles by one period, are ordered in the same way a8 (X, ¥ -

It ies worth emphasizing that in this statement, nothing is said or implz.ed
about the ordering ocE' "then future" programs X5 o that may be applied
after the first perio& has ela.psed. That is, no question of consistency or

inconsistency of orderings epplicable at different points in time is raised?

8 In the notaticns X s oY @s used here, there is no longer a necessary

connecfcion between the presubscript of X and the timing of the first
installment X, of that program. Thet is, X simply mela.ms the commodity
bundle that happened to occur in the second peried in the program 1% . “In
the program oX = 4%, that same bundle occurs in the first per:l.od.. With

this und.erstand.ing, the notatlons, 1% 1 1¥ will no longer be needed in
what follows.

9 For a discussien of that question, see Strotz [195] .
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Only the ordering 7 applying "now" is under discussion. Applied repeatedly,
P4 merely says that the present ordering of two programs

(xl, cees X 15 tx) = (lxt-l’ 1;x) and (1xt-l’ ty) that start to differ

in a designated way only from some point t in time onward is independent

of where (t =1, 2, ..,) that point falls.

The fifth and last postulate asserts, roughly, that the end result of
an infinite sequence of improvements starting from some given program represents
itself an improvement over that program, It will become clear below that, if
all but a finite number of the improvements affect the program in only a finite
nurber of future periods, this assertion is already implied in P1, 3', k. It
will therefore suffice to refer only to a sequence of jmprovements made to sgccessive

bundles in the program, taken one at a i{ime,

PS5 (Monotonicity). If )X, 1y are programs such that for all
tml, 2, veee |
(xl’ Kos wees X 00 Yoo Vigqo Yigos eee) 2 (xl.r oY) "'x.b_l: Koo Yep12 Ygap? 0 ) s

then .y 3 ,x . The same statement holds with & replacing % .

It can be shown that, given the other postulates, F5 is implied in a
stronger postulate, used in a previous publication [Koopmens, 19€0], which

simply says that there exist in Z a best and a worst program. There is

1
some interest in avoiding that stronger statement.

On the basis of the postulates set out, we wish to construct a representa-
tion of £ on the entire program space lZ s Or on as large s part of it
as we can, Our strategy will be first to find such representations on sultable

subspaces of lk .
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7. Representation of I on any

subspace of ultimately identical programs.

Since the space 12 is infinite-dimensional, Proposition 1 cannct be
directly applied to the ordering Z given on it. For this reason, we shall in

o

the present section study ¥ on the subspace l:ZT of all programs of the form
[+]

(7’1) lx = (le.’ T'l"lx ) hd

Since programs in this subspace differ only in the segments 1xT » the ordering

o
Z on lZ restricted to the subspace 12'1' becomes an ovdering of

sequences X of length T , on the space BC . We ghall denote this

1 T

*
ordering by l?; . In Section T we shall prove

Result 2. For all T , the ordering l?:; is_independent of p X ,
and is represented by a function of the form
-1
(7.2) UT(le) = u(xl) + au(xa) t oeee + O u(xT) , o<a<1li.

Here u(x) is a continuous function defined oa k, and both @ and u(x)

are independent of ’ T . The proof proceeds through a succession of statemehts
whict we label {R2a), (RZb), ..., recording in each case the postulates used

in the proof, unless all five are used.

(R2a; P3', 4) The ordering t?;.'o of sequences

to the set of programs (lxg_l, 1_Jx) is independent of

x , defined by restricting z

o

1% and of t .

(R2b; P3%, L) 2:;’ is independent of lx° and of t.
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(R2e; P3, k) £ol tz is independent of lxo and of t .
(r2a) iﬁ; is represented by a continuous function of the form

(1.3) Uplqp) = uy () +u,(60) + vee + uglxg)

which is independent of lxo , &and unique up to a linear transformation similar

to (4.5). The proof of this statement rests on Proposition 2.

(R2e) One can choose the ui(xi) in (7.3) in such a way that (7.2} holds
with ¢ >0, where a is unique, and where u(x) is unique up to =

linear transformation
(7.%) wi(x) = p + yu(x) .

(Rf) a<1l.

*
7" Proof of Result 2. Clearly the continuity of % entails the
continuity of all restricted orderings derived from it.

(Rea). P5' allows us to write

>O = 7 7 7\7'0 = 7
(1.5) ez, 2

Using the symbol <=» to denote logical equivalence, these statements are
made explicit by

ty

(7.6) forall &*, x , ¥, (. ) % (v Z)e= (5 20 T (3, %)
(707) for all x; P 2x b Ey P) (xz: 2x) z (XO, 23') ==y (X;(-_J 2X) z (Xi, EY)

. .
In particular, choosing for x; in(7.7) the x; occurring in Pk, we have from Pk
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(7.8) for all x, X, o, (x), %) & (x;, YK (x), %) (2, ¥) 0 x Ty,

an implication which can be applied once more to give

c _0 o C 0 (o} (L0
(Xl’ x2’ 5}‘) ~ (xls x2" 5Y)® (xe.- BX) ~ (x2’ 5?)@ 33{ ~ By s etc.
These results are summarized in

(7.9) AR LA T a2, 3 ves ,

keeping in mind the notational practice explained in footnote 10.

(R2b). From (7.8) and (7.6),

(x]o_J Xos 3x0) z (x]o_s Yor 3x0)<?—>(x 3 53‘:0) z (YEJ on){"’?(x > 5X*) P (Y2:

x*) .

3

This reasoning and its repetition yleld

*
<:> (xl: xe’ sx*) ?: (xIJ ye!

o}

(7.10) “:‘:‘tgz’tn‘..:?eurl’ t=2, 5, e .

. " >-°,= bt
(R2c) We now bring in P3", written as 12 = 1% -

Together with (7.8, this implies

(x;, x2: Xz h_xo) z (x;, y2: YBJ hx°)é=?(x2, X2 }_I_xo)

1

Y

z (ye) ya’ uxo) é'?>

@(XE: )Lj’ ux*) z (Yea YB: l{.x*)'@(x;&_’ Xns 3%: ux*) (xi: Yoo Y5: )_‘_x*) .

Since this can again be repeated, we have

- )_O = o = = >"' = }“"
(7.11) t-1"t t-1"t e 273 12 ¢

(R2d) We consider ,In, and note that 20 , t =1, ..., T and

=0 . o}
fel~ ? T =2, ey T , are all independent of X - By P2, Ei

permits x

LA PR
X
3 )"?"/

1

b
1

¥

1
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By (7.10) similar statements apply to ?"t s t=2, .., T, Thus the
premises of Proposition 2, extended to T Iindependent sublists as described
at ’chg end of Subsection 2*, are satisfied, and l‘{; is represented on
1;,(_1, by a contimeous function of the form {7.3), unique up to a linear
transformation. Since thls function is constructed entirely from orderings

?St s t?’t-!—l that are independent oflxo s ‘the representation (7.3), and hence
the ordering l?:; , are independent of +lx° . We therefore write l?T

from here on,

(R2¢) By (7.8) and (7.3), 2?'-'13 is represented on k

1 p by either of the

functions

u2(x2) + us(:\%) + ceee * uT(xT) s
) + mgl) + en (o) -

It follows, along the lines of the uniqueness proof fer Proposition 2, that for all

xinZ

ut+l(x)=ﬁt+cmt(x) s t =1, seey, T- 1.
Since we are free to choose each ut(x), t =2, vas, T=-1, s0as to
have B =0 forall %, (7.2) results, with u(x) = ul(x)

(Rf) By P2, there exist bundles x , X in)( such thet x 4 x , and hence

u(x) <ux) .

Since k is connected, there exists (see Figure 6) a continuous curve x(g)
defined for 0 g E =1 connecting X with x 5

x(0) = x , x(1) = x

Let § = De the maximum value of £ for which u@(g)) Su(z) . By the
continuity of. u(x) end of x(¢) , such a maximum exists, and, if we
write x = x(go) s

(7.12) u(x) = u(x) <u (x(g)) for all § >¢ -
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Dencte by

Con X = (XJ X, x, 0.0)

the program in which X, =X for all +t . OSince X Ll X , we have
conzc-w(zc-’con-}-c-)'((x ) -

>.: » there exists & >0 such that

X
? con ~

Hence, by the continuity of

(1.23)  D(%, (%) S8  dmplies x< (%, . %)

coll con

By (7.12) and the continuity of =x(t) one can find x' = x(t') , &' > &g s
near enough to x to have d(x', x) S8 , hence also

] <
con X2 con?}»)“a’

(7.1k) D(

if con ¥ denotes 1% with X, =X for  t =1, .00, T .

Friwe G
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We then have, by (7.2), (7.13), (7.14), for a1 T,

T T
£ ot u(xt) <ufx) + = ot u(x) ,

t=1 , o t=2

or

u(x) >u(x) + 2 o1 G(x ) - u(x)

. t=1
Since, by (7.12), u(x') - u(x) >0, this can be true for all T only if a<1,

8. Representation of 2 on the space of ultimately constant progrems.

In this section we choose a favorable ground on which to face the infinite

”
horizon by first restricting ourselves to the space con;z‘ of constant programs

‘(8-1) con ~ ¥ (%, %, X, «es)

that is, of programs .Xx for which x =x for &l ¢t .

1 ) s t
The points of con/K are in a one-to-one correspondence
(8.2) X <G—>x

con

to those of /( . Because, for a&ll x, x!* 1In k,

(8-5) D( X, onx‘) = d(x, x') ,

con c

this correspondence preserves the distance function, ant therewith the
continuity concept. Moreover, if x , ¥ ere bundles of 2 such that ¥ —11 X

then, by R2b and P5 ,

(8.4) con ¥ 4 (x, cm:,r) 4 .ee é‘(conxT’ cony) 2 ...4 X .



- 38 -

The continuous ordering on % is therefore transformed by the

4

1
< 8

correspondence (8.2) into the ordering 2 restricted to con/c . In

particular,

Result 3. Any continuous representation wu(x) of ?1 on 2 is at

the game time a continuous representation of ?,' restricted to conk .

Next we consider the space %c'on of ultimately congtant programs, that

is, of programs such- that, for some T = 1, 2, 4. ,

—-On

(8.5) X = (le: x) = (xl’ see 3 Xp X X, 000) o

One readlly verifies that the reasoning that led to Result 2 alsc applies in

2 "'.}_
any subspace )\’__ ((:331 of /Ccon consisting of programs (8.5) with a fixed T .

The only difference occurs in the last term of (7.2). One now finds for all
: - : T
T2 a continuous representation of I srestricted to Xcon s by the

function

(8.6) w(ry) * aula) + oo+ & uly) + 20x) )

where :E‘T(u) is continuous and increasing. From this representation we can

. -1
derive two representations of I restricted to;kcon , one (8.7a) by

setting X, = xg and applying Ph, one {8.7b) by setting e = X ,'k as follows

]"(a) U(a’)(lx) = Q n(xl) b vt u(xT_l) + £ u(x))
8.7) 1 | | '
( 7)19)) o®)(_x)

By Proposition 2 these representations are for ell T 23, unique up to a

il

u(xl) + o+ QP u(xT_l) +oft u(x) + £ (u(x))
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linear transformation. Comparison of the first terms shows that
U‘a)(lx) = o U(b)(lx) +B,

which implies that

b0 = Fur oty B, tweteus £

Dropping the coné‘b'a.n_t s We have

Result 4. On the space j{con of ultimately constant programs, 2 is

represented by the continuocus function

(B.8)  Uyx) = Upags oo = ulxy) + @ ulag) + ene + T u(mg) + L ula)

unique up to a 1inear trahsforma.tiqn. -. Note 'bhs.t in this fun,cﬁ'ion T itself

lx « For definiteness one

can specify that P + 1 is the earliest time from which onward X is

constant, However, the same value of -Ei(lx) is obtained if one allows T + 1

depends on the given uj_.'timately constant program

i:é is comstant. It is for

that reason that the function (8.8) represents £ on the space Q-/con of all

to he any time,_ earliest or not, from which on

————

wltimately constent programs, i‘ega:;'dless of the values of their "minimsl™ T .

9. Representation of £ on the space of
programs bounded in utility

It iz now possible to indicate a large subspace of the program space

on which the ordering .. is represented by

(9.2) wx) = & ot

u(x, ) »
el v
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We shall call a program, =x bounded in utility if there exist bundies

X, X 1nX%rith x 4 x such that

E for all t‘v:l, 2, LR

(-90-2) X {l 5 '.'él

We can then show

*
Propositlion 5. On the space 1X of all programs bounded im utility,

tie order: & is represented by the continuous function (9.1).

It is to be noted that for ultimately constant programs, the function (9.1) is iden-

ical with that in (8.8). Hence Proposition 3 is cempatible with Result 4,

+*
9 - Proof of Propesition 3., We first ncte that if
utility, then,

1x is bounded in

u(x) u(x)au(x) for 11 t ,

and,since 0 <@ <1, the series in (9. 1) is absolutely convergent, hence its
sum’ exists and is continuous in

NHow let .x and ly be two programs bounded in utility, and define

X
bounds applicable te both 1% and 3 by
x if 1:_.):12 _ x 1f x..,ly
g Z s _ - 5 —
y i yA&x, y if ¥ 1%,
EEU-(E): cuwu(z) , s0 u<u.

Assume first that U(lx) :>U(ly) , and write

for the utility difference of X and . For comparison purposes we

waosider two programs

lx(fT) = (le; COD-Z-) 3 ly(T) = (lyT; cOIlE) 3
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where T 1s chosen large enough 1:9 have

a1
H
Ie
HA

o«
r ot (w -u)= o -
t=T+1 '

=
i
Q

Since then:

T R 5 | G
U - 0T = 3 @ @(xt) -8)S &, w™h -G s,
we must have

o) - w20

Since 1x(T) 3 l.y(T) are ultimately constant, this implies lx(T) > 1y(T)
by Result L. But then, using P5, |x & lx(T)% ly(T) < ¥ ° which ylelds

confirming the representation (9.1) in this case.

Agsume next that, for two programg _X y bounded in ubility
. L

X
(91) U(lx) = U(ly) but 1% J\ly .

Then there exists to gsuch thal

(9'5) xt 41 yt ? B8O u(xt ) <u(y’t ) 3
o Q Q. o.

because ¥ X, ..71 Y for all t " would contradiet * 1* <, ¥ " by P5: On

a curve inx connecting . with Yo o by & reasoning used in R2f above,
o] 0

there exists a point X, such that X o~ % while there are points x%
‘0 o] (o} o
with x, Py 1 x_é arbitrarily close to x, . Let x! e chosen, using
o) o o o



Pl and (9.3}, so that

X) )\ly °

x < x' = (0% » X,
X 1 1 tal ‘to ‘b‘(i)'
Then, by (9-5):
x t o T
u(,x*) _>U(lx) U(ly) bub lx'< 1Y s
a contradiction of (9.5)_.' Hence (9.4) is false, and
u(,x) = u(,¥) implies ,x - 7,

confirming (9.1) in this case as well.

[To be continued].
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