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A MODEL OF FIXED CAPITAL WITHOUT SUBSTITUTTON.
by

Robert Solow, James Tobin, Christian von Wieszacker, and Menahem Yaari

I. INTRODUCTION

We analyze in this paper a completely aggregated model of production
in which output is produced by inputs of homogeneous labor and heterogeneous
capital goods, and allocated either to consumption or to use as capital goods.,
Allocations are irreversible; capital goods can never be directly consumed.
Fixed coefficlients rule: any concrete unit of capital has a given output
capacity and requires a given complement of labor. Technological progress
continuously differentiates new capital goods from old. But we assume that the
"latest model” in'capital goods has no smaller capacity and no higher labor
requirement than any older-model capital goods with the same reproduction cost.
Thus each instant's gross investment will take the form of the latest-model
capital. There is no problem of the optimal "depth™ of capital. The main
effect of an increage in gross investment is to modernize the capital stock

in use.

One normal consequence of technological progress will be a rising
trend of the real wage rate. Since existing capitsl operates under fixed
coefficlents, there will eventuélly come & time in the life of every vintage
of investment when the wage costs of using it to produce a unit of output will

exceed one unit of output. At that instant the investment may be said to have
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become obsolete ag a result of the competition of more modern capital; it will be
retired from production -- permanently, unless the real wage should temporarily

fall.
We have several motlves for wishing to analyze so special a model.

1. Capital theory seems -- perhaps inevitably -- to consist of a
catalog of epecisl models, distinguished by the different ways time and
dureble commodlities enter the process of production. Since this simple,
but not trivial, model has not been studied as a growth model before, we think

it & worthwhile addition to the catalog.l/

2. The model contributes something more than mere completeness to the
catalog., It isolates the effects of what has been called "quickening" --
hastening the practical introduction of newly-discovered techniques iﬁto
production -- from those of "deepening" of capitdl, "Widening" can also be

analytically excluded by considering the speclal case of a constant labor force.

3. The literature sometimes suggests, or seems to suggest, that what are

called "neo-classical" modes of analysis -- we emphasize that we do not refer to

agsumptions of Say's Law -- require for their validity or utility that capital and
labor be directly and smcothly substitutable for one ancther. This paper

provides a counterexsmple. Although there is no scope for substitution ex post

or ex ante, we show that the basic neo-classical methods de function and give

the expectable results. No use is made of any "generalized stock of capital."

k. What is true is that the basic neo-classical methods apply when and

only when output is limited by the availebility of resources, not hy effective

1/ The model was formulated and studied in detail by Salter [2], from a point
“of view which 1s somewhat different from ocurs.
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demand. Most of our argument is conducted under the assumption that full
employment of labor is the bottleneck to production. This assumption may

be regarded as appropriate to a planned economy, or to a decentralized

economy with an effective fiscal policy. An important task of economic theory

is to find some way of unifying the theory of production and the theory of
effective demand. The model of thie paper is, we believe, particularly suited for
this purpose, precisely because it gives effect to the common casual-empirical
belief that in the short run the scope for changing factor proportions is small.
On the other hand, the model no doubt limits excessively the scope for changing
factor proportions over long periods of time. ILike all aggregate models, it

must ignore the effects of inter-commodity shifts.

5. ¥Finally, it ls sometimes asserted thal in modern industirial
economies ex ante choice of techniques ig in fact unimportant; that at any
instant of time one technique -- the latest one -- effectively dominates all
others for all thinkable configurations of factor prices. We do not know how
nearly true this assertion is (particularly in macroeconamic terms). But the
model of production studied in this paper is presumably the appropfiaté vehicle

for studying the implications of the assertion.

II. PHYSICAL RELATIONS

1. Technological assumptions

The model assumes fixed-coefficient technology with embodied technlcal
progress. Once capital has been put into place, there is no possibility of

substituting capital for labor or vice versa; the outpub-capital and output-
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labor coefficients are fixed for the life of the capital. Neither are there
any effective possibllities of ex ante substitution between labor and cepital.
For a business investing in new capital, only one peir of these coefficients,
the pelr which will characterize this capital so long as it is operating, is
available. (This is not strictly true, since an investing business could
always use older technology cheracterized by different coefficients. But this
is an empty qualification, because in the model an investor will never prefer
clder technology to new technology no matter what wage rate and interest rate

he faces.) Technical progress consists of improvement in one or both of the output-
input coefficients. But the improved coefficients apply only to new vintage
capital, not to investments made in the past. Since the model has only one
commeditys serving indifferently as capital good and consumer good, investment
can be measured unambiguously in physical units equal to the opportunity cost of

one unit of consumption.
Formally, let:

Y(t,v)dv be the rate of gross output (physical units per year) at
time t , produced on capital of vintage v , l.e. capital
installed during a period (v, v + dv) , where necessarily v <t .
I(v) the rate of gross investment (physical units per year) at time v .
I(v)dv the amount of capital (physical units) installed in the period
(vy v + av)
N(t,v)av the‘?ate of employment of labor (men) at time t on capital
of vintage v .
Av) the technologiecally determined cutput per year per man

producible on capital of vintage v .
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p(v) the technologically determined output per year
produciblie with one unit of capital of vintage v .

Y(t) total gross output per year, summed over all vintages of
capital, at time t .

N(t) total employment (men), summed over all vintages of
capital, at time t .

L{t) total labor supply at time t© .

w(t) the real wage rate (physical units per man-year).

p(t,v)dv the quasi-rent earned at time t on one unit of capltal of
vintage v (a pure number).

m(t) the age of the oldest capital in use at time t (years).

The assumptions about production cutlined verbally above can be
summarized in the following productlon function for output from capital of

vintage v (5 t)

(1) Y(t,v) = Min {x(vm(t,v), u(V)I(V)}

This formulation ignores physical depreciation and assumes that capital
ils perfectly durable. This assumption hes the advantage of simplicity, and it
permits the model t¢ bring out clearly the economics of. cbsolescence. Capital
wears forever, but it is not in general used forever -- better, more modern,
capital displaces it. As the same time, physical depreciation of simple types
can be allowed without essentially altering the behavior of the economy
described by the model. In Part VII below, two kinds of physical depreciation

are mentioned: (1) exponential evaporation or decay; (2) "one-hoss-shay"
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collapse after a fixed lifetime at full strength. At that point we will also
indicate how the model can he generalized to allow the productive capacity of
a unit of capital to decline with age whille the capital remains physically in

existence with i1ts originel labor requirements.

In general, we shall be interested in situations where, for vintages v

in use:

(2) ¥(t,v) = MvIN(t,v) = u(v)I(v) .

Unless this condition is met, capital of vintege v is not being efficiently
used. It makes no sense to overman capltal, and in a continuocus-time model it
will not be under-manned either. In a discrete time model, it would be con-
ceivable that some but not all of the capital invested during pericd v might
be in use at a later time t . This possibllity does not arise here because
there is not a finite mass of capitel of any instantaneous vintage. If eny
vintage v éapital is in use, all of it 1s. Note that there is no
specifically "vintage v" labor. Any labor available at time t will do.

One unit of vintage v capital employs p(v)/r(v) workers when it is in use.

2. Kinds of technical progress.

The coefficlents A(v) =and p(v) carry technical progress. We shall
assume that each of these coefflclents is a non-decreasing function of v .
This guarantees that no earlier technology is ever preferre@ to the newesgt.
The model does not explain the advance of technical knowledée; it is autoncmous,
requlres no productive resources, and camnot be accelerated or retarded. A

more complete model would relate progress not just to the passage of time but
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to production experience (as is done, for instance, by Arrow [1]) and to the use

of resources in research and development (see, e.g., Uzawa [4]).

Three special kinds of technical progress are depicted in Figures la,
lb, and lc. Capital-labor isoguants are shown for & fixed rate of output under

vintage v, technology, and under technology of a later vintage v The

l *
arrows show 1ln each case the direction in which technicel progress moves the
isoquant.

Figure la Flgure 1b
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Capital-labor ratio increases



Pigure lc
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Purely capltal-sugmenting
technical progress.
Capital-labor ratio falls

The three special cases are:

(a) 2(v) >0, u'(v) = 0. Purely labor-sugmenting or "Harrod-neutral"
_ L progress. . .

(b) iﬁl} = lﬂéﬁ} >0 . MV)  constant. "Hicks-neutral" progress.
MV piv wiv

(e) A(v) =0, p'(v) >0 . Purely capltal-sugmenting progress.

5. Aggregative Implications.

At any time t , the total labor supply L{t) is assumed to be given

exogenously. Thls is not necessarily equal to aggi'ega.te employment N(t) .



The past history of gross investment I(v) determines the capital available for
use at time t . The maximum possible employment which this investment history

permits is:
t
w(t) = [ % I(v)av

~and this requires all (surviving) capital to be in use. The integral may
diverge, in which caserla'bor can never be in surplus. For simplicity we

assume N*(t) finite., There are three important possible regimes:

(T) L(t) > ¥*(t) = N(t) Labor surplus.

All capltal is in use. Labor is unemployed because of a shortage of capital.

Or, vhen L{t) = N*(t) , lebor is just adequate to man all the capital.

(1I) N(t) = L(t) <N*(t) . Full employment.

Some cepital iz left umised because the laboy supply is insufficlent.

(rIr) N(t) <L(t) <N¥(t) . Keynesisn unemployment.

Some labor, and an associated amount of cepital, is unemployed because

demend 1s insufficlent.

L, Allocation of labor..

What is the optimal allocetion of labor over the available capitsl of
varlious vintages? Or, to put the same question somewhat differently, which
vintages should be used end which left unused? ILet wu be an 'unutilized
vintage and v a utilized vintage, If an allocatlon ls optimal, it should

not be possible to increase total output by shifting & unit of labor from
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vintage v capital to vintage u capital. Such a shift would increase
output by A{u) and diminish it by A(v). Hence an optimal sllocation requires

that:
(3) Mu) Sa(v) for any unutilized vintage u and utilized vintage v .

Provided A'(v) >0, optimal sllocation is very simple and cbvious:
Mu) < a(v) if ahd‘oﬁly if u <v . Ko vintage should be left unutilized
if an older vintage is in use. A rational planner allocating e given total
employment N(t) would first man the newest equipment, then the next newest,
and 80 on until he runs out of labor (or out of equipment). This ie also what
the competitive market will do. Aswe shall see, except in the labor-surplus
regime, the competitive real wage rate makes it unprofitable to operate the oldest
equipment. Quasi-rents obtainable at time t very inversely with the age of
capital -- highest for the most modern, zero for the “cut-off" age, and negative

for economlically obsolete vintages.

5. The purely capital-augmenting case.

If technical progress is purely capital-sugmenting -- A'(v) =0 ,
the third, (c), of the speclal cases listed above -- the alloeation of employment
among campeﬁing vintages of capital is Indeterminate. Technical progress lowers
the real cost of a unit of productive capacity. But once the capacity is in
belng, the marginal and average variable cost of output is the same on every
vintage. Therefore, this case is not very interesting. It reduces to these

possibilities:

(a) In regime I, there is always emple labor to man the whole capital

stock. When A(v) = A, this implies:
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t
o #WI(v)av .

>

(4) N(t) = N¥(t) = -i- ¥(t) =

Iet s(t) be the ratio of gross saving to gross output at time t .
Correspondingly, ;%ET is the marginal or incremental capital requirement
rer unlt of output. We have,therefore, the famlliar Harrod-Domar equation for

the rate of growth of output and employment:

() L = LR - u(s) o(v)

If labor is truly in excess supply, its merginal product is zmero and
50 1s its competitive real'wage, or its shadow price in a planned economy.
Correspondingly, the rent on capital of vintage v is its average product:
p(v) . If L(t) 1is just equal to N*(t) , then the price of labor w(t) is
Indeterminate between zero and its average product A . Correspondingly, the
quasi-rent p(t,v) on vintage v capital is indeterminate between p(v) and

Zero:

(6) pt,v) =u(ma - By > 0.

(b) In the other two regimes, labor supply is not large enough to
rermit utilization of all vintages of capital. The marginal Product of capital
is zero, whatever ifts vintage. New capital has no advantage over cld. If
labor is fully employed, its real wage 1s A , its average product. This
situation maey, of course, lead to Keymesian difficulties: full employment
incomes might generate saving but, since profits are zero, not correspconding
invesiment. Then the result would be under-utilization of both capital and

labor, with the efficlency-prices of factors again lndeterminste.
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6. Obsolescence and income distribution.

S0 much for purely capltal-augmenting technical progress. 1In oll other
cases new vintages will always be preferred to older vintages. We disregard
the labor surplus regime :s atypical for advanced economies. In cases of
interest, then, the age of the oldest capital in use, m(t) , is related to
total employment by the equation

t
(7) N(t) = {t) %{%% I(v)av .

t-m

On the other hand, there is a relation between m(t) and aggregate output ;
t
(8) Y(t) = f u(v) I(v)av .
t-nm(t)
Employment of a unit of additional labor at time t would permit the
use of capital just beyond the cutoff point m(t) , adding to total output
the average product of labor on capital of this vintage. The marginal product
of labor, therefore, is A(t-m(t)) . {This is the value of g%%%% , a2 may be
escertained by differentiating (7) and (8) with respect to N(t) .) The
marginal product of capital of any vintage may also be found. An additional
unit of capital of an active vintage v (v greater than t-m(t)) would
permit added output of p(v) . But it would require shifting %ﬁ%%‘ units
of labor ewoy {rom the oldest vintage capital, reducing output by
N E) Mt-n7t)) . An additional unit of capital of an idle vintage adds
nothing to output.

Under competition, we can identify the marginal product of labor with

the real wege and the marginal product of capital of any vintage with its
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(9)

(10)
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w(t) = A(t-m(t))
(0

p(t,v) = <

piv) (2 -

-

AMt-m{t
Mv

if v < t-m(t)

) if v > t-m(t) .

Together wages and quasi-rents exhaust the output of active capital.

The history of a particular investment is this:
remains constant.
superior to earlier vintages.

wages rise and the rents on the investment decline.

Its average product

At the beginning it earns a positive rent, because it is

But as still better capital comes into existence,

Finally, wages are bid up

so high by the owners of modern equipment that the rent on the investment

vanishes.

7. The growth of income.

It 1s obsolete and ccases to operate.

The growth of income moy be decomposed into a part cttribut:ble to the

growth of the labor force and another part associated with new investment .

Differentiating (7) and (8), we obtain:

o ROE)I(E) _

pit-mt))

N (%) x(t)

It

Y'(t)

A(t-m(t))N' (8) = p(t) ME

Mt-n(t))

-m{t
At

T(t-m(t))(1-m'(t))

m(£)I(t) - p(t-m(t)) I(t-m(t))(1-m*(t))

I{t) - u(t-m(t)) T(t-m(t))(1-m*(t))
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(12) Y1(6) = W0 (8) M(bm(s)) + T(e)(u(e)) (1 - MERE))
= N'(t) w(t) + I(t) o(t,t)

This decomposition is analogous to the more conventicnal one for models

with substitution.

In regime II, full employment, causation moy be interpreted in this
ranner: L{t) = H(t) + n(t) »¥(t) and w(t) . The first causal arrcw
stands Tor (7), the sccond Tor (8). In the Keymesian regime III, output is
determined oy cffective demand. The causation then runs the other woys
¥(t) + (%) ond n(t) » §(t) <L(t) . Iow the firsi arrow stands for (.),
the sceond Tor (7). Ia this intcrpretation, one can easily allow Tor Teedback
effects o incone dlstribution on effective demand. Egquations (11) ond (10)

vl under ecither internretation.

a..L

12 cpoorecate deonwend falls, the model soys that plants shut down in
crder of tielr cge. ZAside Irom the voual complications of aggiegation,

this is rewllistic encvgh.  Its coroliery, however, is thet the average and
croliel producets of loboer rige os lobor is laid of f from the oldest and least
efficient »lonts. Crelical st tistics indicate the opposite, apporently

beeonrse 1n reeceglons believed to be temporary employers continue to man,

ot lecst porticlly, facllities which they are not using (= nd/or because the

right-hand side of (V) contains an "overhead" component independent of current

output).
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8. Exponential Growth Under Full Employment: Labor-augmenting progress.

In what follows, both technical progress and labor force growth asre

assumed to be exponential:

L(t) = Loent
(13) u(v) = u e’
Mv) = e

The full employment regime is analyzed first: the labor supply is fully used

but is ingufficient to man all physically surviving capital. Moreover, the sim-
plest kind of technical progress is assumed -- the purely labor-zugmenting,

"Harrod-neutral” variety, i.e., u(v) = H, for all v .

9. Balanced growth paths.

Congider paths along which gross investment has been growing exponentially

forever: I(t) = Ioegt . From (7) and (13) we calculate:

) L &Rt Hols e(g-h)t(l - e~ (B=am(t)y

5 ﬁw for all t .

If g=n+ A, this equation can be satisfied with m(t) constant. If
g #n+ A, the equation can not be satisfied even with variable m(t) ;
for g<n-+ A, the left-hand side must eventuelly outstrip the right while
g >n + A implies that m(t) + O which in turn implies that gross investment

eventually exceeds gross output (see(l18)). Therefore:

(i) g=n+ 1, the usual formula for the "natural rate of growth"

under Harrod-neutral technical progress; and
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(11) m(t) is a constant, say m , satisfying

poIo -n
b = S (-
o)
(14)
A nlL
1 0 ©
m:-—lO l- *
= log ( T )

For this formule to make sense, it is necessary that A nLy < pOIo .
The meaning of this restriction is easily seen after it is rewritten:
g I egt
oL ent <. 020
) At

loe

In this form 1t says thet the increment to the labor force rust be smaller
than the labor required to man the brand new capital: the gap is to be
filled wifh the labor that had been operating the capital (of age m) now being
retired. If the inequality ls not satisfied, the length of life of capital
will have to be extended indefinitely and, if N is finite, labor will

eventuzlly become surplus. This puts a lower limit on Io(Cf° (vi) below).
(i1i) p(t,t) is constant;
(15) o(t,t) = u (1 - e M) .
(iv) w(t) grows exponentially at rate X ;
(16) w(t) = (Loe-km)eXt
(v) Y(t) grows exponentially at rate g ; from (8)

t I
00 (1 .- e 88t |

(17) Y(t)
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(vi) From (17) it follows that the gross saving ratio, s(t)

defined as I(t)/Y(t) , 1s & constant depending on m :

(18) = £ =
~ ) u (1 - e

oo™
[

If the saving rate thus calculated exceeds one, it means that even with consump-
tion reduced to zero the economy is incapable of producing the minimal equipment
reguired to employ the whole labor force, and eventually a labor surplus

situation must emerge (cf. (ii) above).

10. Other paths.

We consider later the behavior of the model when it starts from some
arbitrary collection of capitals of different vintages and then proceeds under
its own power with a constant gross saving rate. Instead of characterizing
balanced growth paths as those on which gross investment grows exponentially,
we could have conslidered paths slong which m 1s constant. The constant-m
paths obviously include the exponentisl-I paths. They lnclude a few others as
well. Rewriting equation (7) for.the case at hand, we get

[ -
~2 ™ 1(v)av .

Differentiation leads to

H
nt - _i_c_) e-k‘b
o]

e-)\.(t-m)

nk e I(t) - I{t-m) [ -

This difference equation tells us how big I(t) must be in order to maintain



- 18 -

full employment with unchanged m , taking due account of new entrants into
the labor force and those released from capital just reaching age m . The general

solution of this difference equation is given by
+
I(t) = Ioe(’“ )t Mopiy)

Where Io is a constant and P 1is an arbltrary pe;iodic function of periocd m
which must be determined from the initial age dlstribution of capital. If that
initial distribution is exponentiml (with rate X+n) then P must vanish and I
remains exponential forever, i.e., the solution follows the balanced growth path
already discussed. But any other initial age distribution sets up a permanent
"echo" in investment and output. The result is & "replacement déyele" which
circles around a trend growing at the natural rate. During the cycles the

real wage and employment grow steadily, but the saving rate is not constant.

It will be shown below that the only paths whose saving rates have been constant
forever are the balanced-growth paths with exponential investment history.

(In some cases these "replacement cycles” superficially resemble accelerator-
generated cycles, because Y leads I slightly. But the cycles are artificial;
they arise simply from the reguirement to keep m constant with full employment

despite an irregular investment history.)

1l. Alternative Saving Rates.

According to (18) the path corresponding to a high saving ratio is
characterized by low m , quick obsclescence, modern capital. In the same

sense, a low saving ratio means a long economic life for capital. Eliminating IO
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petween (1h) and (17) shows that a path with low m and high s has a

high YO , a8 in Figure 2.

Figure 2.
Balanced Growth Paths

1og Y(t) high s, low m, l?fxfﬂ ,,,,, -

‘ ..'.__.,—' ..... e
/ low s, high m, high r

/-

Not all values of s and m are consistent with balanced growth of
this kind, at the "natural" rate g = AL + n . At one extreme, the lower limit
on the saving ratio s is g/uo « This is the value of s Tfor vhich m muast be
infinity in (18). It corresponds, therefore, to a situation in which, according
to (14), the rate of investment is just sufficient to employ increments to the
labor force without transferring any workers from obsolescent capital. L(t!
and N(t) are equal to NK*(t) and all are growing at rate n . Bubt because
full employment reguires that infinitely old capital be left in use, the

competitive equilibrium real wage, according to (16), must be zero!

Suppose the saving ratio is still smaller, so that B is less than
g. If no capital ever becomes obsolete, the stock of capital will grow at the
rate spo . But with the number of workers growing at rate n and the number

of workers required per machine falling at rate A , the stock of capital must
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grow at rate g to provide enough places. If SH. <g , therefore, new invest-
ment is insufficient to employ the natural increase in the labor force, ruch lessz
to require release of any labor from older capital. So long as any capital is
unused, previously submarginal vintages will be brought into use. As labor

goes to work on older and older vintages, the real wage falls, The limit,

of course, 1s the labor surplus regime.

The highest conceivable saving ratio (in a closed econcmy) is 1, and

the correspondingly shortest capital lifetime m 1s given by

(This has a positive solution for m provided g < ko 3 otherwise, as
remarked above, the need for new capital surpasses total output.) But this
path, which yields the highest output path in Figure 2, is obviously not the

path of highest consumption.

12. The Golden Rule Path.

There is indeed a "golden rule" path -- the balanced growth path on
which, given the development of the labor force L{%), consumption is higher
at every peint in time than on any other balanced growth path. Along thig path,
(1) the saving ratio is equal to the share of capital in gross product: and (2}
the rete of interest or marginal efficiency of capital is equal to the growth
rate. These are familiar neo-classical or neo-neo-classical propositions, and
it is of interest that they apply for the flxed-coefficient technology of the

model under discussion here,



- 21 -

To prove the first proposition, it 1s necessary to show how the share
of capitel «a depends on the obsolescence period m . The wage bill N(t)w(t)

nt eh(t-m) . Since Y(t) = Y(o)e(nﬂ’)t s Jlabor's share

is equal to N{O)e
is constant over time along any path with exponential investment and, therefore,

constant m and constant s :

-\
N(E)w(e)  NOAe
(19) (O Rl () i
From (14) and (17) this becomes:
(20) PP - Chloil i i
n(l - e ™

From (20) it follows that @ is an increasing function of m --
running from zero for m = 0 , i.e., when &ll input is current labor input, to

lfor m=w, i.e., when labor is in surplus.

Figure 3
Balanced-Growth Paths
Relations of Capital Share @ and
Saving Retio s to Obsolescence Period m
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Similarly (18) shows that s , the saving ratio, is a decreasing function
of m . Both these relationships are shown in Figure 3. At m*¥ , s=0a .

That is:

(21) g . n(1- ) o ge™ . o8
a1 - e 8 n(1 - ¢ &)

We must show that this value of m* also maximizes ¢C(0) .

A n N(0)

¢(0) = (1-8)x(0) = 18 .
5 m (L - e™™™)

For given N{0}, ¢C(0) will be meximized if

l -8

e is maximized,
s(l-e )

b (1 - e g
o

i.e., if e is maximized with respect to m .
gl -e )

The condition for the maximum,

m

-nm - -grm -
(22) 6(1 - e ) pge en . (u (1 - e & - g)g ne™™

reduces to (21), the condition for @ = s . Since this equation determines a
unique local extremum, which is a meximum, the first formulation of the
golden rule theorem is proved. The second version of the theorem states that
glong the balanced growth path with maximum consumption the rate of intereszt
is equal to the growth rate. That statement is also true in this model, but
the proof is postponed until the interest rate or marginal efficlency of

capital has been introduced more formally.
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III. ASYMPTOTIC BFHAVIOR UNDER
PURELY LABOR-AUGMENTING-TECHNICAL PROGRESS
WITH FULL EMPLOYMENT AT A CONSTANT SAVINGS RATIO

l, Preliminaries

Throughout the last few sections, we have been exploring the properties
of full employment paths along which Investment grows exponentially at the
natural rate. We have observed in (14) and (18) that this restriction requires
the economic lifetime of capital and the gross saving ratio to be constant,
and fixes thelr values. Now we wish to postulate the saving behavior and then
see if anything can be sald about the path along which a full employment economy

2/

must travel.~ Our assumption wlll be the simplest one, i1.e., that gross saving
is & constant fraction of gross output. Other possible assumptions will be

discussed later.

We adopt the exponential assumption (13) and for convenience we

shall let Lo =1, so that
L(t) = ™ for all % .

As for the technical progress functions, we assume that xo = p_o= 1,

80 that

Av

w(v) =1 and Av) =e for all v .

Finally, let s denote the {constant) savings ratio.

Before our economy can proceed to evolve, 1t must be endowed with an

inltial capital profile., Let t = 0 bhe the point in time at which the sconomy

g/ Uzawe [3] studied this problem in the framework of the no-obsolescence
vintage model.
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begins to evolve. Then the initial capital profile is glven by an arbitrary
nonnegative real function, which we denote I , on the interval (-, 0) .

In other words, I(t) is predetermined and erbitrary for all t <O . As a
matter of convenience we shall assume that there exlsts a real number h*¥ <0

such that

I(v) =0 for v I h*

I(v) >0 for v > h*

where h¥* = - 18 permissible. Vintages later than h¥* are all present in
the initial capital profile in positive guantities. (We also assume that I

is a function which can be integrated.)

Instead of using the function I for the initial capital profile,
we shall use a transformed version. The reason for introducing this transforms-

tion will become apparent shortly. For every t <0 , define
o (At
£(t) = %I(t)e (xn)t

Apart from the multiplier % s, T is just the ratio of I fo an exponential
trend, so specifying f is egquivalent to specifying I . Since I(t) is

intrinsically nonnegative, so is f£(t) .

Starting st time t = 0 , the economy proceeds under its own power,
Its motion is determined by the following equations, which are obvious versions

of (7) end (8)
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(a) Full employment of labor

K -Av nt
J e™ I(v)av = e for all t =20,

n(t)
where h(t) is the vintage of the oldest capital in use at time t , so

that h(t) + m(t) =1t .

(v) Determination of output

t
[ I(v)av = ¥(t) for all t >0 .

h(t)

(¢} Bquality of gross saving and investment

1(t) = sY(t) forall t Z0.

These three equations may be collapsed imto two. For every t = O ,

let f£(t) be defined by

-(an)t

f(t) = e ¥(t) ;

f(t) 1is output per efficlency unit of labor. This definition is consistent
with the one already made for + <0 , s0 we can proceed to write the basic

equations which govern the motion of the economy as follows:

t
(7%) s [ e'n(t"x)f(x)dx=1 for t 20
n(t)
t
(61) s f e"(?“+n)(t”x)f(x)dx=f(t) for 20

h(t)



- 26 -
It 1s sometimes more convenient to write these equations somewhet differently:

m(t)
(7") s [ e ™t -x)dx=1 for tzO0
0 _ _

(t)
(8" g fm e‘(“n)xf(t - x)ax = £(t) for tZO0,
0 - ,

where m(t) has its earlier meaning.
Remark 1: f£(t) >0 forall ¢ 20

Proof: It follows from equation {8') that if f(to) =0 for some t_ 20,
then either £(t) =0 for ell t St_ or h(t) ='to . In either case,

equation (7') cannot hold.

Remark 2: The functions £ and h are bhoth continuous on the

interval (0, «) .

Proof: For A >0 , the integrand in (8') is no greater than thet in (7'). Hence
f(t) $1. B8ince f 1is thus bounded, the continuity of h follows from the fact

thet f must be continuous on (0, «) .2/

Remark 3: The functiong f and h are, in fact, differentiable on

(0: °°) .

2/ If we drop the assumption that the initial capital profile "has no holes”
(i.e. the function I , once positive, remainspositive) then h may cease
to be continuous {although it is not difficult to trace.its discontinuities)
while f remains continuous throughout (0, ) .
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Proof: Notice first that if h is differentiable, then it follows from
equation (8') that f is also differentiable., To see that h is dif-
ferentiable;, we write down equation (7') twice, once for time t and once

for time + + 4t , and then we subtract the latier from the former. This leads to

hi{t + At) b+ AL

e (x)dx - [ e (x)dx =

h(t) ) ent(l B eném)

o

Since f 1is continuous, we can use the mean value theorem and obtain,
following division by 4t ,

nit
h(t + &t) - hit) nx' . nx" ., 1L nt 1-ce
= e f(x') - e f(x") = = e —_—

where x' 18 between h(t) and h(t + At} and x" is between t and t + &0 .

Ietting At + O, we see that

lim{ n(t + At) - h(t) nx' £(x') }

AE -+ 0O ot
must exist, since the other limits in the equation exist. Hence h is
differentieble at t unless

lim  f(x') =0 .
O+ O

But lim f(x') = £(h(t)) , by continuity of f and h . Now if h(t) >h¥ ,
then £(n(t)}) >0 . If h(t) = h* and h'(t) does not exist, then it is
easily seen that equation (7') cannot hold to the right of t , i.e., full

employment ceases at t . This completes the proof.&/

&/ If the assumption that the initlal capital profile "has no holes"
were to be dropped, one would still have the differentiability of f
and h in open intervals where h 1is continuous.



2. Balanced growth paths

At every point of time t , +the values of the function f on the
interval (h(t),t) determine the immediate future of f . The values of T

on the intervel (h{(0),0) are the initisl conditions of the system. Our task

in this section ié to lobk for something analogous to an equilibrium point,
nanmely for a set of self-susteining initial conditions. In other words, we
are looking for an initial capital profile which leads the function m to be

constant and the function f to be periodic:

m(t) = m* (a constant) for all t 20

£(t) = f£(t - m*) for all t 20

A solution of eguations (7') and (8') which satisfies these two requirements

is called an egquilibrium aoiution; An equilibrium solution for which £ is in

fact constant is called a balanced growth solution. The discussion in 11.10 of

"replacement echoes™ shows that if n # O the only equilibrium solutions are
actuslly balanced growth solutions, because the "echoes" in the function
e'(l+n)t1(t) cannot be strictly periodic. In aﬁy case; even if n=0 (which
permits f to be strictly periodlc) the saving ratio cannot be constant unless
£ ig constant. In other words, the only equilibrium solutions are balanced

growth solutions.

To find a balanced growth solution (if there is one) we must solve
equations {7") and (8") under the assumption that f and ‘m are both constant.
Setting f£(t) = f* and m(t) = m* for all % , where f* and m* are non-

negative real numbers, causes eguations (7") and (8") to reduce to



and

m¥
s [ e-Mmixy
0

respectlvely. These equations have & unigque solution, namely

(23) m = - g log 222D
and
(24) I* = =

s(1 - e'm*)

provided that s ZA+n . If s =Mn, wehave m* =+« and f* =nfs,
which we shall admit as a solution, provided n >0 . If s >3n, then m¥
is finite and f£¥* exceeds n/ s . If s <j}n, full employmeht ’:T.s in the
long run impossible., Thig is another way of expressing the remarks mede

above 1in interpreting equation (14). Formally, (7") and (8") have no solution.
To see this note that (8%) implies for every t 2 O

t w0
£(t) = 5 Ofm( e - ex € s J e Pe(s - max s 5% T

L
A

F =0 (where f£(t) 1is identically zero) or, if f >0, a t, can be found

where T is the supremum of f (finite by (7%)). If <1, then either

for which :E‘(to) > % T . The first contingency contradicts (7"), the

second contradicts the inequality just derived.
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Note that in this section the capital-output ratilo o = 1l ., 8o that
g 1s Harrod's warranted rate of growth. Comparisons between & and M+n zare

comparisons bhetween the warranted and natural rates.

3. A Besic Differential Equation

We return now to the general case where f(t) and m(t) need not be
constant. Since we know that both £ and m are aifferentiahle, we may
differentiate equations (7") and (8") and obtain, after some calculation,

the differential equation:

£Y(t) = (s - & - n)£(t) —‘(sf(t) - n)e~Xm(t)

for all + >0 . This is actually the differentiasl equation which we have
already seen in different gulse, (11), expressing the rate of change of
output in terms of merginal productivities and factor rewards. It can be
usefully transformed with the help of (23} and (24). Note that (23) maey be

rewritten

S -A-n= se'(h+n)m*

and that equation (24) mey be rewritten

e“nm*':l-—l]—t

sf#*
Thus,

_ n_y_-hm¥
g~ h=-n=s(l - el



- 31 -
We now have

£1(t) = s(1 - g%;)enxm*f(t) - {sf(t) - n)e_xmgt)

But we have observed that f(t) >0 for all t , so it is permissible to

divide the second term by £(t) and thus obtain
1(t) = M, o n o, -Am{t) n
(25) £1(t) = sf(t) {% (1 sf*) e (1 - = )

for all t >0 .

This differential equstion says something about the derivative of

f in terms of the deviation of the system from balanced growth. Specifically,

if m(t) >m* and f£(t) Sf* then £'(t) 2 O, and

HA

if m(t) Sm¢ and f£(t) 2£* then £'(t) S 0.

4. Asymptotic Behavior in the Case s S A +n

Since the initial capital profile is, to a large extent, arbitrary,
we cannot hope to characterize the solution of equations (7') and (8')
fully. However, we can hope that as t becomes very large, the influence of
the initial capital profile wanes so that assertions can be made about the
behavior of the economy for large t . This hope turns out to be realized.

This section and the next are devoted to asymptotic analysis.

Tt has already been shown that if s <Xt + n , continued full
employment is not possible. The economy does not save enough to provide

for the growing effective labor force. So we turn to the other cases, and
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first to the case 8 = 3+ n . We define a function F as follows:

F(t) = s T{x)dx for t 20 .

fte-awn)(t-x)

F(C) is finite if the stock of capital at time zero is finite. We assume

this ¢ be the case.
Differentiating F , one cblaius
F'(t) = sf(t) - (M + n)F(t) = (A + n){f(t) - F(t)] S0 .

Thus F 1is a non-increasing function. BSince it is nonnegative, and therefore

bounded below, it must converge. Furthermore, its derivative must appreoach 0

Therefore
lim [£(t) - F(t)]
Troa
exists ond is equal to O . Comparison of the definition of F with (87)

implies immediately that h{t) + - » and, therefore,

lim m{t) = o .
terco
ow £ is known to converge, because F does, and lim(f(t) - F(t))= 0 .

Let & %be the 1imit of £ . For an arbitrary € >0, let T be defined by

[2e]
-nx -nT

e:Sfe dxmie
n
It now follows from equation (7") and the fact that £ S 1 ‘that
T

1-¢ Ss [ e™rt-x)axS1,
0
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where the first ineguality holds for all t , and the second ineguslity
holds for large t (since m(t) + »). Letting t + » , we obtain

l1-¢€3 %2 (1 - e-nT] <1

1-¢58 [g -els1.

But € 1is arbitrary, so we must have & =

wip

If n =0, the proof must be modified slightly: in that case, for any

arbitrary T,
T
s [ f(t -x)axS1
0
provided t is sufficiently large. (This is true because m(t) tends to o .)

Letting €t + w» , we obtain
s 87T :rl .

But T is arbltrary, so it must be true that & =0 . Thus, when s =3 +n,
the functions f and n tend to the belanced growth values derived in (25)

and (24).

5. Convergence to Balanced Growth in the Case s > A + 1

This section 1s devoted in 1ts entirety to a proof of the following

theorem:

If s>x+n, then lim f£(t) = £*¥ and 1lim m(t) = m* .
tereo Lo
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The proof is rather elaborate, but the techniques used may be of

some interest. We shall develop the theorem in a series of lemmas.

Ierma 1: There exists a to such that

£(¢) 2 ¢ for t 2t

I

Proof : It follows from the differential equation (25) that if f£(t) = S

then £'(t) >0, so that if there exists a t_ such that 1(t ) z {93 , ‘then

£ft) 2 E for all t gto . Tt remeins to be shown, therefore, that f(t) < =

for all t 20 4is an impossibility. Assume that in fact f£(t) < _151 for all
t 20 . Then
£1{(t) >0 for all t

hi(t) <O for all t

where the second inequality follows from differentiatlion of equation

(7'). Thus,

lim £(t)
to

exists. Call it & . By assumption,

f(t)<a§-§- for all t .

Substituting & in equation (7") we obtain

1 <88 1o emlt)y <. o mmn(t)
n = o
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whence

e-nm(t) <0,

en impossibllity. This completes the proof.

lemma 2: If s >8+n, then 1imh(t) =« .
toroo

Proof: Differentiating equation (7') with respect to t 1leads to

e-nm(t)

s f{h{t)m'(t) = sf{t) - n .

Ir £(t) 2 E, then h'(t) 20 . By Lemma 1, there exists a t_ such

that f(t) f-z for t 2 t so we have h'(t) 20 for tgto .

o) >
Therefore,
lim h{t) = »
T
or
lim h{t) =K <w .
T

Assume the latter. It implies (e.g. by looking at the equation in h'(t)

ebove) that 1lim £(t) = l;* . But now equation (25) tells us that as t + « s

n )e-m*

£1(t) + n(1 - SFF

=n{(s -2 -n) >0 (for n >0Q)

since s >» A +n . This is impossible since f has & limit. A similar

argument holds when n =0 .,
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What Lemma 2 tells us is that if s > A + n then every piece of

capital is eventuslly discarded, never to be brought again into use.

let to be the point beyond which the function h 1s increasing.
Such a point exists by Lemma 1. Since, by Lemma 2, h{t) + o as t » o« ,
we can divide the interval [to, w) es follows: Let a sequence {tn}

be defined by

h(t =t n=0,1, .,,

n+l) n

Thus, tn+l is the time at which capital of vintage tn becomes obsolete,

We shall now study the asymptotic behavior of the functions £ and
m by looking at succeseive intervals of the form [tk, tk+l) .
Lemma 3: 1lim sup f£(t) S f*
too
Proof: Suppose that we have been able to find a real number an“l

such that for all t 2t . ,

£(t) S a g -

This means that if we take any ¢ i’tn » We have

for 05 x S m(t) .

- <
£t -x) 3 a

Consider an arbitrary t :’tn and fix it. We shall attempt to construct
a real number & such that a < ah-l end f(t) < &, - For convenience,

we shall refer to f(t - x)e” > as o(x) .
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Problem: Among &ll reel functions ¢ , defined on [0, m(t)] ,
and satisfying the two conditions '

< -T2
0Selx) S a q

m(t)
BOI . (P(X)d.‘x =1,

find a function ¢¥ which maximizes the gquantity

5 ‘fm(t?e"“x p(x)ax .
0.

The sclution of this maximization is given by the function ¢ which is
as concentrated as possible near zero. In other words,

*(x) = an_le"nx for 0Sx<T

=0 for TS x S m(t)

where T 1is determined from

T

which reduces to

)

1 n
Te-= log(l -
n sa, 1

Note that the inequelity T S m(t) 1s assured because T is the smallest
value which m(t) could take on in equation (7'), with f£(t - x) satisfying

the congtraints. We may now write



maximm = 5 [ . .e‘“#(x)dx

T
f e"(Mn)xd.x
0

sa,
n-1

-()o.+n)T]
Mo B

[1-e

Using the expression for T , we have

An
s&n«l n .n
A 1-Q- ) }

maximum =

-1
Let us call this last quantity a

se M
a_ = n"{l-—(l- =) "

n +n a
X 8 n-1.

Now a 1is the largest value vhich £(t) could take on, with f(t - x)

sgtisfying the constraints for all x . In other words,

< -
£(t) S a8
It remains to be shown that &, < an 1 which 1s equivalent to
Atn
3 n n
Mn l-(l-sa ) <i.
n-1
But an_l >f% , or else there is nothing to prove. The left-hand side of
the last inequality ls precisely equal to 1 when &, 1 = % , s0 it is clearly
lesg than ). when a 4 > f* ., Thus, we have produced & new upper bound for ¢ ,
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namely &, which is good for all ¢ 5 tn . In the same fashion, we can
produce still newer upper bounds, with the result that we shall have a

sequence {ak] such that

£(t) §ak for all t o t,

To complete the argument, we must find en a_ such that £(t) s a,
for % gto . But a brief look at equations (7') and (8') will reveal
that a, = 1 will do nicely. Finsally, it rémains to be wferified that

the seguence {ak] converges to f*¥ . This follows immediately, from the
definition of f£% , wupon solving the equation for e, under the condition
a n-1 ° Thus, the proof is complete.

Lemma 4: 1im inf £(t) 2 £*
treo

Proof: The proof is similar to that of Lemma 3, with one added complication.
Suppose that we heve found a resl number cn-l such that

for t 2t
n

-1 "

£t} 2 e 4

Then, let t be an arbiltrary number satisfylng +t gtn , and let m(t)

be denoted m for short. Note that m is restricted by

m
e[ o e %ax S 1
n-1
0.
which reduces to
mS- = log (1--"—)
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We know that c Sf(t-x)S1 forall x in [0, m] . Let us refer to
e ™r(t - x) as @(x) and consider the following problem: Among all functions

@ on [0, m] , which satisfy

=-nx < < =-TX
a1 Solx) Se for all x

m
s /] olx)ax =1,
0

find the function ¢* which minimizes the quantity

5 fm e Mo(x)dx .
0 ' .

The solution is given by

o*(x) = cn._le”nx for 0Sx<T

=e for PSx Sm

where T is determined from

T -nx "o
sfc_le ax +s [ e
o N T

Max =1,

which can be written

g -nT -nm
H{cn-l+(l'cn-l)e - e :}:-l.

We note for later reference that

e-n(m—'l‘)

dm 1 - Cho1
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Now let the minimum of the problem be denoted fﬂ(t) :

m
fz(t) = sof e-lx¢*(x)dx

o~ (Mm)T e-(u-n)'m} '

m cn_l+(l-c

n—l)
We know that f£(t) 2f,(t) . But £, (t) depends on the unknown m , which is
awkward. In order to get rid of this dependence upon m , Ilet us evaluate

af (t)
&

. ):-n{ S (2 - o )eMIITE 4 (e (imdn |

= Se-lm_{ e-nm . e-nT}

since TSm. Hence, if we let m become as large as it can be, we shall

0

LA

still have a lower bound on f£{t) . But the largest m can get is glven by

1 n
m=- = log(l - ) .
n %Cn-1

So, our new lower bound is obtained by setting m equal to this quantity
in the definition of fz(t) » Wwhereupon T becomes equal to m . Doing this,
one obtains a new lower boﬁnd, to be denoted C, 2 where

Mn

1-(1-—=—"2-)
scn“l_

scC

c = n-1
n Atn
From here on, the proof proceedé as in Lemma 3. The seguence of lower

bounds, {cn} , oObtained in the manner described, is increasing and it

converges to ¥ .,
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Lemmas 3 and 4 together constitute the following theorem:

The function f converges and 1lim f£(t) = £* .,
Tt

As an immediate corcllary one now obtalns that

The function m converges end lim n(t) = m* .
N troo

IV. COMPETITIVE VALUE RELATTONS

1. Weges, quesi-rents, and marginal products

The impossiblility of direct substitution between labor and capital
goods in this model means that there is no "intensive mergin." But there is
an "extensive margin" at which, under competition, price relationships are
determined. The elementary calculations have been made in section II.6-7

and we recapitulate them here.

Capital goods of age m(t) are on the verge of obsolescence; they are
"no-rent" capital, If they earned a positive rent their owners would not be
about to withdraw them from production under tranquil competitive condiﬁions.
Since wages are the only prime cost in this model, the real wage must equal the

average product of labor on no-rent capital. This ylelds, as before,

(9) w(t) = A(t - n(t)) .

Younger goods ere lntra-marginel, and earn a differential quasi-rent equal
to the difference between output and labor coets; older ones could not cover prime

costs if they were operated. Thue, with p(t,v) repregenting the real gquasi-rent
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earned at time t by capital goods of vintage v ,

A

(10) p(t,ve) = 0 v t - m(t)

Mt-m(t

= um - Men

) v 2 t-m(t) .

In II.6-7 it is shown that the competitive real wage and quasl-rent play the
role of soclal marginal product of labor and of capital goods of vintage v :
w(t) 1is the increase in aggregate output permitted by one extra unit of employ-
ment, and p(t,v) is the Iincrease in aggregate output permitted by the

availabllity of one extra unit of vintage v capital,

2. Capital values

Under conditions near to steady growth, the economic lifetime of capital
will not change very much and, therefore, p(t,v) will fall through time
for each fixed v . (In the short run a sharp increase in output and
employment may require a sudden increase in m(t) and bring about a temporary
rise in the quasi-rents on existing capital. Even previously retired capital
will be activated.) If m(t) does not fluctuate much, it is reasonsble to
suppose that the market can foresee with fair accuracy the pattern of quasi-
rents a unit of capital can be expected to earn. The market value of any
exlsting unit of capital will be the present value of the expected quasi-rents,
discounted at the market rate of interest. Let P(t,v) be the price at time t
of a unit of capital of vintage v , and let r(t) be the force of interest at
time + . Then

u u
-f r(z)z - r(z)dz

@) e = S pve wou(n) [ Mo
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In this expression 7T = 1(v) is the root of the equation p(r,v) = 0 ;
that is, it is the insteant at which capital of vintage v will be retired.zj

If m 1is constant, then of course 7 =v +m , and in any case 1 = v + m(7)

For existing capital {26) is all there is to be said. When v =t ,
(26) gives P(t,t), the market price of a new machine at the moment of its
construction. In tranquil competitive equilibrium, P(t,t) must also equal
the cost of production of & new machine of vintage t . (P(t,t) can fall
short of the cost of production if gross investment is zero, but we shall
ignore that possibility.) Since this is a one-sector model we can, as

mentioned in IX.l, measure capital goods in units identical with the unit of

output. Thus P(t,t) = 1, and we have for every t

. -fu r(z)dz
(27) 1= [ plut)e’ au
t
or tHx
n(t) -f r(z)dz
(211) 1= plx + t,t)et dx .
0

é/ We assume for simplicity that it is correctly foreseen that capital, once
retired, will never be called back into production by a "cyclical® increase
in output and employment.

éj This can be regarded as an integral equation for the unknown interest rate
as a function of time. The substitution
u .
exp( - [ r(z)dz) throws (27) into the more familiar form
0
(%)
f p(u,t) R(u)du . Similarly for (27').
t

R(u)

It

R(t)
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From (26} we can extract the well-known equilibrium condition

(28) o(t,v) + & n(e)p(s,v)

The value of the stock of capital is
t

(22) K(t) = [ P(t,v)I({v)dv .
t-m(t)

(Kere we use again the assumption that the earnings of any particular invest-
ment fall eventually to zero and do not revive.) Now, by total differentiation

with respect to t and use of (28) we find

t
[ plt,v)I(v)dv - r(t)K(t) .
t)

(30) I(t) - xX'(t) =
t-m(

X'(t) can be identified as net investment and r(t)K(t) as net pfofits.
Thus the difference between gross investment and net investment is the same
28 the difference between gross guasi-rents and net profits. Both can be
identified as "true depreciation”; since we have ignored physical depreciation,
only "obsolescence" remains. We can let Z(t) stand for net output and C(t)
Tor consumption and write the accounting identities

t

v(t) = () + I(t) = w(t)N(t) + [ plt,v)I(v)av
t-m{t)

72(t) = ¢c(t) + X'(t) = w{t)nN(t) + r{t)k(t) .

Lguipped with these definitions and relations we can experiment with hypctheses
that moke net saving depend in one way or ancther on net income or net profits.
But not much can be accomplished at This level of generality, sc we turn to our

standard speclal case.
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5. Harrod-neutrality and balanced growth: +the interest rate

Under the assumptions of section II.9 technical progress is purely
labor-augmenting and gross investment grows exponentially. Along such a path,

as we saw, m(t) is constant. From (10) and (13)

p({t,v) = O if v St-m
(1) T S W if v 2t
(27) becomes
“r(2)
t+nm -I rizjoz
(32) lL=u_ J (1 - el(u't"m))et au .
" .

Sclution of this integral equation glves the equilibrium interest-rate as a
Tunction of time on a balanced-growth path, Experience with Harrod-neutrality
and balanced growth in other models suggests that the interest rate will be
constant. Since the interest rate is required to discount to unity the stream of
quasi-rents expected from any newly-built item of capital, and since (31) shows
that the current quasi-rent depends only on the age (t-v) of a unit of capital,
it is indeed hard to see how eny non-constant interest rate can do the trick.

In fact, none can.
Substitution of r(z) = r in (32) and integretion yields

L
-Tn [s] -Am -Im
) - r__). (e - e )

(33) 1= —=(1-e¢e
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It is easily seen that F(- ®) =@ and F(») = 0 ; since F(r) is continuous,
(33) has at least one root. Since F'(r) <O (best seen directly from (32))
there is exactly one root. (That root may be negetive; but not if the
undiscounted sum of quasi-rents exceeds unity.) Thus if technical progress

is Harrod-neutral there 1s one and only one constant interest rate competible

with competitive equilibrium along a path of steady growth.

It is more complicated to prove that the interest rate must be constant.
In the form (27') the basic integral equation can be written

t+x t+x
- riz)dz - r(z)dz

l= p fm (1 = ek(x-m))e t dx = fm g{x)e t ax
0 0

o]

t
-f r(z)az

where g(x) >0 for x<m and g(m) = O . The substitution R{-t) = e 0

transforms the equation into

m
(271" R(t) = J a(x)R(t-x)ax .

R(t)} 1is, from its definition, intrinsically positive. We will show that the

only positive solution of (27") valid for all t is R(t) = R , Wwhere

satisfies (33). Constency of the interest rate follows:

We observe flrst that it 1s only necessary to settle the case

m
[ g(x)ax =1 (i.e. the case in which the constant interest rate is zero).
9]

n m
¢ [ g(x)ax £1, there is a unique constant h such that [ e
0 0.

hxg(::)dx =1 ;

m
end it is easily checked that RY(t) = R(t)e'ht satisfies R*(t) = [ R*(t-x)z*(x)ax
O
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.
with g*(x) = e_hxg(x) . We will show that if [ g{(x)dx = 1, +the only
¢
positive solutlon of (27") are constant, whence h 1is the constant rate of

interest, as 1t should be.

Any solution of (27") tends to a constant as t + o . Let

Moo= max R(t) and m,oo= min R(t) . ©Since R(t) is a
(n-1)m £t S (n-1)m £t Smm

true welghted average of its own past values over an interval of length m , the
Mn ferm a non-inereasing and the m o a non~decreasing sequence, with Mh g’mh
The Mﬁ are bounded below by any m and the m, bounded above by cny Mh .
Both sequences therefore have limits: lim M = M*, 1im m =m* , ond

"o o

M* Zm* . Tt remains to prove that M¥ = m* . Suppose M* - m* = A >0 .

Consider an arbltrary t and suppose Max R(t-x) S M+ ¢ eand
: 0<xSm
*
Min  R(t-x) > m" . ¢ . Divide the interval from M* + ¢ to m* - ¢
0OSx=n
into four subintervals from M* + ¢ to M*, from M* to M¥ - % , from M¢- % to m*

end from m* to m¥ - ¢ . Let &, &,, 65, 8, be the integrals of g(x)
over the x-values for waich R{t-x) 1lies in each of the subintervals

respectively. Obviously 51 + 62 + 85 + &5,+ = 1 .

From these definitions it follows that

> 4 - ¢) =
R(t) = 8, M* + 52(1«4’* - 2) + 55 m¥ + ah(m* €) (al + 52)M* + (s3 + Bh)m*
A
- 52 5 - 64 €
i) The smoothness of R(t)} =as an integral of an integral ... of an integral

guarantees all the required measurability.
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whence

> %
(a) R(t) - me 2 (8 + 57 )0 -8 ¢
and

A YA
R(t) S 61(M* +e) + SEM* + SB(M* -5 ) + B)m* = (1 - BA)M* + Bymk + Bie - B, 3

whence

5
(v) M* - R(t) > s+§2 A-B ¢ .

L

As t+w, the & and ¢ vary, but e¢ + 0 . If R(t) - m*¥ were bounded

i
zbove zero, it would contradict the definition of m* . Therefore, from (a),
) 5
Bl + 52 +0 as t + o . But then 5& + §é is surely bounded awsy from zeroc;

from (b) M* - R(t) 4is bounded awsy from zero, which contradicts the

definition of M* . Therefore & = 0, and 1lim R(t) = M*¥ = m* .
Lo

The same sort of argument, worked 1n reverse, shows that

M -m +® as n+>-«. Thus any solution to (27") is either constant

cr unbounded.

The rest of the argument we owe to Professor Frank Stewart of Brown

X
University. Define 8(x) = [ R(t)dt . From (27")
0 |

x 1 1l x
[ R(t-s)g(s)dsat = [ [ R(t-s)g(s)dtds
. 0

s(x) = [
0 0

0

1 1
= [ 8(x-s)g(s)as - [ s(-s)g(s)ds .
0 0 ,
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1
[ 8(-s)g(s)as

Let ¢ = =3 , 80 ¢ <0 if R(t) >0, and define

[ s g(s)ds
0

T(x) = 8(x) + cX . It is easily verified that T(t) satisfies (27"). More-
over T'(x) =8'(x})+c¢=R(x)+c>c, so T(t)is a solution of (27")
whose derivative is bounded below. In turn this entails the boundedness

of T(t). If T were unbounded then, as before, Mh -m would become
arbitrarily large as n + - «» . One could then find an n for vhich

M o-m > -2me . T(t) thus falls by more then -2mc in an interval no
larger than 2m ; by the mean velue theorem T'(t) < ¢ =at some

intermediate point, a contradiction. It follows that T(t) is a bounded

solution of (27"). It is therefore constent. Thus T'(t) = R(t) + ¢ = 0

and R(t) = - ¢ for every t .

We have establisked that, with exponential, purely labor-aug-
nmenting technical progress, the only competitive equilibrium interest
rate compatible with a permanent peth of balanced growth is & constant
interest rate, namely the unique real root of (33). Since the instentaneous
interest rate is constant, the yield curve or term structure of interest

rates is flat.

According to (33) r depends on Ko M end m ; through (18) r
depends also on the other parameters, n &and the gross saving ratio s .

By straightforward calculation, %% >0 ; 1if one compares two steady~
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growth paths wlth the same Ky and A but with different m , the path
with longer lifetime for capital will be the one with higher interest rate.
This sounds "un-Austrien”; indeed the mechanism is very different from the
economics of roundeboutness. From (18), a higher m is assoclated with
a lower 8 ; with Jower s , full employment requires the bresk-even
margin to be pushed back to older machines. Thus & lower saving rate
implies a higher m , which implies & higher rate of interest. This
result is entirely conventionsl. Similarly (18) shows that, with given

s, g% >0 . Since g=n + L, a steady-growth path with higher n

will have higher m and higher r ; other things equal, faster growth
in the lebor force favors & higher rate of profit. (Remember that

full employment, or at least a constant unemployment rate, is simply

assumed. )

The relation between r and % , for given s , 1is more complicated
because A appears directly in (32) or (33). Nevertheless, it can be
shovn from (32) and (18) that %—r,; >0 . In this model fester Harrod-
neutral technical progress with unchanged saving ratio always implies a

higher rate of interest. The key to this result is that, from (18),

om _ 1 1 ) - g
R G R i

- SR m . ..
= “en T < z Thus 3i'> 0 ; with given s , & faster rate of

technical progress actually lengthens the economic lifetime of capital.
The greater initial productivity advantage of new capital must outweigh

the more repid rate of improvement of capltal still to come.
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By letting r + O 1in (33), we find the m corresponding to & zero

rate of interest. This m1 satisfies

=

A= po(xml -l+e
Since the right-hand side increases monotonically from zero at m = 0 +to
+®w a8 m-+wo , there is always a lifetime short enough to reduce the
rate of interest to zero. From II.1l, however, the shortest m , say
o, attainable by a closed economy in balanced growth is associated with
s = 1, and satisfies po(l - e-gmz) = g . Depending on the other parameters,
m, way exceed, equal, or fall short of n, - In the first case, r = 0
for some saving rate less than unity; in the second case r = 0 for

s =1 ; din the third case, the rate of interest remains positive even if

all of output 1s saved and invested.

At the other end of the spectrum, a8 m=+® , r » Hy end this is
the highest profit rate the technology can generate. For then the real
wage ls zero and investment of one unit of output eerns & perpetulty
of Ko wnite of output per unit time. The saving rate corresponding to
infinite lifetime is s = -2

Mo

4. The Golden Rule path once more.

In IT.12 it was shown that a stesdy-growth path on which gross
investment 1s always equal to gross quasi-rent generates the highest

consumption path among all steady-growth paths. We can now see that
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the other stenderd charscterization of the "Golden Rule,” that the
rate of interest equals the rate of growth, also holds in this model .
It is only necessary to put r = g in (33) and observe that the resulting

equation is the seme as (21) or (22).

5. Harrod-neutrality and balanced growth: capital values.

Using (26) and (31), for Barrod-neutral balanced growth, it

is easy to calculate that

P(t,v) = ;? (1 - er(t¢v4m)) ) _Eg,(er(t-v-m) . ex(t-v-m)) )

A-r

(Putting v = t and P(t,t) =1 gives the equation for the rate of
interest.) With this formule and (29), snother straightforwerd cel-

culation gives

Jpe8t, ¢ L 2l e 2e
(34) K(t) = T e 1, § 75 - FaarXWer) * Gxien) - elg-r)(e-r)

K(t) is & value; to be exact it is the competitive market value (in
units of the single commodity) of the stock of diverse capitel goods in
existence at time t . Since we are limited, in any case, to paths of
steady growth, the foresight involved in this valuation is no extra
strein on the imegination. The ratio K(t)/I(t) will be constant elong
a steady-growth path. Its value depends on all the main parsmeters of
the model A, g , and K, » B8 well as on m and r , &nd therefore

on & .
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Knowledge of K(t) permits the calculation of various net
megnitudes. To begin with, since K' = gk, (34) gives the ratio of net

to gross investment as

-Irm

, A -gn
K 1 A& pY
(35) =8 =u,\ 7 oFD T GED t Taem

"\
-rm -Am e-gm

1l -2 £ + < -
o N (r-a)(r-g) = (r-2)g-r)  (r-g) (g-r)

(The last equelity is obtained with the aid of (33).) Now if we define

=1 - % = depreciation es a fraction of gross investment, we have

] ~Am o B0

e N e .
(r-2xXr-g) = (r-xXe-r)  (r-gXe-r)

Q

Y 'e-xm(l ST B . o~(r-8)my

r=-A\ n r-g

Net output is gross output minus deprecietion: Z =Y - @l ; bul

I/Y=s, s0o 2= (% - w)I . Thus the ratio of net investment to net

output is
K_ (l-w)I 5 - BW
o=z = T T - 80
= - w)I
8
Since  1s nonnegative, o <s . It would be interesting to know

whether ¢ 1s a monotone function of s on steedy-growth paths, i.e.
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whether, as between steady-growth paths alike in all parameters except

8 , the one with higher & always has higher o . We have not

settled this question; so far as we know, it may be that the higher

gross saving ratio, associated with a shorter lifetime, may so accelerate
depreciation as to result in a smaller net saving rate. It is clear,
however, that "on the average' & higher .8 is associated with a higher

¢ . From the discussion in V.3, the lowest gross saving rate compatible

with full employment is s = ﬁi (we must assume K, > & else continued

o

full erployment is not possible at all). Along such a path o = 0 ,

since r + M >g; hence o=s5 . (Intuitively, as m + o , the real
wage tends to zero, and there is no obsolescence. Since we have ruled

out physical depreciation, ® = 0 . If there were physical deprecia-
tion-by-evaporation, ® would tend to the rate of depreciation and o
would be at 1ts minimum when s 1is at its minimum.) At the other

extreme, when 8 =1, o0 = 1, so the net and gross saving rates reach their
maxima together. But we do not know whether thelr oversll positive

association is broken for some values of s.

The symbol « has aslready been introduced for the share of gross

quasi-rents in gross output. Let II be the share of net profits in net

o -l Q- ws wa(l - a)
output. Then II = Y G- T o™ a - T °

Thus i <@ . Also, when =35 , Il = ¢ ; the maximal-consumption or

golden-rule path can be characterized in still a third way: net savings
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equal net profits.

6. Harrod-neutrality and balanced growth: alternative savings functions.

So far we have parametrized saving-invesiment behavior by the
ratio of gross investment to gross output along full employment
balanced-growth paths. The equations describing any such path may be

collected:

u I -
() 1,= == (1-e)
o]

(16) w(t) = )«.oe-m M

(18) s & = 2

U

(33) 1

1

If we treat s , the gross savings ratio, as a parameter, then the given
constants in these equations are Lo’ uo, xo, n, A, g end s .
The unknowns sre Io’ Yo, w, m, and r , and they are uniquely determined

(subject to the restriction ag- <5 < 1). These equations "decompose"
)
in a particular way. We can say that (18) slone determines m , (14)

determines I_, (16) determines w , eand the "no-pure-rent" equation

(33) determines the rate of interest or rate of profit r .
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The grose savings ratio is not the only possible perametrization
of saving behavior. It is convenient becsuse, in thils one-commodity model
at least, it is a purely '"physical" description independent of all value
considerations. But for thet very reason it may also be inappropriate
in an econony in which the capitalist motivaiions play a role Alternative
descriptions have been proposed; the commonest are to 1egke nei saving
proportional to net income, or to net profit, or to neke gress or net
saving a linear function cof the wege D11l and gross or net profits. These
alternative saving functions do not introduce any new growth paths. It is
clear from (33) and (36) that along a steedy-growth path o constant s
1s accompenied by constant w, constant o, and constant II . But
different ways of characterizing saving behavior lead to different
"decompositions” of the equivalent equilibrium conditions and there-
fore, from a superficial point of view, to different "theories" of
interest and profit. Since this is sometimes misunderstood, we make

sone remarks here.

The most interesting alternative to consider from this point
of view is the assumption that net saving is proportional to net

profit:

K' = g liZ .
Tr

It can be verified that (18), (20), (33), and (34) imply that IIZ = rK ,

as they should, since both sides define net profits. It is obvious that
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along eny belanced-growth path K 1s a constant times I , so that

K' = gk . It now follows that with the present savings function

(37) re_ =g .

This equation replaces the first equality in (18) among the equilibrium

conditions for steady growth.

Full employment and competition in the labor market continue
to imply (14) and (16). These two equations, plus the second equality
in (18) and the newly-derived (37), are one equation short of determining
21l the unknowns along a steady-growth path. There seem to be two and
only tvo consistent ways of completing the system. One is to adopt (33)
as g rarket equilibrium condition: the rate of interest must equalize the
present value of future quasi-rents from a new capital good to its cost
o production. The other requires that the uses of gross output exhaust
gross output: Y = I + wiN + (1-0) IZ . But this requirement together with
the other four equations just stipulated entails (33). So there is

only one way to complete the system end we might as well let (33) stand.

The path just defined, with a particular value of c, given, is
ol courge the same as one of the paths defined earlier, nemely the one

with 5 = ““"thL_tEH - But the new equilibrium equations decompose
p (L -e ™)
o]

dillerently and so lend themselves to another interpretation. Now (37)

involves only one unknown, r. Thus we must say that it determines the
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rate of interest/profit, the "no-pure-rent" condition (33) determines m ,
and the rest goes as before. Thriftiness conditions and the rate-ofe
return conditions have exchanged roles. However (33) still holds, though

the "causal" interpretation has changed

The inessential character of the change is revealed by considering
yet another assumption sbout saving, that net saving is proportional to
net income: K' = oZ . The determinate system of equilibrium conditions
now consists of (14), (16), the second equality of (18), (33), and the

new equation, which can be written
-gn
uo(l e <)

(38) l1-w=0( z

- )

where o 1is the ratlo of deprecimtion to gross investment given in (36).
Once.again, the paths thus described are the same as thosge described
earlier; they are merely characterized via a different parameter. But
now the equations do not "decompose” at &l1. There is no one-gt-a-time

solution possible. Instead (33) and (38) must be solved simultaneously

for r and m , after which the other unknowns follow as before.
(Something similar i1s the case if the rropensities to save wages and

profits are positive but different.)

The only safe statement, therefore, is that the rate of interest
is determined, in general, both by thriftiness conditions and by "merginal"

conditions. This result is not only safe, but satisfying.
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V. The Interest Rate and the SBocial Rate of Return on Investment

1. Definitions end preliminaries.

In this pert of the paper we revert to the more general assumptions
of Part II. To be precise, we assume pu(v) and a(v) to be continuous
positive functions of v , with Mv) strictly increasing. The object
of this part is to relate the coﬁpetitive equilibrium interest rate
defined in (27) to what we shall call the social rate of return on
saving or investment. The point of the snalogy is suggested by the fact
that in a perfect capital merket the ruling rate of interest functions as

the privete rate of return con savings.

Consider a person who dlsposes of a certain amount of wealth,
W(0) , at time zero and who is obliged for some reason to pursue &
saving program such that his wealth at some given later time T is equal
to a given amount W(T) . His wealth at time zero mey consist of a
current stock plus the sum of his discounted wage income in the time
interval [0,T]. This person is free to choose any stresm of con-
sumption c¢(t) , which has a present value equal to W(0) minus the

present value of W(T) or, in a formula,

t T
- r{u)du - r(t)dt
T o o]
(39) J e c{t)at = W(0) - e w(T) .
o]

Hence, as before, r(t} is the instantaneous interest rate ruling in the

maerket at time t . If we compare any two such progrems cl(t) and
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ce(t) and define Ac(t) = cl(t) - ce(t) we get from (39)

t t
«f r(u)du -f r(u)du
T o T o
(4%) [ e re(t)dt = [ e [cl(t) - ce(t)]dt =0 .
0 G

t
[ r(u)du
o}
Because of (L40) it is natural to refer to the expression e
as the rate of transformatlon between consumptlion at time t &and con-

sumption at time zero. Giving up one unit of present consumption
t

. of r{u)du
permits e additional units of consumption at time + . Thus

the instantaneous rate of return on savings is the geometric rate of
change of the transformation rate as t varies. Especially, as ©

approaches zero we get

t
[ r(u)du

(41) e © T 1+ r(o)t

If we choose the time unit small enough, we can say that r(o} cxpresses
the net gain in total consumptign, if consumption is reduced by one

unit &t time zero and correspondingly incressed after one period.

The same interpretation will be given to the social rate of return

on savings.



- 62 -

2. The social rate of return on seving.

Under competitive conditions, the private rate of return on
savings is independent of the individual's decisions. Like any price,
however, the social rate of return depends on the aggregate of
investment decisions. It can only be determined aftef the whole in-
vestment path (for the past as well as for the future) has been decided.
Let us call this predetermined path I*(t) . The development of the
lebor force, I{t) , 1s also given. We can now compute the corres-
ponding velues for Y*(t) and C*(t) .

t

[ w VI (v)av
t-m (t)

(42) Y*(t)

* ¥* %*
(53) c(t) =Y (t} - I (t)
where the age of the oldest capital in coperation &t time % , expressed

.x.
by n (t) , is given by the now familiar equation

() L(t) = f WY M (v)av .

As in II.%, our assumptions sbout the technology entail that the
econoryy is efficient in the sense that Y*(t) is the capscity output
of the economy at each Iinstant of time. Without a change in the in-
vestment path I*(t) , no higher gross output than Y*(t) is possible

for any t . In other words, in order to achieve s higher volume of
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gross output in the future the economy has to increase the current
rate of accumulation, which means thet it has to reduce current con-

sumption.

The concept of & social rate of return on savings mekes sense
only in the case of efficient paths. For, if Y(t) were limited
not by the cepacity to produce but by effective demand, then a rise
in consumption today could be effected without changing the future
capacity to produce consumption goods. But for efficient paths Y*(t)
the social rate of return on investment links small changes in I(t)
to small changes in C(t) for given L(t) , Just as the marginal
productivity of labor relates small changes in L(t) to the resulting

small chenges in C(t) for given I(t) .

There are of course infinitely many ways in which marginal changes
of the function I*(t) can be introduced. AI(t) , the difference
between the 0ld end the new investment path, may be almost sny function
of time, es long as t lies in the interval [0,T], which we are con-
sidering. Since the past is history, AI(t) =0 for t <0 . We
will confine ourselves to the effects of variations in the finite period from
zero to some arbitrary T (0 <T <w), and assume that AI(t) = 0
for t>T . Let us write AI{t) = ey(t) where ¢ is a constent and
¥(t) 1is any bounded function of t for 0<t < T and equal to zero
otherwise. Note that I{t) itself is not entirely arbitrary. It must
be nonnegative and no bigger than Y(t) . To be sure of room to

*
introduce small chenges of I (t) in either direction, we assume that



(45) inf I*(t) >0 and inf [Y*(t) - I*(t)] >0 .
0<t<T 0<t<T

: *
Also, as will be seen, we have to assume that I (t) is such that

(46) qu - m*(t>= o .
L0

(See IIT.5 Lemma 2 for the case of constant s .)
This innocuous assumption meens that along the original path the
volume of investment is adequate to ensure that the economic lifetime

of cepital remains finite {or becomes infinite slowly). We now have

(7) I(t) = T () + e¥(t) ;

for € sufficiently close to zero I(t) is a feasible investment
program, differentieble with respect to € at the point € = 0 .
From (47) we infer

t

(48) L(t) = J ) [R(v)/M¥)] [T (¥) + ey(v)lav

t-m(t
which is an equation for m{t) , and

t *
(49) () = [ w(v) [I7(v) + ey(v)lav
t-m(t)

vhich determines Y after m(t) has been computed from (48). Now we
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can differentiate both sides of (48) and (49) with respect to e for

€ = 0 . Then we get from (48), since L(t) does not depend on ¢ ,

t
L LA vy + BERCE) ) dne)

€ =0 t-m (t) x(t-m ()

€ =0

or, since I (t) >0 and E(t—‘—“—iil)oo

At (t))
1
- [u(v)/k(v)]\tr(v)dv
(50) dm(t) __ _tem ('b) .
© Je=o0 P_(_'_m.ﬁﬂll(t_m (£))
)s.(t-m (t)

Differentiation of (49) yields

t * »
I e e + p(tem (£))T (t-m
€e=0  tm(t) - | :

il

But t) is given by (50). So we have
€ =0 )
v s
G § L Ty M - Mten(£)) I oot &E—y W)y
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If we subtract aIet_

= y(t) from (51) we get an
€=0 - .

expression for the merginel change in C(t) , which we may call 50*(t)

(s2) sc(t) = Kt

t *
A= 1
€ =0 i ft-mf(t) w(v) p(v) 1 - l?§; o daw - W(t) .

Comparison with {10) in IT.6 shows that the marginal change in
consumption at time t is.equal to the competitive quasi-rents earned at
time t by the incremental investment less the current cost of incremental
investment. GC*(t) is the Infinitesimal expression that corresponds to
AC(t) in equation (40). It is the marginel rate of change from one
consumption program to another. If we consider very small ¢ , we can

write

c(t) T ¢ (t) + e8¢ (%) .

* +*
Hence in the neighbourhood of C (t), €8C (t) plays the same role as
AC(t) 1in the case of the private individual. In that case there existed

a discount factor
%
J r(u)du

o]
e )

such that any admlssible AC(t) satisfied

t
. -f r{u)du

f e?® A5(t)dt = O .
0
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*
Can we find a corresponding function r*(t) such that e8C (t) must
satisfy & similar equation? Observe that {(t) =0 for t > T and that

*
because of (46) there exists a T, such that t -m (t)>T for t>T

1 L’
Therefore after Tl the econory is no longer affected by the perturbation

function ¥(t) . This means that we have to look for & function r*(t)

(depending on I*(t) but not on Y{t)) with

t
T -f T (u)du

(53) e [ e 8C (£)dt = O

*
for any ®C (t) , which can be generated by some admissible (%) -
%
¥*
J r (u)du
o
If such & function exlsts, we may cell e the marginal social
rate of transformation between consumption at time zero and consumption
t
*
[ r (wdu
% 0
at time t . For any fixed t society could increase ©8C (t) by e
*
units, if it were to reduce & (0O) by one unit (this change would be
achieved by changing the function ¥(t)) . It is then natural to call
*
r (t) the social rate of return on savings. For a smell unit period

we could express the marginal rete of transformation between con-

sumption now and consumpiion t periods later by

1]
*
[ r (u)an
o L 3
e T1l+7r (0)t



By giving up one unit of consumption today society could gain

*
l+r (O) additional units of consumption after one period.

5. Equelity of private and sociel rates of return.

We proceed now to prove that in the model of this paper for any
given I*(t) (fulfilling the requirements (45) and (46)) there exists e
function r (t) such that (53) holds. Moreover we shall see that this
unigque social rate of return r*(t) is equal to the instantaneous rate
of interest r(%t) , which in turn, of course, depends on the particuler

*
reference path I (t) .

Substituting (52) into (53) end cancelling the ¢ on the left hand.

gide of (53) produces the following double integral

t*
T -/ r (u)du

1 t *
(54) o= [ [&° [ vt - 2L ar - y(o) L as

0 t-m (%)

*
Now we introduce & set function X (v) defined by

X(v) = {t D tm (t) <v < t} ,

*
X (v) hes a simple economic interpretation: it is the set of all in-
stents t at which machines of vintage v are operating. From this in-

%
terpretation of X (v) we can infer the equation



% -f r(u)u

(55) fx*( \ u(v) [L - Mt_:(ﬂ;gi)_l] e " it = 1 .

This is merely (27) of IV.2 in a slightly altered notation. We write
*
p (t,v) for the quasi-rent at time t of a capital good of vintage v

*
along the reference path I (t) .

*
We define the set Xs(v) as
* *
xs(v)= {t : teX (v), ogtgs}

* *
xs(v) is the set X (v) restricted to the time interval [0,S]. Now,

by.simple arithmetic, we get equation (56) for any 8 >0 .

t

5 J’ - iwa .

;L e I % v (t,v)dvj dt =

0 1 -

(56)
-~ v, -

5 J -f ©(u)an ¥ (w)au

I & e’ ¥Wv) [, e o (t,v)dt >av
-m (o) l_ Xs(v)

(56) can be proved as follows. First observe that for S = O both sides
are equal to zero. Differentiation of the left hand side with

respect to S yields the expression
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S*
-f r (u)du g

(57) e? I . wv)e(s,v)av

S-m (S)

Now observe that the set V; defined by
¥ *
Vg = {% : SeX (vi}

* 3*
is just equal to the intervel [S-m (S8), 8] . For Vg consists of all

vintages which are in use at time S . "Therefore we can write the

expression (57) as

ufS r*(u)du
(58) e® [« Wv)o (8,v)av

Vg

Now differentiate the right hend side of (56) with respect to S to get

S »* t *
-f 7 (u) -/ r (u)au
e’ ws) [, o° o (t,v)dt
%(5)
(59)
v * S *
~f r (u)au -/ r (u)du
+f 4 €° wv) e 0 (8,v)av

v

(5]
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It is easily seen that X;(S) consists only of the polnt S . Hence
the first term in expression (59) is zero. The second tern is

equal to (58), which proves that the derivatives with respect to S
are equal on both sides of (56) for every S . This, together

with the fact that both sides have the seme value for S = 0 , proves

(56).

If we take into account that Y(v) =0 for v<0 and v > T

(56) turns into

%

T, -f r*(u)du "

d {eo I s ) p*(t,v)dv} at =
0 : t-m (t)

(60)
v * t N

T]_ - r(w)du -f r(w)du

of {eo ¥W(v) fx*(v) e p*(t,v)dt} dv

This is s0, because for the relevant v's (0 <v <T) we have

x; (v) = X*(v) . Now we can substitute (60) into (54):
1

A" L
T, - r {(uwadu -/ 7 (uw)du

(61) o=f &° wWv) | f, & o (t,v)at - 1 | av
0 X (v)

For (61) to be true for all admissible functions (v} it is a

necessary and sufficlent condition that
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t *
-f r (u)du

*
(62) /. e’ p (t,v)dt = 1

X (v)
for all v in the intervel [0,T7]. (The left hand side must be equal
to unity &t least for a dense subset of [0,T]. But it can eassily
be shown to be & continuous function of v , whence it must be equal

to unity everywhere).

*
Comparison of (62) with (17) or (27) of V.2 shows that r (t)
satisfies the seme Integral equatlion as r(t} , whose solution is
*
known to be unique. It follows thet r (%) = r(t) , =as was to be

proved.

VI. The Keynesian Case: Output Limited by Effective Demand

1. Output and Employment

Up to now we have dealt only with the case of full ernployment.
Without inguiring into the causal mechenism, we have assuned that
exployrent could be identified with the exogenocus supply of labor.
This is a doulle esssumption (&) that at each moment of time the
stoek of curviving capltal is adequate to employ the whole labor
force, and (b) that effective demand is always adequate to buy the
output producible at full employment from ithe existing stock of
capitel. Thus we have placed ocurselves in the second of the three

regives rentioned in IT.3%: output is limited by the supply of labor.
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Regime I, in which output is limited by & shortage of capital
while labor is redundant, has no application to an advanced indus-
trial economy, though it may be relevant for the edvanced sector of a
developing economy. We turn in this part of the paper to the third,
or Keynesian, regime, when both capital and lebor are unemployed, and

output is limited not by scarce resources but by effective demand.

The basic equations (7) and (8) continue to hold, but their
interpretation is different. In the full-employment regime, N(t)} is
replaced by L{t), m(t) is determined by (7) and Y(t) by (8). That
is: +the margin separating active from idle capital 1s fixed by the
requirement that the entire labor force find employment; and output
is whatever they are capable of producing. This would presumebly be
true in a planned economy, or in one where a flexible fiscal policy
regulated aggregate demand accurately. Pre-Keynesian neo-clessical
economics relied on a market mechanism: so long as there was unem-
ployment the real wage would fall; older and older vinteges of capital
would be able to earn positive quasi-rents; as they entered production,
employment would rise. Modern short-run income analysis rests on the
presumption that this cannot or does not happen, or does not happen
quickly enough to matter. The casusal structure in (7) and (8) is
reversed. If we take aggregate demand Y(t) as given (in the simplest
case, from exogenous investment via the multiplier), (8) determines

m(t) and (7) determines N(t) . That is: the margin seperating active
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from idle capital is fixed by the requirement that output just
match real effective demend; and employment is whatever 1s necessary
to man thet capital. If the division of output between consumption
and investment is determined, a model like this is clearly sble to

generate its own future time-path.

2. Aggregate Supply and Demand

There must, of course, be a market mechanism underlying a

Keynesian econory, though it can not be the same as the 1coclessical

]

mechanism. For one thing, a Keynesian economy must have at least one
rore asset, money, and therefore one more price, the money wage, then
the neoclassical aggregative model we have been discussing. Otherwise
there is no explanstion for over-seving. Without the attrection of some
other store of value, investors would simply increase consurption when-
ever capital accumlation became unattractive. Nor is there, without
money, any opening for the trouble that may arise from stickiness of
money wages and prices. A nechanism close to that described in The

General Theory itself is the following. Suppose W(t) , the money

wage, is given in the short-run; W(t) or its rate of chenge may
depend on past unemployment, but for the current instant it is given.

Now equation (9) can be rewritten

(5 P(t) = i

where P(t) 4is the money price level. Together (8) and (9') define
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an aggregate supply curve, giving Y(t) as a funection of P(t) . Any

P(t) determines, via (9'),an m{t) . That m(t) , inserted in (8), yields the
corresponding Y(t). More descriptively, with a sticky money wage,

any erbitrary price level fixes the margin between those vintages of

capital which can operate &t & profit end those which can not; the
corresponding supply of output is the capacity of the profiteble vintages.

Obviously Y(t) is an increesing funection of P(t).

A detailed treatment of aggregate demand would be out of plece
in this essey. One limiting possibility is that real aggregate demand
is independent of the price level for a glven money wage. More
generally, real demand might depend on the price level through the
distribution of income, through the real volume of cash balances, or
in other ways. In any case, the intersection of the aggregete demand

and supply curves determines the price level and real output.

This is a perfectly-competitive Keynesian model, with (9!)
doing the work of a rarginal-product-of labor eguation. Here -- as in
the full employment model -- it is possible to allow for imperfectly-

corpetitive pricing. Then (9') cen be altered to

(9") P(t) = (1+n) i(EH%E%(ETY ;

n 1s the percentage by which price is marked up over priue costs

on no-rent capital. So long as 1 is roughly constant the theory can
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be worked out as before, though the results differ in more or less
predictable ways. (Of course the equality of private and social
rates of return is broken.) It should be realized that in short-run
equilibriwn the real wage mey be at its competitive level Tor the
current level of employment. Real-wage rigidity means only thet un-

employment does not make the real wage fall.

VII. EXTENSIONS AND OPEN QUESTIONS

1. Depreciation and loss of productivity.

It is guite streightforward to reke allowance for age-dependent

physical depreciation within our simple technology. Let &(x) be the
proporiion of an instant's gross investment that survives to age x .

Then the fundementel employment and output egquations becore

t
- n(v) g
N(t) = ft_m(t) NS B(e-v)I(v)ay
t
¥(t) = f p(v) 8(t~v)I(v)dv
t-m(t)

The easy special case is, of course, depreciation-by-eveporation:

Ox

8(x) = e’ The results are generally predictable. The case of

"one-hoss-shay" depreciation is mixed. If € 1is the physical lifetime

1 0<x<6

of capital, B&(x) = {
O 6

X

A

+ Vhenever the economic facts require
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m(t) < 6, the physical lifetime is irrelevant, and the snalysis is exactly
a5 in the body of the paper. But when the economic facts would meke
m(t) > @ , the physicel lifetime has primecy and shortage of capital

supervenes. It is lasborious to piece the two regimes together but 1t can

be done.

Related to, but not identical with, the idea of physical depreciation
is the notion that capital poods lose productivity (or require increasing
Laintenence) over thelr lifetime. Suppose, for conereteness, that plant
corstructed at time v hes a cepacity et time t > v of u(t,v) units
of output. It is now complicated to sey what "technological progress"
negns, since it rey well be desirable to have capital goods which are less
rroductive vwhen new but lose productivity more slowly with age. It is
uro . biguously progress if v' > v implies p(v' + x, v') > p{v + x, v)
for ell x > 0 (end lobor requirements are not higher on vintage v*
cepitel). Bul this is unnecessarily strong. The simple special case is

u(t,v) = ¥(t-v) p{v) . Then one hes

t

H(t) = IYL 8(t~v)I(v)d

= MRS stear
t

Y(6) = S W(6v) u(v) (s-)T(v)av
t-m(t)

The distinction between the phenomenon and depreciation is that half-
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depreciated capital is assumed to require only half the labor it did when
new; but capitel that has lost half its productivity is assumed to retain
its original lebor requirement. (There is a symmetric hypothesis; output
capacity remains but labor requirement increases with age.)} It is not
hard to see that -- ignoring depreciation again -- the real wage rnust be
Y{m) A(t-m) where, &s usual, m is the economic lifetime of cepital. It

follows that

o(t,v) = w(v)[¥(t-v) - m%g-y"ﬂ ]

If we revert to the exponentiel Harrod-neutral case eand put y(x) = e-w“l’rx s
it turns out that equilibrium peths have constant m and a constant interest

raete satisfying

0 (e-(¢+h)m . e-(¢+r)m} °

* * *
Compering this equation with (33) one sees thet if the triple (r , A , m )
* % *
satisfies (33), then the triple (r - ¥, A - ¥, m } satisfies the equation

above.

2. Partielly capitel-augmenting technical progress

Although the basic model is quite general -- within its fixed

coefficient lirdtations -- we heve concentrated very heevily on the case
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of Harrod-neutral or purely-lsbor-asugmenting technical progress. There are
two reasons for this. First, only in this case can we get clear and simple
analytical results. Second, it may be that the broad outlines of economic
history -- in particular, the apparent leong-run trendlessness of the
marginal efficiency of capital -- suggest Harrod-neutrality more than

they suggest any other simple hypothesis sbout technical progress.

Under Harrod-neutrelity, constant m and constant s go together.
When there is any capitel-augmenting technlcal progress -- including the
other standard case of Hicks-neutrality -~ we must choose between them.
In general a constant gross saving ratio requires lim m(t) =0 &/ and therefore,
a rate of interest falling toward zero. On the othzzmhand, if m(t) is
constant, then output will grow at the usual natural rate while the gross
saving ratio will fall exponentially and the rate of interest will rise.
We jllustrate these remarks by sketching the Hicks-neutral case.

Av t

Let A(v) = Ao and u(v) = uoe“v , and let employment be Noen

Then the fundamental eguations for employment and output are

Bt
N(t) = Noent = xi ft-m(t) e(“_"’)v I(v)av
t
Y(t) =u MV r(v)av ;
° T t-m(t)

§/ We owe Mr., Geroge Akerlof of M.I.T. the observation that this is so if
there is any capltal-augmenting progress.
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B = 0 returns us to Harrod-neutrality, while p = A gives Hicks-
neutrality. On a path with gross investment growing exponentially at

the rate g ,

nt

N e = po
o] lo(u-x+g§

I gldredt () -(u-wghm(t),

Wt = ';_OE 1 ()6 (1 _ o-(wednlt)y

If m(t) is to be constant along this path, it is necessary that the
rate of growth of investment g=n+ A -~ u .

In that cese

thus output must grow at the rate n + A . Constant economic lifetime

for cepital is not compatible with a constent gross savings ratio; indeed

I(t n+ ) e-ut .
1- e-( n+)\.)m)

ko
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the gross savings rate must fall at the rate of capital-sugmenting

technical progress. OQutput grows more rapldly than investment.

Even if m(t) is permitted to vary in time, & constant gross
savings rate 1s incompatible with exponentially-growing gross investment

and exponentlally growing employment. The fundemental equation for out-

put implies
oL mh ot
m(t) = - = 1og (1 - i e’ ).
1 ks
Thus m(t) +» a8 t decreases to m log ( Ve ) . Even for larger

values of t , substitution of this equation for m{t) into the

fundeamental equation for employment leads to

p I n |
_ "oTo (u=r+g-n)t } —_—
Yo = (uwg) © {1-(1-’5&1&%“}
o)

which is an impossibility if w > 0 .

fkerlof haes polnted out the following line of argument which
proves that m(t) + O whenever p >0 and s is constant. Although
we know that the investment and output paths are not exponential, we can
be sure that the output path corresponding to u > 0 is no lower than the
output path corresponding to p = 0 end the same velues for all the
other parsmeters. Therefore, it follows from the theorem of III.>

(Mn-e)t

that for sufficiently large t Y(t) >c e vhere ¢ is a
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constant and e 1is any positive constant, however small. Gross investment,

ce(l+n-e)t

then, eventually exceeds s Each unit of new gross investment

H -
provides employment equal to xg e(“ At . Thus current gross investoent
o]

St (ntu-c it
provides employment in excess of Tce . If

C

€ 1is chogen to

be less than w , employment on currently-produced capital will cventually
grow faster than sn exponential itself growing faster than the labor force.
From what has been said about constant-m paths, it is clear that m(t)

can have no positive lower limit. So 1im n(t) =0 .
tren

If we turn to the price relationships, (10) says thet

o(t,v) = h MY (1 - eh(t-m-V)) ,

no longer a function only of the age of capital.

If the saving rate behaves so as to keep m constant, it 1s clear
that the quasi-rent on capital t-v years old grows exponentiaily
with v . This is true for the whole stream of quasi-rents frcm t = v to
t=v +m. lHence the rate of interest must be rising with calendar
time in order to keep the present value of quasi-rents from ncw
investnient alvays equal to 1. On the other hand, if the saving ratio is
constant, c¢r falls slowly enough so that m(t) + O , the shcrtening
of the length of life offsets the rising trend of quasi-rents. The result

may be . constant or falling rate of interest.
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For the equilibrium interest rate one can apply (27') along a

path with constant m %o get

t+x
-f r(z)dz
h(X-HI) ) et o

t in
1=p e f(1-e dx
°© o]

Trial shows that the interest rate cannot be constant, i.e., the maturity
structure of interest rates cannot be flat., The equation for r(t) can be trans-
formed by differentiating it with respect to t . The result, after some

rearrangement is

M
- ;f r(z)dz

r(t) + x 15 Mt [ du = p Mt (1 - e’*m) + A -n .
t : .

We have not been able to sclve this equation.
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