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ON AN ASYMPTOTIC NON-SUBSTITUTION THECREM
IN THE TWO-SECTCR CLOSED FRODUCTION MODEL *

Ermanuel M. Drandakis*

1. INTRODUCTION

1.1. In this paper we consider a two-sector closed production
model with a time structure. In each time period the avallable quentities
of the two goods are used for the production of the same goods available
in the nexi period. Production conditions may change from period to
period, but they are known throughout the horizon under consideration.
Each good is produced separately under constant-returns-to-scale and

diminishing rates of input substitution, and there are no external (dis-)economies.

We focus our attention to T-period accumulation programs. E.g.,

we mgy assume that the proportions in which the two goods will be available

* T am much indebted to T. C. Koopmans for many illuminating discussions and
also to W. Brainard, T. Srinivasan and M. Yaari for their helpful comments, I
am also indebted to K. Suryatmodjo for his fine graphs and to G. Bowman and

G. Sedowsky for the extensive calculations needed for the examples presented in
the last section of the paper.

#¥ Research undertaken by the Cowles Commission for Research in Economlcs under
Task NR OL7~006 with the Office of Naval Research, and completed under a grant
f rom the National Sclence Foundation.



at time T are exogenously prescribed and elm ab meaximizing the quantities
of both goods at T in these proportions, given the initial endowment at
time O . This will be called & forward T-period program, On the other
hend, we may inguire about the minimel gquentities of the two goods at time
0 , vhich are required for the availability at T of given quantities of

the two goods. This will be celled a backward T-period progrem.

1.2, Our main obJective is the exsmination of the shape of the
teperiod, t =1, 2, ..., efficient stteinable production set (given the
initial endowment at time O) , i.e., the shape of the envelopé of all
t-period production-possiblility loci. Any point on a t«period envelope is
producible from the initial endowment at O , and any movement to another
point on 1t necessitates & reductlon in the quantity produced of one of the
goods. These envelopes are described by concave curves (towards the origin)

in the two-dimensional commodity space.

We will estsblish that the t-periocd envelope tends to become less
concave as t increases, and moreover that 1t converges to a straight line
a8 t » + o ., Equivalently, we will show that the range of the t-period

price-ratios, &t which an "interior" efficient sccumulation progrsm for
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t perlods can be carried out, tends to decrease as % increa.ses.y

_1/ In the speclal case of a constant technology one can show that as
t + + o this range of t-period price-ratios converges to a unique
price-ratio, which is the von Neumann price-ratio.

If all price-ratios throughout the program horlzon are set equal to
the von Neumenn price-ratio, then a balanced efficlent accurmilation
program is feasible (provided of course that the initial endowment
is also appropriste).

1.3, Let us briefly indicate the main re#sons for the réle of
the length of the program horizon on the concavity of the emrelope'of the
last period's production-possibility locl., The l-period envelope coincides
with the production-possibility locus determined by the initial endowment.
This locus is described by a strictly conceve curve, if the production

conditions in the two sectors are essentlally different.

Consldering any l-period program, & specific change in the output
proportions will correspond to a certain change in the output price-ratio,
depending on the initial endowment as well as on the difference in the

productlon conditlons in the two sectors.

If on the other hand, we consider a T-period program, with T



fairly large, the ssme change in the final output proportions will
correspond to a much smaller change in the final price-ratioc. For, in
an efficient accumulation program, any change in the final price-ratlo
is associated with appropriate changes in the price-ratios and thus in
the output proportions in &ll previous pericds. Thus the limitations
imposed by the initliel endowment at time O , and by differences In
the production conditions in the two sectors in the possibilities of
output substitution at the end of the program horizon become less severe

2
a8 the horizon becomes 1onger.—/ The above srgument also shows that

2/ It sppesrs that this result is & manifestation of the Le Chatelier
principle of Thermodynemics; see Ssmuelson [8 , pp. 36-39). As the
program horizon incresses the constralnts lmposed by the initiel
endowment and differences in the production conitions in the two
sectors are weskened snd thus the change in the finsl output propor-

- tlons resulting from any change in the final price~ratio becomes
larger. :

constency of the techmnology in successive periods is not needed for
establishing this result, What is needed 1s the existence of some pro-
duction possibilities in every period (and not merely the availsbility

of free storage for both goods).,



1.k, The title of the paper obviously refers to the well known

non-substitution theorem of Ssmmelson [9].2/ It is easily seen why the

jj In [9] an n-sector model is considered, in which the n goods are
produced separstely by the use of the same goods and of a primary
factor, lebor, under constant-returns-to-scale. Ssmuelson showed
that the prices of all the goods in terms of the wage rate are
determined by techmologicel conditions alone. Since the input
proportions in esch sector sre determined by these prices, they
are constant and cannot be altered by any change in the final demand.
The state of final demend determines only the relative importance
(1.e., the level of operation) of each sector.

present theorem cen be classified as an sasymptotic non-substitution theoremy

4/ The observation that the asymptotic flattening of the t-period
envelope as 1t + + o corresponds to an asymptotic non-subsetitution
theorem is due to Professor T. Koopmans. See however Section 1.5.

analogous to the statle non-substitutlon thecrem of Sammelson, If the
program horizon 1s fairly long, the prlce-ratios in the time periods near

the end of the horizon are almost constant (for each period) and they are



determined by technology eslone. Thus the input proportions in both sectors s
which are determined by the price-ratic of the seame period, are almost
constant (for each period) in these last periods. Consequently, no change
in the final output proportions can result in an apprecisble chenge in
prices and input proportions in the last periods. Chsnges in the finsl
output proportions can only sffect the relative importance of the two sectors

in the last periods,

1l.5. The above non-substitution theorem is not of course true
only in a two-sector model, It also holds in an n-sector generelized
Teontief model with neoclessical production functions. The proof of the
'thaorem depends on a basic property of the sequence of successive inter-
temporally efficient prices which is menifested in a model with no joint
production, E.g., in the cese of constant technology this sequence converges
to the von Neumann price vector. This result has been already proved by
e¢.g. Morishime [ 7], McKenzie [ 6], and Uzawe [10], However, in [7], [ 6],
[10], attention is focused on the turnpike property of efficient sccum-
lation paths, rather than on a direct examination of the shape of the loci

of all such efficient paths in successive time periods.

On the other heand, reference must also be made to a paper by

Hicks [3]. Tn [3] a remarkable combination of solid economic intuition and



of simple mathematical argument is exhibited in proving the turnpike
theorem in the two sector model with Cobb-Douglas production functions.
Hicks also describes in detail the tendency of the t~period envelopes

to become straightlines., I am only sorry that I wes not fully acquainted
with [ 3] vwhen I was working on this paper. As it now stends the present
paper is & modest extension of [ 3] for more general production functions

and for changing production conditions from period to period.



2, THE TWO-SECTCR CLOSED FRODUCTION MODEL

2.1, We copsider a two-sector production model in vwhich two

goods are produced separabely, with a uniform leg of one time period, under

constant-returns~to-scale, positive and diminishing rates of input substi-

tution, and no externsl (dis-)economies., The conditions of production mey

be different in successive perlods, but they are known throughout the
horizon, The model is closed because any consumpbion of the two goods which
is not purely exogenous ls sssumed awey. Exogenous consumptlon can be
handled without eny difficulty. For simplicity however, we assume that

there is no even exogenous consumption,

2.2, The production possibilities in each tlme period are

described by two production functlons

'h+l
(1} (XM_: giﬁ (X ) 1=23,2, t=0,1,2 «.,

where Ytﬂ'

1 is the quantity of the i good. at %+l produced at + by

the use of XL and Kg:l. uwilbs of the first and second good, respectively,

availseble at + .
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The functlons 2/ Fi s fAslined for all mommegative inputs X = (Xli 3 XEi) ’

§/ The tlme supersoript s suppressed whensver no explicit reference to a
specific time period ls made.

heve the followlng properties:

() (x,) {

}O for Xi{ }8;

{v) Fis twles ommtinausly differentieble;

VoY U
Vv i

(2) () Fi(xxi) = AF(X, ), Forgll A > O end

HY

xi§®5

(a) FE‘(X:,.)>O, d=1,2, forall X, >@; end

1. R RPN et Y . f- A
(&) Fr{X, + (Lopd 220 > wF (X, ) + (10} F(X!)
for @il L2p >0, =odall nonproportional

6
u &
¥ ¥l 20,

_6_/ Nemely, F 1s & sirictly oomcsve fanedlon for nomproportiomal inputs,
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it % % t it b T P - t t
Then, F (X5, X,4) =%,  F (xli/xai, 1)% Xy fit(xi) y for X, >0,

+
where x}:' = ——; denotes the input proportions in the :1.1"h sector, and
Xot

fit is defined as a:bove.z/

7/ We see from (2) that £ys defined for all nomnegative x,, is twice

continuously differentiable, that fi(xi) 2\0 for x (=)0 , and
Ny >
> \

' - 1 Tt
that fi(xi) >0, fi(xi) X, fi(xi) >0, f i(xi) <0, forall x, >0,

2.5. Considering the forward T-perlod progremming problem, let

Yo = (Yg, Yg) > 8 denote the gquantitles of the two goods svallsble to the

economy &t time O , and let yg > 0, 1i=1,2, y§+yg=l, be the

prescribéd conflguration of the two goods at time T . The quantities of

the two goods, which are avallsble to the economy ln each time perilod,

v
nemely, Yi 3

further production purposes. We assume that both goods sre freely transferable

t =0, 1, ¢ae T =1, areallocated to the two sectors for

as inputs from one sector to the other.



Thus, in every fessible accumilation program for T periods,
the following inegquslities hceld:

t t t
X9 ¥ XSy »

YI:O,X 20, 1,321,2, t=0,1,...,T"l

2.4, An efficient sccumulation program sterting from Y: 3
end heving outputs &t T in the prescribed proportions, y; , 1= 1, 2,

can be found as a solution to the following programming problem (I):

Meximize p
subject 'Eo
K;)l i xTOLQ = Y;L
Xgl i XZQ s Y;
) )C:'Ll ¥ X;LE = Y}. = Flo(xgl’ Xoal)
Xy Ty S T = PO, X3y)
b Yi < Yg’_ = FlT-l(ﬁl , Xgil)
b :rg < Yg - FET‘:L(XE_;J' , ngl)
and x° >0, 1,3=1,2, t=0,1, «o. ,T~-1,
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The above programming problem is s problem of concave programming in
linesr spaces. The exlstence of a solution to (I)is insured by our

assmtions.,g/ Furthermore, the Kubn and Tucker results 2/ rrovide us with

<tow, T<+w, 0<y§,y§ and yl+yg 1,

8/ Nemely, that Yl, Y2
.J'.‘t.

and the combimuity of ths funmeticss F

9/ See Kuhn and Tucker {51, and Uzawa [12],

necessery end sufficlent conditions for a solution to (I).

The Legrangean function associated with (I) is defined by:

o]
(3) L(x 199 pr) =+ pm(*fr - X - X ) * pe(‘r - X,)
Tul l 2T=1, Twl
+ eeo FL (X:L'L s pyl] + p2 [F (X575 X22
T
-kl .
Fi‘t 4 t t
Since all gre concave functions, s particular (X:L ,j) T > 0,

1, =1, 2, ¥ =0; ese; T~ 1 ; achkievss the maximum if and only if there
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exists (p::), '_p: 20, i=1,2, t=0, .,., T, such that the following

intertemporel efficiency conditions ere satisfied: 1o/

t 1 Ik, ot g7

with equality if X0 >0, 4, 3=1,2, t=0, coey T =1,

31
and
Q 0 o]
(5) IhZtX, £ Yy
T 2P.1, T-1 .71
with equality if p:,.>" 0. £ =0, ..., T-1.

10/ See Kubn and Tucker [5, Theorem 3], and Uzewa [12, Theorem 2]. We
note that, in accordance with our assumptions, there exists a feasible

(XI J) such that the restraints are satisfled as strict inequalities,

Thus the Slater condition is satisfied end consequently we may apply
Theorem 2 of Uzewe and then Lemma 1 and 2 of Kuhn and Tucker.
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3. EXISTENCE OF A UNIQUE AND POSITIVE EFFICIENT ACCUMULATION
PROGRAM FOR T FERIODS

3.1l. We observe initially that, because of the strict concavity
of the functions Fit for nonproportional inputs, the solution to (5) is
unique and such that sll conditions in (5) ere satisfied as equelities.

We will see in Sectionl that the conditions in (U) are slso satisfied sas

equalities,
% %
¢t Y1 % P
Letnow Yy = _,t', P o= “““'_E’ (t=o, -o.,T)’a-nd
I Py
% %
X
x: - El—i , zg’f - Bl (420, e, T-1) . me intertemporal
Koy T |

11/ 1If any of the denominators in these ratios is zero, that ratio is
defined to be equal to + w

efficiency conditions (4) and (5) become:

0

0 fio(xi _ 0
[] [s) -

fio(xi)

£.8) 5 £ =)
2 Holw)

(6) i )
GV C
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7 Il 1(x1

[¢] 0
(7) 'gl + 22 =1 2

t t
+ =
L+ 8 =1,

Tel, -1
r Fipa (g )
Yy = (x _1) T-1 ¢
fopa1

where yo and, yT gre exogenously given and yo >0 . The conditions
(6) (a8 well as (7)) are exectly the intertemporal efficiency conditions
which were first considered in the celebrated Chapter 12 of Dosso

U]

[ 1, pp. 310-316]. Nemely, the condition .p~ = -1 refers to

the rate-of-output-transformetion between the two goods considered as outputs
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o Tl g
emerging at + . On the other hend, the conditions p = T %
£ig(%y)

refer to the rete-of-input-substitution between the two goods considered as
inputs to the subsequent production at t in the two sectors. We thus see
that for intertemporally efficient production the ROT between the two goods

at t must be equal to thelr RIS at + In both sectors. This is 1llustrated
in Flgures 1 and 2. In Flgure 1 the curve 17.:‘t shows the envelope of gll
t-period production-possibility locl, whereas Etﬂ shows the t+l-period
envelope. The curve I'A showe & particuler t+l-period production—possibili’cy
locus,‘ that one produeible from the point A . On the other hand, the

curve T‘B deserlibes the gsggregate Input isoguant for the production of B .
The derivation of the isoquant IB from the individusl isoquants IB]_ and
IB2 is illustrated In Figure 2., We see in Figure 1 that the intertemporal
efficiency conditions for the ttb' period are satisfled at the point A,

where the t-period envelope E, 1s tangential to the sggregate input

t
21,(5)
Isoquant for the production of 3 at +H+1 . T is equal to the
£5e(%5)
fye(%y)
slope of E‘b s Whereas ——— - Xy s i=1,2, 18 equal to the slope

fit(xi)
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FIG, 1 FIG, 2



nlam

of I (as well as of I, anmd I ) « In the following sectors we will
1 2

closely examine some important properties of both Et and IB o

3.2. Let
£4(%y)
(8} ait(xi)xw_xi s (=0, ves, T =1) .

We lmow that ait(xi) >0 for ¥, > 0 holds, and we can easlly see that

a:l’.t(xi) >0 for x, >0 . We will assume that the production functions

In every period are such that }—2/

(A) lim ait(xi) =0, lim O‘it(xi) =4+,

xi-+0 xiﬁ--i-eq

12/ As 1t is shown in Appendix 1, (A) is satiefied by a wide class of
production functions, as e.g., the constant-elasticity-of-substitution
production functions. Filgures 1 and 2 have been drewn on the basis
of (A). FE.g., we see that the production conditions at t ere such
that good 1 can be produced even if the Inpubt of the good 1 or 2 is
zero. However the input-isoquant I.B is tengentisl to the axes

1

et both b, and b, , in conformity to the esswmption (A). Similarly,

% is esympototic to parallels to the axes, indicating that both
2
goods are needed as inputs for the production (at + ) of the good 2.
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Hence for each p > O there exists a unique x, > O for which p = ait(xi) .

Therefore, for every positive price-ratic pt y (t=0,1, ..., T-1) ,
the corresponding equation in (6) can be solved for a unique and positive

input-ratio x:’ =ﬂ(pt) in each sector.

We thus see from (6) that, on the basis of (A), we can determine for

o , 1 [ 0, 0 1 1 1
eny 1° >0 unique and positive 12/ x; =X (%) , 2T = (2", x)-l,;=j(_l(p°),

Q/ We must emphasize the following point a.boutlthe notation used in this
peper. In writing eny function, as e.g., }b:(po) ; the first time
- superscript refers to the time period corresponding to the function
value, namely xt . However, the time superscript on the srgument

i
of the function is also needed for its complete specification. Thus

L] 3]
)L:(pt ) 1s sn entirely different function from y.:(:pt ), if
t' £ t" , where t' , t" <t . For this reason symbolisms like

}Ui:(;po) will denote both the relevant functions and the particular
function values, The short-hand symbolisms like xz will be used only

when the time dimension of the argument of the function has been clearly
indicated.

=%, P =0 .



- 20 -

3.3. The question which immediately arises is whether the
remaining conditions, (7), cen be satisfied for any p° > 0 . It is
apparent that this depends on, first of all, the velue of y° also. We
mey illustrate the situation by means of Figure 3. In Figure 3 the functions

:(po) » determined by (8), are plotted along with the value of y° .

For simplicity in the text of this paper the following assumption
will be made.

Input-Intensity-Assumption:

>0, implies

For each period, alt(xl) = aat(xa) » With x,
W _ .

that either xl > xa or x2 > xl .

We will show in Appendix 2 that IIA is not critical for any of
results in this paper. Now considering the first three conditions in (7),

wve immediately see from Figure 3 that the initial-endowment-ratio yo

determines a compact interval [201, ) Ol] of poeitive price-ratios p°

for which yl is nonnegative. As P° increases from p_OJ‘ to P ol

o
1

that of zg) is changing, with that of sector 1 constantly declining (for

the relative importance of the two sectors (i.e., the value of 4. versus

the case illustrated in Figure 3(e))}. Thus the value of yl is constantly



x0,y°
Yo(2°)
%a(2%)
|
¥° ; :
} ;
! !
| ?
| i
| :
| I
L. i i .
201 1‘391 Po
(a)
2,30 x3(2°)
XK (2°)
o z :
S
: | :
: | :
: i :
; ' :
1 | i
201 _ pol p°
(v)

FIGI 5
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declining from + « at 301 to O at 501 , 8nd we can safely exclude

from eny consideration all po which are outside the interval [201, P Ol]

Actually, since the aggregate input-ratio yt mst assume a velue between
the equilibrium input-ratios in the two sectors, x;:' = ];(po) s depending

on ITA, it will be seen in the next section that a much smaller interval

oT 1
’ ]

(°T, 5 °T1cip™, 5 °1] contains all (O-period) price-vatios p° , which

are feasible for our T-period programming problem,

For a1l p° ¢ (p_OT, P CJT) unigue end positive values of £:

t=0, ..., T-1 , and yt, t=1, ..., T, are determined by

o - 0y_0
0 y - 1-2(1} ) o, O
ﬂl = z ll(P ),

520 Ty (520 iy

o Y 2%y - ¥°
5% -Y20°)

0y 0

ATl vO-Jele)
(9) v = o, o B, o o = (»7),
£, Y e(2)] X%y -y
T R R R Sy = ¥ (%) .

fom L 8 K H2%) - )
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3.4. Since in our programming problem (1) yT is exogenously

oT =0T
)

prescribed, we must see if & unique solution for po e(p, through

(9) is possible.

From
-1 t-1 _t-l
(x/7) ¥y -x
t, o 1t-1'"1 2
(10) v(p) = : b ST t=1, ..., T,
24-1'%2 oY
we get
' t-1, 0
t t-l . _t-1 a
(11) T avle) . T I h -
o] 0 - t- t-1 t-
¥ (p7) dp (xy "=y ) (@ T xT) dp
t=1, oy t-1 _tel
ptl 4 4l a 1.7 (2") . X7 - x,
- t-1  _t-ly ,_t-1 _t-1 o t-1  t-ly  t-1 0 _t-1
( "xa )( +x2 ) dp (xl -y )( -xa )

t,. 0
The sign of —QL3L££%1~ for all successive velues of t from 1 to T

dp
Y5

d po

depends on the signs of » 1 =1,2, t=1, ..., T, vwhich in

a x°(p°)

their tuwrn depend on the sign of 5
dp
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We thus have to examine the function

$,_t-1 1t—l(xl 0
(12) x(p ) = =
fe-1(% ")

t-1 -l t 1 t-1 t-1
where x. = 11 )} are determined from p =~ = ait-l(xi )
We have:

t-1 t-1 t-1 ful
(13) P dzt ({ ) . P . 2
L0 at N xz-:l_ Tl x;-l

It is thus seen that —(P—L f O wherever IIA holds.

ap’
the particular form that IIA takes at t =0, ..., T-1: _1_le

ogieh {2} YEeth e G0 {2 ]

14/ We note that the range of x(p") sy,
be a proper subset of the positive real numbers R>.

for p

For Cobb-Douglas production functions, however,

1im ﬂt( Pt -1

=0, )=+,

t-1
P T+

o0

y 1

Tts slgn depends on

may possibly
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1, o
Therefore, if ITA holds for all t = 0, ..., Tl , all S‘E—(%L ,

1, 0 2, o
1 2 d A 2
%) Tt B¢ ) e | 9°6°)
a PO a po d PO a PO a PO

L R

T,.0
Q&LLESJ— » 8re non-zero and, consequently, for any T-period output-ratio yT >
ap

& unigue and positive price-ratio p° is determined by (10).

Having determined a unique and positive p° from (10), unique and
positive solutions for pt = nt(po) xz = )L;(po) , £§ = kz(po), yt = wt(po) s

are thereby obtained as it was shown in Section 3.3.£2- We note that the

15/ We msy note that if the range of values of any'of the ﬁt(Po) , b =1, 0., T-1,
1
is a proper subset of R , then the ranges of all succeeding ’l; (p°) end

t
xt (po) are alsc proper subsets of R> which are moreover diminishing as +t

increases.

price-ratio p° determined by (1k) is such that
| t, o t, o t,. 0
(14) K% > ') > Vi)

holds for t =0, ..., T-1.



- 26 -

3.5. We heve thus proved the following:
Theorem l: Under the input-intensity-assumption, for any yo >0, yT 2 0,
the intertemporel effieciency conditions (4) end (5) of the programming problem
(I) are satisfied by unique and positive (XL) and (p}_‘) .
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L, THE ENVELOPE OF ALL t~PFERIOD PRODUCTION-POSSIBILITY LOCI

4,1. The function

s fealR7E VTED - ETE

- ,t/_ 0
- ——— —e— = ¢ (p) for t =1, 4es, T
fpa o 0] T - v ’ ’

(1k)

and for po in a compact intervel in R> to be specified below, describes
the envelope of t-period production-possibility loci given the initial endowment
yo . (The fact that under IIA yt 1s uniquely given the initial endowment yo .
The fact that under IIA yt is uniquely determined by p° impliies that the
t-period envelope is described by a strictly concave curve in the 2-dimensional

comedity space.

k.2, Let us consider each one of these envelopes more carefully.

We have,

M ! S(69) v -1 |
o Sl =
oo a2® %) - ¥°

with y° > 0 glven; see Figure 4, As it was explained in Section 3.3, under

\b'l (-Po ) ]

the form of ITA at time O considered, there exists a unlque _p_°l >0 for



x2,y0

X8(x°)

*2(2%)

1 (°)

25(ph)

yH(BL)

FIC. &
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which ,Xi(pc’l) = y° end thus q:l(EOl) =+ o, and a unique p L eor

which p(g(f\o'l) = y° and thus Wl(iol) =0.

[goj' , 501 the corresponding

] is compact, and for any p° € [301_, 1_3011 s

- LI - L
output price-ratio pl 18 given by pl = :tl(po) € [srl(p°1) , ﬁl(iol)} .

x(5°) 1s here en incressing function of 3° ¢ [p™!, 3] .

4.3. Let us now consider & 2-period problem end thus the 2-period

envelope described by
1, 0 i, 0 l,.0
o HIEEN YR - GE%)

2 0
= ),
15071 1067 - VGO e

under the conditions contemplated in Figure L. ’X-:}_(Po) is strictly increasing

function of po € [201, ) 01] onto a proper subset of R> . On the other

1

hand wl(po) 1s a strictly decreasing function of p° € [;9_0 , 501] onto

RZ . Thus there exists a unique 202 € (201, 501) for which Yé(gog)

= V() >0, end thus y3(p°%) = 0 . Simtlerly, there exists s unique
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e (2%, B for wnten Y3 )=¢-‘-(§°2)>o, and thus (3% = + = .

Since both ( ) and ( ) are positive and finite, we see that

ol o2 . —02 . =0l
PT<p <p <p .,

nemely, [ 02 -02] C.[ oL -ol-l holds.

We also have

[H(p%2), HE°) < (™), M) .

k.4, We can proceed in the same mamner end exsmine the 3-, ... ,

T-period envelope. We thus esteblish that the following relations hold:

[ol -ol]_.:[ o2 —02]2 oT -oT]

e 2p

?

(%% , «FHI2INE° T, 2 HF s olk@T) , « (p N1,

fOI‘ t=l’ 2, oct"T -
Considering our T-period programming problem, the intervals

oT —OT]

- %5, - R, AN, e f - W, AEY),



- 3L -

are, respectively, the sets of all T-optimal O-period, l-period, ..., T-periocd,

price-ratios, The main purpose of the paper is to establish certain relations

between the intervals i; 3 :L; 3 seey ig .
4.5. We have seen that the function pt+1 = :tt+l(pt) is a strictly

increasing (decreasing) furction of pt >0 if )(_:(pt). > n(pt) (l‘eb(pt) >'I;(pt)) .

Consequently,g Pt+1 = log pt+l is a function of Pt' = log pt s &lven by
Pt+l - IIt"'l(Pt) , Pt' eR,
such that
t+1l,. b t t
(15) qp D ° | <
0 = - l
t t ] t tr t
a P AR SR A B Sy S

16/ This transformstion to the logarithms of the original verisbles
is the basic tool used by Uzewa[1ll] for the proof of the turnpike
theorem in the 2-sector model,

t H‘b+l

holds for all P e R ., (Pt) ig an increasing (decreasing) function of

ST ’)fﬂ(pt) is an increasing (decreasing) function of pt .
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We mey secure that

t+1l. .t
(16) 0< unP—-f—-l <5<1

d _pt
for all t=1, ..., T -1, end a1l P’ ¢ R, by strengthening ITA to
ITA': Then exists & finite positive scalar M such that for every t =0, ..., T -1,

O‘lt(xl) =, (x;) , with X, >0, dimplies that
X
M > '}‘c‘"”>l, 143, 1, 3=1,2.

With ITA' the condition (16) is satisfied‘g/

17/ Since Id——gj(jﬂl<1 holds for &ll P eR , I%@-Mg 5<1
mey fail to hold for a1l P e R only if

lim I a1 (p) = 1im ’ D P I
- = la
Pr()e aP P (*g) EERPONEEAQ)
It is easily seen thet this can happen if and only if
d?(i(P) d,/ti(P)
lim ‘-—ET':-bw‘amllim ——d?'-=0, i#j N
P> (g, P > (i)

This possibility however is exeluded by IIA'.
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Considering any Pt, P't € R, with Pt >P't s We get

t+l,0t
+,
PP et gttt ety o 4 N E) (¢ -2, tor some

t+l

Pe (Pt, P'%) . Since 0< +1[ 1-,) <% <1 holds, (P ) is e

real-velued function on R such that there exists & number & < 1 and

for any Pt, pr® €R .

4.6 Let us now return to our T-period Programing problem
and examine the intervals

T T
1; = [10g p°T , 108 37, ..., Iy =[1log = ™) , 1og xT(3°T
They are all compect intervels.
For any P°, P'° ¢ I;, P° > pr°,

- 7= (%) - () - d—f-gl (-2,

for some P° ¢ (Po - P'o) C_I; » By the argument in Section 4.5,
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(18) o< | am®™eh) |< s<1
| Tt |
v %

holds for all P eI, , andall t and T . Hence,

Pt - et <8 | 2% - P00,

Similarly,
2,1
2% - 2%) = o) - mPerYy] = | EELED jipt 2| moias, and tius
. , d P
2° - @< 8Pt - ) <8B[° - 10| ,
Proceeding in the same manner we get
(19) lPt"' P'tlgatIPo'P'ol ? t=l, 2, l-l,T.

(19) immediately shows that the lengths of the intervals 1; are strictly

decreasing as t increases, and elso that the length of I,;‘ converges to

zexo 88 t , T+ + o,
Since all I,-Ib are compact intervals, (19) also shows that the lengths of the

intervals :L; sre simllerly decreasing as + increases,l—sj and that they

converge to zero a8 t , T + + o ,

1_8/ The lengths of i; are not necesssrily monotonicelly decreasing as
increases. However, (19) shows that for each t > 0 , there exists a

t+t!
T

this property we will say that the length of 1
as t increases,

fintte ' >0, for wmeh |15 > 17|, >t + 41 . To tndteste

t

P 1s quasi-decreasing
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4,7. For every T , the T-period envelope corresponds to the set
of T-optimal T-period price?ratios 3 ig » 8ince the final output proportions,
yT , can be given as a function of the final price-ratio pT € :Lg . Since
the length of i,cg is quasi-decreasing as T increases and it converges to
zero &8 T + + o , it becomes evident that the concavity of the T-period

envelope tends to diminish 1—9/ as T increases and that the T-period envelope
oonverges to & straight line as T + + » ,

19/ Since the intervals [:rt(go‘b) R ﬁt@ot)] s t=1,2, ..., T, properly
contain the T-optimal t-period intervals, :l.$ = [:rrt(EOT) ’ :n:t(idr)] s ‘the
tendency for each period!s envelope to become less concave is even stronger

then it is indicated by the result that |1';| > |If;+1| , t=1,2 eee, T,

We have thus proved the following theorem for the production
conditions specified in Section 2,2-3.2:
Theorem 2: Given the initiel endowment with goods at time zero, the envelope

of all teperiod production-possibility loci tends to be less concave as 1
increases and it converges Lo & straight line as + + + « .

4,8, We must be careful in our interpretation of the above result,
It shows that the lengths of the intervals I; are strictly decreasing as T

increases., However, the interval I; itself does not converge to a unique
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point a8 t, T+ + » , &8s long as the sequence of functions (I[t+l

(P )) does
not converge to & function I(P) . Consequently, although the T-period
envelope approaches a stra.ight-iine , for T ’largey the normel to this line

is not the seme from peried to period.

In Section 4.6 we have actually shown that each one of the functions

J""!"l(lc" ) is a contraction mapping defined ‘on R into itself-—/ By the main

@/ Amapping A on a metric space X into itself is a contractlon mapping
1f there exists & mumber « <1 such that for any x, y e X

p.(Ax, Ay) < ap (x, ¥)

where ¢ is & metric on X .

For an anelysis of the principle of contraction mappings end 1ts applications
see e.g., Kolmogorov and Fomin [%, pp. 43-51].

theorem on contraction mappings each I[t+l(Pt) hes a unique fixed point, i.e.,

B+l _ t+l

the equation P +1 t

(P ) has a unigue solution in which Pl p !Pz .

' * *
Consequently, the price-ratlo Py 2 with P: = log Py is the unique solution
of pt+l =j[t+ l-(pt) for which pt+l = pt . .P: mey be called the von Neumann

price-ratio under the production conditions at time + .
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It is very interesting to find out if there is any relationship

between the intervals i;

*
Py » at least in some simple cases of continuous (neutral or biased)

and. the corresponding von Neumann price-ratios

technological progress.
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5. FINAL REMARKS AND SOME EXAMPLES

S.1l. Theorem 2 established that the lengths of the intervals,
:L; s of all T-optimal price-ratios at time + are quasi-decreasing as t
increeses, and that they converge to zero ss 4, T + + » ., To these sets

of price-ratios i; there correspond subsets of the l-perlod, ..., T -~ 1 period,

envelopes, which may be called the T-optimsl subsets of the l-period, ...,

T - l Periodl, emelopes’ Eé’ sy E';';-l’ I‘eSPeCtiVely.

T-1

Let us consider l, ceey E as T iIneresses from 1 to + o ,
> m ?

A cereful exemination of the argument of Section 3.1 and 3.2 shows that E;H_

1s a proper subset of E; for any t, T . This follows immediately from

the observatlon that not all points on the t-period envelope, Et s can lead

us to a point on the ++l-period envelope, Et+l; see e.g., Figure 5. This

last property 1s, in general, a ccnsequence of the strict concaviity of the

t~period envelope, Et s and the strict convexlty of the sggregate input

isoquant at t for the production of any specified output combination at t+1 ;

because, as we saw in Section 3.1, sll points on Et which can lesd us to a

point on E-b'HL ere pointes &t which Et 1s tangential to some sggregate input

isoquant for the produection of the corresponding point on Etﬂ' . In particular,



Yl ’Xli
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a relatively strong sufficient condition for this property is our assumption

(A) of Section 3.2, that the slope of the input isoquents becomes parallel to
the axes 1f one wishes to produce & specified output with continucusly increasing
quantitities of only one of the inputs. fherefore, although the production of
both goods may be possible by the use of only one of the inputs, such producticn

15 never intertemporally efficient if (A) holds true. Thus the t+l-opbimal

subset of the t-period envelope, E:+l.’ is a proper subset of Et o Similarly,
t+1 t+1 g 5
Et+2 is a proper subset of E » and thus Et+2 is a proper subset of Et+l

and In general E2+l is a proper subset of Et, ;g B' =ty 0oy T . We thus

see that, under the production condifions specified in Section 2.2 and 3.2, as
the length of the horizon increases sll intertemporally efficient &ccumiation
paths move very closely together in the beginning periods. This result may be

formi.eted as follows:

Theorem 3: Given the initlal endowment with goods at time zero, the T~ optimal
subset E; of the t-period envelope Et is a proper subset of it, for any
t, T, with t <T , The sequence of E;, as T incresses,is a strictly

decresasing sequence converging to one polint as T =+ + e,

The sbove theorem proves for our very speclal model a general conjecture that in
any multisector production model, even under changing jroduction conditlons, all
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intertemporelly efficient sccumilation peths keep closely together for most

of their durstion if the program horizon 1s long enough.g—:L /

Q./ This property, which generasllzes the turnpike property of efficient
accumulation paths under constant technology, was recently conjectured
by G. Debreu and is currently explored by T. Koopmans and others at
the Cowles Foundation.

5.2. Nothing so far has been saild sbout the speed of convergence of

the envelopes of all t-perlod production-possibility~loci to stralght lines as

t dincreases. A common regrettsble feature o! all papers deeling with properties
of efficlent accumilstion paths in closed models 1s the sbsence of any
quantitative information sbout the length of the horizon required for the
convergence of the path to e nelghboring cone of the von Neumenn ray for a
specified part of the horizon. In other words, in all these papers asymptotic
properties of efficient paths are esteblished without any informstion on the

speed of convergence of these paths.

Casual examination of simple examples for our two-sector model
gppeared to support the conjecture that the convergence of the envelopes
established by Theoreti2 is very rapid. In order to get accurate information

on this question, some examples with Cobb-Douglas end constant-elasticity-of-



substitution production functions have been worked out, by means of a simple
computer algorithm. The algorithm consiste of an iterative procedure based

on (6) and (7) of Section 3.l.

5.5. In‘ our Ffirst exemple we consider & constant technology model
described by the following Cobb-Dougleas production functions,

o lex
t+l g AR t+
Yl = A xll Xel , &and Y

1, P 1'ﬁ
BX, %X, » vith A=L, B=2 « =1/3, B =23

*
The von Neumann price-ratio is p = 1.68, while the von Neumann output-ratio is

. -'l/
* 1,682 mieo xlt =1/2 p° xz = 2p°, am p° =2(p%) . With

* *
22/ The von Newmenn price-ratio, p¢ , and output-ratio, ¥4 , under the
production conditions prevailing at t , are the unigue solutions of

t .t t B, 5
L B by 22,1 (e")] T SR A ¢
po=a(p)E and ¥y o= T % Tty .t ¢
ttx_acp )1 £ [ @) L3 - ¥
for which pt+l = pt and. yt+l = yt , respectively. The existence of unigue

and positive p-!- and y.g, can easlly be demonstrated by the use e.g. of
the principle of contractic. mappings; see asbove Section L. .

o]

initial endowment Yo = o

11, X

=1 , the envelopes for the first three periods

sppear in Figure 6. The date for this exemple are summarized in Table 1 In

Appendix 3.
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We witness the rapld flattening of the successive envelopes.
As we see from the various intertemporelly efficient paths which are drawn
in Figure 6, the "turnpike property” of intertemporally efficilent paths
manifests ltself only for the path <« -—3/ The turnplke property is a

property for a really long program noiizon, while the sbove exhibited property

gg/ The path €€ actually consists of all intertemporally efficient paths
for 20 vime periods and over, assuming that the technology remsins the
same over the whole horilzon.

of the successive envelopes to become less concave 1s not.

Finally, we see that in Example 1 all efficient paths move in a

wave-like fashion. The necessity for this kind of motion is due solely to
the fact that in this cese Y (p°) > 5o’
2 L ,(p %;(p’) holds, i.e., that sector 1

uses reletively more of input 2 than sector 2 does E—lE/

2L/ This wave-like motion of efficlent paths should rot be corfused with the
well-known "eyelic" exceptions to the Turnpike theorem. As a matter of
fact, in our model the input matrix (et the von Neumann prices) is strictly
positive., Thus its positive eigenvalue is strictly greater in asbsolute
value then the second eigenvelue, and the "cyclic" exception to the
Turnpike theorem cannot occur,

We mey note however that, whenever xl > xt holds both eigenvalues are

posgitive, while if x‘b > xl the second eigenvalue 1s negative.
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5.4. In Example 2 we consider a changing technology model with

8 progrem horizon of 20 periods. We have:

() 1-at) BlE) 1-p(t)

t+1 t+1
Yo A(t) X X5q » and Y, U = B(t) o X , with
A(t) =3, B(t) = 1.05t » oft)=.8, B(t)=.1, t=0, ..., 20, &nd

Qo

Y’ =1, Y2 =1 ., Nemely, we examine the simple case of neutral technological

progress, vwhich is unequal in the two sectors. In this case we have:

+ - . * .
xz=4pt,x;=%pt,and pttt = 25%(1;0)7.%% p{‘= _217113
1.05 L.177
ad y. & 10.685 -
1177

The envelopes fo. the first five periods appear in Figure 7 y While

those for the 5-, 10-, 15-, and 20 - period are drawn in Figure 8.22/ The data

25/ The scale in the axes of Figure 8 refers to the 20-period emvelope. In
order to get the actual scale of the l5-period, 1O-period, and 5-period,
envelopes, this scale must be divided by 8, 25, and 50, respectively. Of
course, absolutely no change in the essential festures of Figure 8 can
result from such a normalization,

for Exemple 2 are summerized in Teb)s 2 and 3 in Appendix 3.
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First we observe again the fiattening of the successive envelopes.
The envelopes from the loth reriod and on are virtually straight-lines.
However, their corresponding price-ratios are continuously declining, because

of the neutral technological progress in sector 2.

Second, we see in Figure 7 and 8 ( end elso in Tables 2 and 3) that the
20-optimal subsets of the l-period, ..., 5-period, and even of) the l0-period
envelopes are extremely small. This strong verification of Theorem 3 asbove
1s naturally very @couraging. It clearly indicates the importance of long-run
planning. Our economy 1s severely restrained in its selectlion of a mmltiperiod
sccumulation path, if this path is to be intertemporally efficient. Long-run
planning appears to be indispensable, It would be very lnteresting to test
the importance of long«run planning by a systematlc examinatlon of such models
(with Cobb-Douglas , or more general C-E-S production functions), and to derive
an index (as well ms some quantitative estimates) of the loss of efficiency which

can result if only short-run (e.g., 5-period) planning is practiced.

5.5 It is of course true that the production conditions which are
likely to prevall in the future are never known with certeinty today. Moreover,
the uncertalnty surrounding them increases as we consider longer planning periods.

A sgtisfactory answer to this problem 1s not possible within the confines of
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our model, However, the following example is offered for illustrating purposes.
We consider our economy as described by Exemple 2 for + =0, ..., 9, bdbut
we now suppose that from the .'i.lJr']:l period and on neutral technological progress

occurs faster 1n sector 1 than in sector 2., Namely we have:

A(t) = 3 (1.1o)t'}O and B(t) = B(10) , for t = 10, .u.y 20, Under the
changed conditons, our economy starting egain with Y:T_ =1 and Y; =1 at time Q,
has naturelly very different production possibilities in the last 10 periods.
These possibilities are swmarized in Table 4 of Appendix 3. However, as the
date in this teble for the l-period, 5-period, and 10-period envelope show, the
20-optimal subsets of these envelopes are hardly changed as a result of the new
production conditions in ‘the latter half of the planning horlzon. This is an
interesting, and at the same time a very intriguing, finding. | If such a property
of intertemporally efficient paths is true under fairly general conditions, then
the existence of uncertsinties with respect to the conditions of production in
the more distant future does not render useless all long-run planning conducted

on the basis of inown production conditions.
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AFPENDIX I

1., The functions x:'_ =X§'_(pt) y 1=1, 2, under the assumption

(A) of Section 3.1, are (strictly increasing for all p‘t >0 and) such that

limt X z(pt) =0, 1lim Xk :(pt) = + o , Assumption (A) is satisfied
»+0 pt* o
if the production functions are of the constant-elasticity-of-substitution type,

which includes both the Cobb-Douglas and the lLeontief (fixed coefficients)

types. For exsmple, let Fi be given by
A
&)
-P i
i i
+ (l-ai) X5 ’

-P
(1) T=A 0 X,

with 1>@ >0 and 0, = —=- » O, >0, as the(constent) elasticity
i i l+pi i .

of substitution. Rewriting conditions (6) in the text on the basis of (i) we

easily see that ,2: i(1:') is given by

g
Toy N7 e
(ii) X, = (ﬁ; P .

Therefore, the limits indicated above hold true for C-E-S production

function_a.

2, We msy note that C-E-3 production functions have the following

properties (see [2]):

() If o, >1, then a positive output is possible even with one of the

i



i

inputs, In fact, ¥ uAi(l-ai) Xy ¥ X, =0, and Y, = A @

i i 171

ir ’Xai = 0, However, any input isoquent is tangential to the axes in the
points of contact.

(b) If o, <1, then any input isoquant is asymptotic to parallels to the

i
axes, i.e., some minimal positive quantity of input 1 or 2 is always needed for
the production of any specifjed Y:L‘> 0, i=1,2.

(e) 1If o, =1, (1.e., the Cobb-Douglas type), then any input isoguant

is asymptotic to the axes.
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1. 1In the text we carried out our analysis on the basis of (IIA). We
have now to indicate why (IIA) is not critical for the proof of the existence

of a unique and positive solution to the programming problem (I).

For simplicity, let us first consider a one-period problem and suppose

that the functions ) (r°) are as in Figure 9a).

The price-ratio at 1, pl , as a function of the price-ratio at O
is also described in Figure 9(a). We note that the inverse function of xt
for ell nonnegative po does not exist in this ca.sé. However, this is of no
importance for cur problem because we will immedlately see that ;bhe initial-
endowment-ratio- yo alweys determines an interval of feasible po's over

which the inverse functiqn of :tl exists.

t
If e.g. the initisl-endowment-ratio is equal to yo 5 then in sccordance

o!

with the argument of Section 3, a compact interval il

L L
= [p°, P11 of feasible
_ N

O-period price-ratiocs is determined. .-.zl is strictly increasing over il

1 t
and thus the inverse function of =zt over i; exigts, Also, in this case

' t 1
yl = wl(po) is & decreasing function of ;p° € ii » Wwith wl(gc’l ) =t e,
ol

. may be illustrated as in Figure 9(b).

end ¥'E™ ) =0. Tus v(p°) over i

7 y° =y° , we gsee that the intersection of % :(po) and of

1 1] -, .
y° = y° occurs at a unique point po » 8ince both ,?' z(po) are st_rictly

increasing functions of p° 20 . Thus again the inverse of stl at p° exists,



FIG. 9
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Since in this programming problem yl is exogenocusly prescribed, and since

o 7{0 o" o
X, = -i(p ) , We can determine unique and positive values of £, from

' o] o
) a‘-ndﬂl'l"ﬂa“l.

Q O
2 £o(x) &

y O o]
fol%a) 45

1
By chq.nging y , we only move both inputs from one sector to the other

without changing the sector-input-ratios, xg 5

between yl and po in this case is also described in Figure 9('b). it is
clear that the _production—possi‘oility—locus is a straight-line with normsl

1t
equal to % (2° ) . .

2, The situation in mlti-period problems is similar. If e.g. we

consider a T-period problem, in which the O- and l-period conditions are as
1 ' 0"

o
describel in Figure 9(a) and (c), and y = y° , Wwe see that from p° =p

all subsequent price-ratios, pt s &nd sector-input-ratios, xt are

i’

determined by {6). Since yT is exogenously given, unique and positive

T-1 T-1
T-1 r fipals ) 4
values of 4, are determined from y = e Tl ? and

£, T-l(xg"l) Py

4" =1, those of v are determined from el R )

T-1 + T-1
1 2 1 1 2 2

L

0

ete, , till unigue and positive values of yl and £,

gre determined from

(o] Q

AN R N N R N 2o0) 4
.

T : =0 1.0

20\*p 2

, and £24 2 =1,

or the prices. The relation

-1 Tl
=Y

2
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In this case not only the production possibility-locus at 1,

but all subsequent envelopes are straight-lines (with normals equal to

xt(pou)) . Ifforsome t, 1S5t<T, X 'Jt-(po") # k;(pon) , (as e.g.

in Figure 9(d) for t =1 ) , then as y' moves from zero to - , yt

moves fram 2 ;%) to X (%) . clearty 2 X ¥°) = X 3%,

it "
then yt e :(po ) for eny yT .

3. PFlnally, let us suppose that in a multi-period problem the 0- and

l-period conditicns and the initlal-endowment-ratio yo are as in Figure 10,

Further, suppoee that the l-period conditions are such that for p° = p°
1 1 L t
i(po ) = qu(po Y= X ;(po ). Then p° is the unique O-period price-

ratio which is feasible for our T-period programming probleny With

t 1
pt & :tt(po ) and xl: = A :(po ) we can determine for any given yT
unique and positive zf"l yT"l y res y2 ’ ﬁi’ s DY
( T- l) T-—l
T l T-L T-1 T-1 2 2 2 .2
U 'I.‘-l"el Tlhy =1, ey X bytx L=y,
2 T-1 2
2_f ("1) ﬂi 1 11, o
Yy = ( ) . l‘ » ﬁl + z; =0, respectively. ¥y =y (p ) is equal to
£
2

t ]
%% ) ana £° =2%°). Consequently, we obtain egain a unique and
i i i
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positive solution to (6) and (7). Here, although the production-possibility-
locus at 1 is concave, all the succeeding envelopes are streight-lines; see

e.g. Figure:O(c).
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APPENDIX 3

TABIE 1 (For Figure 6)

Point

g 88 ~vwwa o 3 >~ wvwa

l-period
Envelope
2-period
Envelope
A-period
Envelope

of the t-period price-ratios

Length of the interval




TABLE 2 2¢/ (for Figure 7)
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t t t
Point Yl Y2 P
l-period 4 1.5% .78 L. 209
Envelope € 1.5825 1 STT5 1.093 1
{ 1.5852} Eso STTh 4.083:?.} 598
7 1.6k .76 3,882
2-perlod 4 2.08 .69 6.557
Envelope € 2.170k 2 67T 6.430 e
{ 2 1782} Exo 675 6.4192F 1o
Ul 2.33 .65 6.196
3.period ¢ 2.53% .67 8.517
Envelope € 2.7191 3 .649 8.4015 3
{ 2.7353 Eao 6L 8.3915+ 120
n 3.07 .61 8.186
L-period ¢ 2.89 .TL 9.741
Envelope € 3.2281 4 672 9.648 N
{ 3.2575 20 .669 9.6405¢+ 120
1 3.87 .60 9.475
5-period ¢ 3.15 .80 10.192
Envelope € 3.726 5 T4l 10.123 5
{ 3.7763 B20 736 10.1188} 120
1 .82 63 9.996

gé/ All paths leading to the 20-period envelope are given by the path

€€ .

Those leading to the 10~perliod envelope are included between

the paths £ and 7n .
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TABIE 3 (for Figure 8)

, t t t
Point Yl Y2 P
5-period & 17 1.08 10.561
Envelope o 3.15 .78 10.192
7 3.67 .Ti 1o.15i
3.73 5 T 10.12 5
< _{ %.78+ E5g T 10.118F i5g
5 3.95 .72 10.008
B 4.82 .63 9.996
b 9‘72 -13 9-}'1-68
10-period o' .33 3.58 6.7660
Envelope 7 7.20 2.57 6.7591
€ 7.97 2.45 6.7584
c g0 5
2 8.6k ®p0 1 2.35 6.7577¢ ‘20
5 10.93 2,02 6.7554
B 22.73 27 6. 7439
15-period ¥ 9.09 27.23 3.2103h4
Envelope € 27.1L 15  2L.62 3.21028) .15
€ 42.80r Eg, {:16.75 3,21023 ¢ Lop
B 96.46 .0 3.21005
20-period € 17. £20 59.58 1.440145y 20
Envelope €5 814.13 20 6.40 l.thlhl}igo
Length of the interval £
of the t-period price-ratios Length of i20
5 1.093 .006
10 .0221 .000T7
15 .00029 .00005
20 . 000004 00000k
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TABIE 4 21/
t
Point Yl Y; pt

5-period 7 3.67 L5 10.130
Envelope € 3.73 E5 T4 10.12% .5

O 5.7§} 20 -{ JTh 10.118F ‘oo

(3 3.95 .72 10.098
10-pericd v 7.25 2.56 6.7591
Envelope € 7-9 ElO 2.46 6.758l 10

€, 8.63 20 2.36 6.75T7r zo

) 10.91 2.02 6.7554
15-period ¥ 26.95 16.28 13.9522
Envelope el T0.91Y | 15 13.13% 13.952 15

S 112.29 Ero -{ 1.16 13.9517+ T20

) 252.74 .10 13.9510
20-period e, 97. 4 20 157.36 59.08 .20
Envelope €5 9200.83 Eog 3.28 59.08427r tog

gl/ The paths recorded in Teble 4 have the same relative position in
the 15-, and 20-period envelopes for this exemple &s the corresponding
paths In Table 3.
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