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A DECOMPOSITION ALGORITHM FOR QUADRATIC EROGRAMMH
| by

Andrew Whinston

Tntroduction

In this paper we consider & direct extension of the Dentzig and Wolfe [ii]
decomposition algorithm for linear programming to the case of a quadratic crite-
rion functlon, First presented by Dantzig [2] and further elsborated by ven de Panne
and Whinsten [6], the quadretic slgoritim we shall use is itself a direct extension
of the simplex method. Thus, if the quedratic part of the criterion function is
zero, l.e., if we, in fact, have & lineer criterion function, the decomposition
algorithm is reduced to the one given by Dantzig and Wolfe.

In their paper; Dentzig and Wolfe [3] suggested an extension of their

algorithm o the case of & nonlinear convex criterion fanction.l

This is dlscussed
in more deteil in Dantzig {1]. Their suggestion differs from the method being
Tresented here in several weys. First, in the quadratic case our method leads to
a finite procedure while their mothod ylelds an infinite comvergent algorithm.
Second, in the solution of the subproblems we must solve linear Progremdng prob-
lems while their method requires the solution of the same mmber of quadratic

Programming problems. Finglly, the method discussed here does not require that

*

This paper is an oubgrowih of some jJoint vork with Mr. C. E. van de Penne
88 reported in [6]. I am, of course, very mch indebied to him. My colleague
Yoari made several very helpful suggestions. I remain responsible for sll
Losgible errors.
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the criterion function be separsble. Since extension beyond the quadratic cese
would not possess the characteristics indicated sbove, we present the argument
for the quadratlic cese only.

Deconposition algorithms arise naturally where the constraint meirix
hes & block disgonal structure. In this case a large problem may be broken down
into & collection of smaller ones which are then tied together by & series of
interconnecting constraints. This-type of approach may have some utility where
the mumiber of constraints in the original problem is very large.

One may &lso imberpret the decomposition algoritim &s & decentralized
approgch to solving & lsrge decision making problem. Each of the smaller sub-
problems cean be of as o division of a firm, vhile a central coordinabing
staff is responsible for the coupling conditionz. The type of information
exchange suggested by the algorithm could be considered as one method of organizing
a decentralized decision making system.

The Algorithm

In presenting the slgorithm we shall attempt to illustrate the basic
d%ffesrences between this case and the linear programing problem. With this in
uind, we consider only two subsectors in the following problem
Max 2(x), xp) = B X + By ® - /2l xj] o, Copf (%

sy X, =
12 % Coy c:a,‘2 X,

=i % Ri R - U2 Cx) - x] Oy, - 12 ) Oy



(1) A=+ Ax, =D,

(2) By <by

(3)  Bx, <D,

 mzo om0

x]'_ = (ﬁloooﬁq'l-) xé = (xéoooxge) bé = (bOl...bO.G)
Pi = (Pg:"’?%l) Pé-‘-’- (P%ooo?%g)

The matrix [C,, © ] is symmetric positive semidefinite matrix of dimension
.. C

21 “ep
(q_l + qe) » We shall essume that the comvex sets described by the inequalities (2)

and (3) ere each bounded, in order to simplify the exposition.’

Iet {xkl} be the set of extreme points for the constreinis of (2),
| eme points for the constraints of (3). Then any

and, {xk?_} the set of e
point xl satlsfying the constraints of (2) cé.n be written as
X
m 7.0 fata
Bogy =1
P 2 0

Correspondingly we have for (3)

5
() xp= 2 Xy

Zoyp = L
Pep 2 O
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vastitﬁbing (4) end (5) into the programming problem we have the equivalent

problem

gzpi%m*%%xm-lfa%%cn%m
- T % G2 e S Y2 P i o2 T2 2

(6) Ay Zoyg X + A TP B = B
(1) Boy =1  Ipy=1
(8) Py 20 1=1,2 for €11 Xk .

The Kuhn-Tucker [ 5] conditions for this problem are (6), (7), (8) and

(9) 21 X - Ty Oy P X~ M C1p P o
“VUA X Mty =0 |

(10) vy mq =0

(1) w, >0,

(12) 3 %ep = %0 %2 T2 T2 ™ T2 21 P1 T
TV Ay X m Mg F Wy =0

(13) o, =0

tlh) ®%,>20 .  forsall k.

We must show that the transformed problem is still s concave programing
Preblem. We write
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Ty ) =pim vmyx -yl 10, Cpfix
®a1 Ca2 | | %

end show the following:

Theorem:
The criterion fumction f£ (Epkl X2 zpkz xm) is & concave function
of (‘al, p?_) = ("11‘“91:11 ’ pm.uﬁkza) .
Proof
| Since f(ﬁ, xa) ig concave we heve
(15) f(l. X + (1-1.) x) > M (x) + (1) £ (z:)

vhere X = (i’:l, xa) and x = (;:1, ;2) are glven points. We have

wvhere T 18 a linesr transformation, Deline

(16)  &lp) = £(T p)

(17)  &(n o+ (1) p) =
(18) 1 (= {» ;+ {(1-2) ;)) =
(199 tGrp+@A) TR

(20) % (2p)+ (1n) £ (T p) = % e(p) + (11) & (p)

de €. d.



Description of the Algorithm

In this section we shall describe in some detail the vorking of the
elgorithm. After certain preliminery definitions we shall glve & description of
the slgorithm in terms of the quadratic programming tebleau. Then various aspects
of the algorithm will be explored in some detail,

Dantzig and Wolfe have pointed out that an important aspect of the
é.lgerithm is the sequentiel gemeration of the extreme polnts and resulting columns
of the tebleau as they are required. To initiate the algorithm, we muast have

4+ 2 "pki" verisbles, vhere £ is the dimension of b which sre positive

(3] ?
and sa.tisfj' (6), (7) end (8)% We also heve £ "v" varisbles and W, ead 7,

in the besis. Note that these varisbles sppesr in every teblesu since their values
are unconstrained. Finally, we will have m-i-n.- £ -2 "uki" in the besis
corresponding to pki not in the basis. In general, the initial set of L) in
the basis will not sabtisfy (11) and (1), but will satisfy (10) and (13). When
conditions (10) and (13) are satisfied, then we say that the teblesu is in
standard form; otherwise, it 1s & nonstandsrd teblesu. The inftiel solution
constitutes a feasible, standard form teblesu which is not optimal.-i.e., satisfies
conditions (6), (7), (8), (9), (20), (12) end (13) but not necessarily (11) and
(14). A fessible solution is ome that satisfies (6), (7), and (8). The algorithm
proceeds by moving from & fessible solution which is either in stendard or non-
stendard form to an optimel solution, i.e., a tsblesu also satisfying (11) and

(1%) besides the conditions (6), (7), (8), (9), (10), (12) end (13).

Let [zi} be the values of the set of basic veriegbles which are
permitted to leave the basis in e particulsr iteration and let (2y4) be the



Seteup Tebleeu for the Algorithm

Value of
Basic hasic
varisbles varisbles ul_ 'ag v pl pa ﬂl 112 '.Yl ;?'2
' -Dt oy C. 3 -
w P! I © ¢ 11 O "4 0 0 ©
ué_ -P} 0 I -AY Oy C,, 0 -2 0 ©
v; by © 0o 6 A A © 0 I O
. .

2 1 0 0 o 2 0 0 © 0 1
y% 1 0o 0 O o 2 0 0O 0 0
= (g e ) Py = (Ryy ve Py a)

U, = (0, e %22) Pp = (pyy +ee "kza)

v (V) e vj)

A = (825 oo Aﬁ:ll) By = (pfxyq oo Pizh_'_l)
r = a6 = t oee 3

B, = (ax, . Az‘k?a) By = (pi%yy Péxkga)

by = (1 eee 15)
L, = (1 ... :Lkz)

*We 8dd the srtiricial verisbles ¥ = (yl, Tps yj) o the
constraints in order to write the tablesu in this form.
I refers to an identiiy metrix of sppropriste dimension.
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elements in the ;jth colum of the tsblean which is the colum of the varisbie
+o come in the basis. Then the varieble to leave the basis 1s the one whose
velue z, is such that

1
Z Z
Min {2 | 2 >0 zidyéo}
1 Ay Ay A

Starting from & basic feasible solution which is not necessarily optimal, the
algorithm proceeds in the following manner:

l. Determine the most negative um verisble. If there
are nope the aneu:ithm is terminsted.

2. Introduce imto the besis the complimentary p, %o the
Y. chosen in Step l. The varisble te be Femoved Trom,
the basis is chosen from among the "pki" veriables. in
the basis and the "uu verisble designated in Step one.
If the varisble designated in Step 1 1s removed re'bm.'n to
Step 1; if mot, go to Step 3.

3. Introdmce the "uki varisble corresponding to the pﬂ“_
varisble which was just taken out of the bassis. The
verisbhle to be eliminated from the basis is chosen from
the p, 1n the basis and the varisble designated in
Step 1. If & Pt is eliminated repest Step 3, if not
go back to Step 1.

We now wish to show that given the velues of the £ + 2 “pﬁ" varisbles
in the initial basis we mey determine v = (v, oeo v,) and 7, and ﬁz . From
the tsblean we have the following £ + 2 equations imyolving Yy qi, 1, end
Py Which ere in the basis: o



= 10 =

(@) BH =V hxgt Eoen X tnTat B M Cplfptpty
@Jl 3€J2

(22) Pimp =V Ay Xt B X Oy Pyy Xy F I K, Cop Pyp Xyp + Mg
JeJl J@Je

vhere
9y = Ulogy >0} and 3, = oy, > 0)

Each of the equations corresponds .i‘;o & pa:r*bic‘ajw Pys. >0 and comsequently
there are £ + 2 equations. The set of extreme points indexed {xkl) vhich
sppeers in these equations is assocleted with p,, > 0 » As & result these
points are known. The extreme points indexed {xkz} are essociated in the teblesua
with eolums of pk2>6 end egain are known. ‘I‘hvéweh.ave £+ 2 equetions in
2+ 2 unknowns (v; <eo vﬁ) s, ead w, . Inprinciple, ve msy solve for v,
7, ad 1, b

We now wish to discuss how Step 1 in the algorithm is carried out. AL
some stage in order to determine the most negative Wy Ve kave the following
equations for Y and Yen 3

= e t : f :
() oy -2 K T O T T R G e G T T A g t Yy
= = 1 o 5
(28) wp = -0 Ty ¥ Xy, Cpp ey B + X Oy TAgy Xy * V] A N * Wy
Aecording to Step 1 we are to determine thet particular Wy which is minieam,
This is eguivalent to minimizing the expression for W over ell exitreme points

{xﬂ} + In order to express the problem im a more interpreisble feshion we mey
teke the maeiwization of the negetive expression for W o Thus, we have



(25) ﬁx P15 " B8 P Mg - X0 B e -V AR -y
s.t. Bix <by
20
(26) Max Pg¥p = Xilon i Np = Xilp1 TP Fg m V' A~ g

2
Bete BX, S b,

%20

Both maximization problems are linear progremming problems and therefore the
solution is st exbrm point. From these solutions we o]a_tb.in both the minimm
w, Vvalue end its assoelated extreme peint.

In the course of the slgorithm we must be sble to determine the cwrrent
basis values of Prgr Vio By and the particular L currently designated by
Step 1. In & certain iteration we refer to the Ly designated in the preceding
Step 1 as u;i o OFf ecourse as the algorithm proceeds the pa:rticular variable
designated as u:i will. very.

AL any iteration we sre either introducing a p:i varigble complim

*
o Uy designsted by Step 1 or some wy varieble. If we can show that abt any
iteration we can determine the tebleau elements of the particuler incoming column
* .
associated with P2 Vi2 Wy and u, in the basis, we then will Ikmow the values
of these basic varisbles throughout the algorithm.

Comsider the system of equations (6), (7), (9) =snd (12). Associated

with each varisble is a colwm of coefficlents. However, during the course of the



algarithm not a1l coefficlents will be known. The algorithm, as represented by
the rules 1-3, cen be viewed as a.,.pmcedme‘ for moving from one basic soltx‘;ion to
(6), {7), (9) and (12) to another one vie a simplex-type pivot. Each basic
solution is successively an lmprovement in terms of certsin eriteria. What we
wish to show is, that, in general, we ‘need. only be concerned with a smaller basis
matrix ~- a submatrix of the larger basis matrix where all the coefficients are
known..

We first consider the c¢case where we are introducing p;i into the basis.
By determining the eppropriste tsblesu elements for p::i. ve may determine which
varisble will lesve the basis emong the p_ >0 end the appropriste u:i <0 .
let D, be the colum sssocieted with o, « Let B be the basis matrix vhere

Bl ki

ve partition B = ( ’32) « BT conbtains the colums of Wy in the basls

* 2 _
except ey while B™ consists of the columms associated with ij.’ Vis Ny and

u; in the basis. Thus we have

(8%, 5°) (’1) )
r, ) TPt

where )\! = ("1’ My) 1s the vector of itebleaw elements. By permarbation of the

rows of (Bl, 32) =B and Py Ve write the prcoblem as

Bi1 B2 ("1) Prga’
0 B, 2/ =\
‘ 1

where :Bll=I. The dimension of I is equal to the mmber of columms in B~ .
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Note also that 322 is & square submstrix. Next we wish to show that all the
coefficients in 322 are known., The lest £ + 2 rows of 1322 correspond to
the constraints (6) and (7) and since the colwms correspond to "pki" verisbles
in the besis the coefficients are known. The remsining rows of B,, consist of
equations drawn from (9) and (12) where the "w;" verieble essocisted with

each constraint has been removed from the basis. Therefore the extreme point ey
assoclated with the complimentery variable pm has been determined. This, com-
bined with the fact that the columms ere a_ssociated with veriebles in the basis,
esteblishes that all coefficients are kmown. A sim:_l.la:r argument holds for | Prio °
The matrix B must be nonsingular since it iz cbteinsble by a series of simplex

pivot operations, therefore the matrix By is also nonsingular. The system of

eguations

Bop X2 = Pyyp
1s solveble for M = Pkia The vector A, conteins the needed tableau
elements.

With this result we may determine the teblesu elements associated with o
Pgy Wilch is to come into the basis. If some w, 15 to be imtroduced into the
basis according to Step 3 then with a simmler srgument we mmy show that the required
tablesu elements can be generated.

We heve shown that the various steps of the elgoritlm can be carried out
ever though not all extreme poluts are known at every step. Each time & new Pt
verisble is brought into the basis, es & result of Step 2, the criterion function
lscresses. Steps 2 and 3, which invelve nonstandard tsbleams, do not decrease the
value of the criterion fumetion amd after e finite number of iteratioms lesd back
to a standerd tebleau where Step 1 is sgein spplied. We them bave & series of

tandard tebleaux each cwe associated with a higher velue of the criterion funcitionm.
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Therefore, no stenderd tebleau can ever be repeated. Since the number of extreme
points is finite there can be only & finite mmber of standsrd tebleawx and
consequently the algoritlm is finite.T

Exemple

With the presentation of a specific exsmple we will illustrate the
workings of the a.lgoritmhm. We will glso indicate the approach needed in the
copputational aspects of the method.

Consider the following problem:

Mex Gr) - 2 + 2x) x, - 20

X2 %
(27) Bote %, + xaga
(28) 0<% £1
{(=9) 0sx, 51

vhere (27) is the interconnecting constraint, and (28) and (29) are the sub-problems.
To simplify the Writing and presentation of the exsmple we will teke into
consideration the fact that eech of the sets represented by (28) and (29) comtains
two extreme points. The method developed ebove, however, does not d:apenﬂ. on this
information belng aveilshle.
Let

(x99 %]
be the set of extreme points for the comvex set represented by (28) where
(30)

% Py By F Py Tp
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pll+p21=l

Py1? Poy 2 ©
and for (29) we have
{"12”‘22)_ and
%, = P1p Xp ¥ P Tpp
(31) Pip ¥ Ppp = 1
P1pn 203 P20

We have the transformed problem

Masx 6 (pyy Xyq + Py %) = 2 Py %y + gy %)

+ 2 oy 3y + By Xy) (Prp Xyp * P %)
- 2 (prp Xpp * Ppp %)
(32) Py Xyq ¥ Py Fpy F Pyp Xyp t Py Fpy S2
(33) Pyq * Py =1

(34) Pp ¥ Ppp =1

P112 Pays Pige Pop 2 ©

The Kuhn-Tucker conditions are
(35)  Exg =g Mpgy Xy Ey By Xyt Xy 2PN
T Xy B Py Xpp T T [ F My - Yy

for each k=1, 2
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(36) O=Xp + oy, Xp ¥ By ¥ B, Xy
FXp = 20y Ky F Ry =20y Xy FV X, F U, -y

for k=l,2

(38) pll + pal = ]
(39) Po * Ppp =1

pll’ 9213 ple’ p22 =>___ ¢

Yt Py = ¥V =0
umgo k=1, 2
i"—'l,ﬁ

8

vhere y is & slack varisble.

To initiatethealgefithmwe assme that the extreme points x11=0_
afd. x_|_2=0 ere known., Sebting pusl, planl snd y =2 gives us & basic
feasible solution to eguations (32), (33) and (34). Since we set w, =0 end
u, = 0 Ve oblain from equations (35) and (36) two conditions to determine N
and 1, - We thus have the following system of equations:

0911“‘0‘312“‘11‘*‘_0'12*03':0
Opll-l-épla-l-o'ql-lqe-&()y:‘e
(ko) Opyq + Opy, + OMy + O, + 1y = 2
lpn+0912+onl+eq2_+0y=l

Opil+lp12+0'r|l+0n2+0y=1
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The matrix of coefflelents is

o o -

B = 0 0 -} 0 0o

0 ¢ 0 =1L O

¢ ¢ 0 0 1

10+ 0 O o

oI 0 ¢ 0

S —tad

and. the inverse is

Oy~1 _ ¢ 0 ¢ 1 ¢
(8)" = 0 00 0 1
=1 0 ¢ @ 0O
0 -1 0 0 ©
0O ¢ 1 0 0

. _

We denote by b = '

PHRPOO

as the colum of constanis assoclated with the initial system of equations.

O

o glves us the velues of the current set of basic va:éiables_. In the

present case we have
pn::lplgzl 111:30 112;1@ yFe=2

These values sre used in problems (25) and (26) to determine the next Py b0
enter the basis. Inserting the present solution, we bave the following, in problem (25)

(41) Mex 6 x,
5 £

and (26)

(#2). Max 0 x,

%51
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Solving both programming problems the overall maximum is attained by problem (hl}
at the extreme point xl 1 . We designate the latter point as Xy *

Accordin_sly Poy enters the besis. Before introducing Poy into the beaslis the
condition frem (35) conteining 4,, must be sdjuired o (%0). The added equation
is:

Upy * 003y *+ Opyy =My + 0Ny + Oy = - 6

Dencte by Be as the avgmented matrix of coefficients for the larger collection
of consirainis. We have

~ 1 h
0
B = l;o} BO]

where [0] 1s & vector of zeros amd

h={00=100]
To obtain (go)-l note that
(]'3\0)"'-L =1 +-hB

o1 (2%

1 <1 0 0 0 O]
o 0 0 0 1 0
© 0 0 0 0 1%
© -1 0 0 0 ©
0 ©0 -1 0 0 O
0 0 0 1L 0 O]

In order to determine the relevent tsblean elements associated with the activity Poy

we have



-]_9..

9 /-u o
| 0 /1
0 =, 0
1 i o
1 \0
0 1
This mey be summerized in the following sbbreviated tebleau:

Active Bas;tc Variebles Value of Active Pablean values

Besic varisbles for Poy
o1 - -6 -k
Py 1 1
P1p 1 0
1, 0 0
L o 0
i 2 1
Peking Min ._ﬁ-.l i >0 Y #0}' we have the minimum of {.-6 L 2}
%) 4 -y ? F
1 U2y Iy 13 -5 I T

Since the minimm is dchiieved ab 'L-g-]l'-.-,;’ we chooge pn. to legve the hosis,

In order to contimue the algorithm we mmst determine the inverse of the

new baslis where the asctivity Py replaces Pyy To do this we use the well known

theory of basis itransformetion and construct the matrix Eg - Eg is an identity
matrix except that the second colwmm consists of elements derived from the tebleau
representation of Py The matrix Eg is:
0 o —
E2 = 1 +4. 0 0 0 O
c 1 06 0 0 0
¢ 01 06 0 0
0 06 0 1 6 0O
g © 0 0 1 O
|0 -1 0 0 0 1]




Eg @t J1 2 0o o # o]
©o 0 0 0 i o
0 0 6 © 0 1,-1
o<1 0 o o o =)
0 0«1 0 0 0 ‘
0 0 o0 41 1 o]

To determine the values of the cwrrent actlve basic verisbles we have

o i

I—'!—'l’DOOé\
ft
HOOHMKW

Thus we have 'a21=-2,pﬂ_=l,‘plz‘==l,nl=0,t|2=eanﬂ.y=l.Accerding
to Step 3, T, is intreduced into the vasis to replace P11 * The teblesu
elements for w,, ere determined from

COO0OH
)
COHOO

Using the earlier representation we have:

Active Raslc Verisbles | Yelue of Ackive Tebhlean velues

Basic varishles for %y
Uy : -2 -1
Poy 1 0
Pio 1 0
1 0 -1
1, 0 0
y X 0

It can be seen immedistely thab Ty replaces By in the basis, and we retwrn
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to Step 1 in the algorithm. Next we compute the elementary matrix

BE= [-1 000 0 0]
01000 O
001000
-1 00100
0 00010
00000 1]

(8% = £ (81
and @7t T2 41 o o <4 0]
0 0 0 0 10
0 0 0 0 01
sl 0 0 0 <4k o
© 0 -1 0 00
0 0 0 +1 -1 0]

To compute the current values of the active basic verisbles we form the expression:

(BR)-l .bG

whare .b0 - 6
¢

0

2

1

L

This gives us ull==+2, p21=+l, p.'L2=+l’ q1=+2,1;2=0 end y=1.
Substituting there values into problem (25) we have

(43) Max 2x -2
n 5o
% 20

and into problem (26) we heve

(44) Max 2 X,
x2§1

¥ 20



The overall maximum is echeived by problem (4h) at x, =1 . Welet
Xy, = 1 be that extreme polnt sssocisted with the verisble p,, « According to
Sfep 2 the varisble Pop is chosen to come into the basis. Next we adjoin to
the set of comstraints the equabion from (36) comtaining w,,  This constraint

is of the form
LI +2p21+0912+0111~ﬂ2+0y=9
Therefore
h=[04200-101]
and.
2)-1

~h (B = (00«10 «20)

ﬂewuwtmmmﬁdhmﬁeu,
(3?2)”1= "1 0 0 <1 0 -2 O

oo OoCOoOQKH

To determine the tebleau elements for Pos

e

-2
0
+1

HorooBE
o

and, to determine the values of the current solution we have
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(%d

Frpooho
"

4%

H O DR P

Swmarizing the informstion we have the following teblean:

Active Basic Varisbles Valus of Active Teblean velues

Baesic varisbles Por Pop
'ﬂ22 -2 | -k
7y +2 -2
Poy 1 0
P1a 1 A
0] 2 -2
Uy 0 0
y 1 +1

Cleaxrly, Uy, leaves the basis and sgain we retuwrn to Step 1. We cbtain a new
inverse which contains the colum of coefficients from Ppo replacing the
mﬁﬁdm&a&mﬁﬁdﬁ&.%a.mmsmwmmmmis

1 N R
Pop =5 Py =1 Pp=35 ¥=35 My =38l n,=0.

Substituting these values into problems (25) end (26) we have
Max 2ﬁ~5
'ﬁgl
20

Max O
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Both problems have nonpositive solutions which indicate thet the minimm over
all L varisbles is nonnegative. Therefore we are at an opbtimsl selution. In
terms of the original veriegbles the solution is

x =11) =1
x, = 1/2 (0) + 3/2 (3) = 3/2

Concluding Remsrks

This paper has presented one :possi‘ble epproach to solving a convex
quadratic progremming problem where the number of constraluts is lsrge, bub of a
special structure. In & problem vith a large nuber of constraints a direct
gpproach may be impossible since the size of the initial basis matrix wowld cause
difficvlty in determining its inverse. While in the present algoritim the

dimensionality may incresse one may alweys obtaln, et worss, epproximate solutlons.



