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ON THE CONCEPT OF OPTTMAL ECONOMIC GROWIH

by
%
Tjalling C. Koopmans

1. Approsches in the literature

The search for a principle from which an "optimal" rate of economic
growth can be deduced holds great fagecination to economists. A variety of

sttitudes or approaches to this problem can be discerned in the literature.

One schoel of thought, represented among others by Professor Bauer
[1957], favore that balance between the welfare of present and future genera-
tions that is 'implied. :i.ti the spontaneous and individuel savings decisions of
the present generetion. A policy implementing this preference would merely
seek to arrange for tax collection and cther govermment actions affecting
the economy in such a way as to distort or amend the individual savings

preferences as little as possible.

Contrasting with this view is the position, expressed among others

quite explicitly by Professor Aliais [1947, Ch. VI], ‘bha‘f: the balencing of
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the interests of different generations is an ethical or political problenm,

in which the competitive market solution has no valid cleim to moral superiority
over other solutions thet depend for their realization on action by the state.

A more specific optimality concept is implied in the strictures of

Profeseor Harrod [19%8, p. 40)] and of Frank Remsey [1928, p. 543] against any
discounting of future utilities. These authors leave little doubt that they
regard only equsl weights for the welfare of present and future generations

as ethically defensible.

The purpose of She present paper is to do some "logical experiments,"
in which various mathematical forms of the optimelity criterion are
confronted with a verﬁr simple model of technology and of population growth,
to see what their maximization leads to. Our study is similer in purpose
to Ramsey's classical paper, and to Tinbergen's recent exploration [1960]
of the same problem. The underlying idea of this exploratory approach is
that the problem of optimal growth is too complicated, or at least too
unfemiliar, for one to feel comfortable in making an entirely a priori choice
of an optimality criteriem before one knows the implications of aslternative
choices. One may wish to choose between principles on the basis of the
results of their spplication. In order to do Bo, one first needs to know
what these results are. This is an economic question logically prior to

the ethical or political choice of a criterion.

What is e suitable mathemstical formalization of the idea of an
optimality criterion? The most basic notion is that of a preference ordering

of growth paths. Such an ordering states for each pair of alternative



growth paths whether they are equally good, and if not, which is preferred.
Indifference, preference and preferencesor-indifference sre ususlly required

to be transitive.

An important class of preference orderings is that repmsentable* by

Conditions of conbinuity under which s given preference ordering permits
such a representation have been studied by Wold [1943] and by Debreu [1954].

a continuous preference function (wtility function, indicator, etc.). A

particuwlar function which has been frequently used has the form
w
U = & thl u xt)
t=1
for consumption paths (xl, X ess) of infinite duration with discrete

time t =1, 2, ... . This form can be interpreted es a discounted sum
of future one-period utilities u(xt) with a discount factor of K per

*
period. This form has been derived by the present author from postulates

¥*

Koopmans [1960], especislly Section 1k.

expressing, among other requirements,

(a) noncomplementerity of consumption in &ny three

subperloda into which the future ma} be partitioned,
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(b) stationarity in the sense that the ordering of eny two
paths is not altered if both consumption seguences are
postponed by one time unit and identical consumptions are

inserted in the gaps eso created in each path.

The utility function so obtained is "cardinal” only in the limited
sense that the simple form of a discounted sum ié conserved only by _l_:j.ﬂ:_:t_gg
transformations of the utility scale. If belbw we occasionally wse the
expression "utility difference,” "marginal utility," these must be inter-
preted as elliptic phrases referring to a preference indicator of particularly
simple form. There 1s no intent to express a belief that, even in the
ebsence of risk or uncertainty, "utility" itself becomes a measurable

quantity as soon as & zero point and & unit are specified.

There still remains a gap between the derivation of the above utility
function from the postulates referred to and its use in the present study:

For present purposes & continuous time concept is more appropriate.

2. Plen of the Present Paper

We shall freely borrow from Fhelps [1961] and others mentioned below
the assumptions of the main model considered in Section &, from Ramsey [1928]
a device for meximizing utility over an infinite horizon without discounting,
together with methods for applying the device, from Srinivasan [1962] and
from Uzewa [1963] information sbout the results of maximizing a discounbed sum

of future consumptic-~. and from Inageki [1963] results about the
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generalization of that problem to the cage of predictable technologicsal
progress, If this particular brew has not been served before, it is
not put together here for any novelty of the combination. Rather, our
eclectic model appears 4o bave in it the minimmm collection of elements

needed to serve the two main aims of the present peper.

The first eim is to :Lllustrate_ the usefulness of the tools end
concepts of mathematical progré.mning in relation to the problem of

optimal economic growth.

The second aim is to argue against the complete separation of the
ethical or political choice of an objective function from the investigation
of the set of technologically feagible paths. Our main conclusion will be
that such a separation is nof. workable. Ignoring realities in adopting
"principles" may lead one to search for a nonexistent optimum, or to adopt

an "optimm" that is open to unanticipated objections.

In connection with the first aim, Section 3 recells a few facts
from linear and convex programming in & finite nuniber of verisbles, that
bear on the problem of optimum growth. The reading of this section is
believed to be helpful rather than essentiasl for what followe, Indeed, in
most of its formulations, the problem of optimal growth is a special problem
in mathematical programming. The main new ¢lement arises from the open-ended-
ness of the future. If one adopts & finite time horizon, the choice of the
~ terminal capital stock is es much a part of the problem to be solved as
the choice of the path. Terminal cepital, after sll, represents the col-

lection of peths beyond the horizon that it makes possible. An infinite
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horizon is therefore perhaps a more natural specification in many formmla-
tions of the problem of optimal growth. The mathematicsl complicetions so
created are the price for the greater explicitness of long run considerations

thus made possible.

Sections l4-6 analyze a model with & single producible good serving
both as capital in the form of & stock, and as a consumption good in the -
form of a £flow. It is produced under a constant technology by a lsbor force
growing exogenously at a given exponential rate, Proofs for many of the
statements lsbeled (A), (B), ... in Section 4 are given under the same

lgbel in an Appendix.

In Section T the findings of the logical experiments of Sections
5, 6 are examined. The main conclusion is that some wtility functions
that on a priorli grounds appear quite plausible and reasonable do not permit
determination of an optimsl growth path even in a constant technology.

Tentative and intuitive explanations for thip finding are offered,

Section 8 discusses in o tentative way, and without proofs, possible
extensions of the analysis to a changing technology and/or a varisble rate
of popnlation growth, witl; none, one, or both of these regarded as policy
variables.

3. Pertipent Agpects of Linear and of Convex Programming

let linesr programming be applied to an allocation problem in terms

of the quantities xj s d=1y oo, n of a Tinite pomber n of comodities.
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Then the feasible set D is given by a finite number of linear inequalities

n

(1) I a,6x b, , 1=1, veeym,
jeul 1 73 i
The objective function, or maximand, is a linear form in the Xy,
n
(2) Us £ ¢, X, -«

o 373



The feasible set D is always closed, and may be bounded
(as in Figure 1) or unbounded (Figure 2).

7‘

The range R of the objective function on the féasible set; that is the
et of values assumed by the maximend on the points of the set D is an
interval. If D is bounded (contained in some hypercube), then R is
necessarily also bounded. If D is unbounded, then R my stil] be
bounded, but may alsc be wnbounded from below, from sbove, or both. If R
is bounded from above, an optimal polnt exists (Figwre 2), If R is
unbounded from above, no optimum exists (Flgure 3) Both cases can

arise an the same feasible set D through different choices of the meximand.
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A highly speclal form of linear programming has been used by

&

Kantorovich [1959]. In this case the objective is defined by preseribing

the ratios of the quantities of all desired goods, l.e., goods entering

into thé objective, and by maximizing & common scelar factor applied o
thede quantities (Figure 4). This problem can also be formulated in
linear prromminéltemu ‘One adds to the comstraints (1) linear
equalities expressing the preescribed ratios, and chooseé a;.s 8 maximand
(2) the quantity of any one desired good, say.

‘In convex programming the feasible get is defined by
(3) g (x5, ooy x) 20, £al, oo, n

. ¥
vhere the g, are concave functions, and the maximand

B e, e w)

is enother concave function (Figure 5). The term convex programming

A concave function g(xl, sosy xn) is represented by a hy_persurfa.ce
¥y = g(xl,- seny xn) in the space y,‘xl, sess xn} that 1s never "below"
any of its chords (i1f the + y directien is “up®). '



.
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derives from the fact that the feasible set, .and each set of points on

*
vhich the maximand attains or exceeds a given value, are convex.

€ '
- A convex set 1s a set of points containing every line segment connecting
two-of 1ts points.

I.inea.ryrosrming is a specm case of comvex programing..

With a.ny cptime.l poin’t. iu a. convex programuing problem one can esso-
cia,te - hyperpl&ne II through that point, which separates the feasible set
‘from the set of po:!.nts in which the maximand attalne or exceeds Its value
in the optimal point __(Fig,uie 5). The direction c¢oefficilents of such &

hyperplane define a vector of relative pricee implicit in the optimal point.
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One interpretation of the implicit prices 1s that the opening up of an
opportunity to barter unlimited amounts of commodities at those relative
prices does not allow the attainment of & higher value of the maximand.
Moreover, if the maximand is a differentiable utility function, one may

be able, by asdding utility as a “comodity“ and choosing its "price" to be
unity, to j.nterpret the implicit prices of the other goods as their marginal
utilities either directly in consumption, or indirectly through the extra

consumption made possible by the availability of one more unit of that

comucdity as a factor of production,

4. A One-Sector Model with Constent Technology and Steadily
Increasing Labor Force

We assume that output of the single producible commodity is a twice
differentiable and concave function F(Z,L), homogeneous of degréé one, of
the capital stock Z and the size of the labor force L . These assumptions
imply full employment of labor and capital, constant returns to scale, and
nonincreasing returna to an incresse in only one factor of production. Since
capital is treated as a stock of the single producible commodity, output

is at any time t to be allocabted to a positive rate of consumption Xt 3
8 positive, zero, or even negative rate of investment Y‘b , &and a nonnegative

disposal. Hence, if we use & continuous time concept, and denote derivatives

with respect to time by dots, we have



L

(5) X, +X o t) H

(6) Y =2 .

F(Z, L) is defined for all Z 20, L2 O . We agsume further that both
labor and capital are essential to production, that either factor has e
positive marginal productivity, and that returns to increases in only one

factor are strietly decreasing,

{72, b) F(O, L) =0, F(Z, 0) =0,
(7) 4 (e, a) —%%-"»0, -%’;:— >0,
% 3%
(7e, £) >0, <0.
L 5z° 3L°

Finally, we essume that the labor force increases at & congtant positive
expenential rate A , from & given initial megnitude L0 3
: At
(88., b) L, =L e .
The homogeneity of the production function enables us to go over to
. per-unit-of-labor-f'orce concepts. Celling the wnit of labor force briefly
a "worker," let x denote consumption per worker, y ditto investment,

z Qitto capital stock, and

(9) £(z) = T Bz, 1) = ¥E, 1) = F(z, 1)
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output per worker., Since we then have

d a - -
an-a%-(zt L,t)mzt Lt-i-ztlsts(zt-!-lzt)L R

the feasible set in the space of per-worker variables X 5 2y becomes
(10a) X, By = f(zt) - Azg o,
(10b,c,4) x, >0, z. >0, z, lven.

The term Az represents the net investment needed if one wants merely

to supply the growing labor force with capital at the exieting ratio of
capital per worker.

To be specific we shall call a path (x,, z,) sstisfying (10)
gttainable (for the given zo) , and use the term feagible path in the wider
sense of a path atiainable for some Z, >0 .

*
It is implied in (7e) that f£(z) is strictly concave.

* A strictly concave function is one that ig actually "sbove" ell its
chords., '
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The per-worker production function f£(z) is therefore represented by a curve

such as is shown in Figure 6. The curve rises from the value £(0) =0
with a decreasing slope. In particular, any line Az through the origin

and of slope A such that O < A < £1(0) will ultimately intersect the

¥*
curve and continue above it,

To obtain (11) suppose that, for some such A , £(z) > Az for
arbitrarily lerge values of z . Then, by f£(0) = 0 and “the concavity

of £, £(z) 2 Az forall z 20 . But then, for amy Z >0, (7a)
and the continuity of F(Z, L) imply the contradiction O = F(Z, 0} =

= 1im F(2, L) = lim LF( ,l)=Zlim-f(z)> Zx >0 .
10 10
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for any A >0 such that O < A < £'(0) there is & z >0 such that

(11a) £(z) = Az ,
(11)
(11v) £(z) < Az for z >7 .

If A represents the rate of growth of the lebor force, % represents
a cepital stock per worker so large that its maintencance at the same level

032 7, itwil

abgsorbs all ocutput, leaving nothing for consumption. If =z
therefore be desirable to allow =z, to decrease et least to some level below
'z . To avoid this uninteresting complication we shall from here on

simply define "feasibility" so as to imply 0<z < 2z .

Although we have not yet defined a maximand, it may be pointed out that
the attainable set is now defined in a space where the "point" is a pair of

functions x , z, of time, defined for 0 <t <w ., Thig is an infinite-

dimensional space for the double reason that we use a continuous time
concept and an infinite horizon. It remains infinite-dimensional if we

*
1imit ourselves to twlice differentiable functions zt and once

Due to twice differentimbility of the data functione f£(z) above and
u(x) below we will not be excluding any optimal paths by that requirement.
However, a slightly weeker requirement will be found useful in the Appendix.

differentiable functions xt .
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5. The Path of the Golden Rule of Accummulation

To answer an important preliminary guestion, we first consider a
Kantorovich type ' restriction of the problem to a one-dimensional one. The
letter problem has been formulated and solved in the last few years, indepen-

¥

*
dently and in one form or another, by Allais [1962], Desroussaux [1961],

Dates are bibliographical only and refer to the list of references below.
Some of these authors used somewhat more general models involving an
exponential technological improvement factor in the production function.

Phelps [1961), Joan Robinson [1962], Swen [1960], von Weizsfleker [1962].

Remove from the definition of the attainable set the restriction that z.o

is given, thus meking initisl '\capii:e.l a free good. Restrict the attainable set
instead by an erbitrary stipulation that consumption per worker and capital per

worker are to be held constant over time,

X, =X z, =2 for all t =20 .

The new "attainable" set then is given by

(12 a,b,c) x = £(z) -~ 2z, x>0, z >0.

Finally, choose 2z 80 as to meximize x , the permanent level of consumption

Per worker, This leads to the maximization of x
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by the choice of that value z of 2 - for which
(15 a,b) £1(z) = &, 50 x=£(2) -~ Az,

where f'(z) denotes the derivative of =£(z)} .

. o

X
—>
AN
R
A
| N

|

J

|

|

]

|

l - - e o rebee e pmemaen s ne oy
z z

Figure 7 shows the comstruction. Because, of the essentiality
of labor to production, l.e., assumption (7b) as reflected in (11), there
is for any given slope A such that O < A < £7(0) a poimt z for which the
tangent 0 the production function per worker has that slope. To interpret
the condition (13a) note that, if we hold ‘L fixed, then by the homogeneity

of F ,

, ar(z/L, 1) oF(z, 1)
f (Z) = é(éJL) ) = gz ) .

Hence (13) expresses equality, at all times t , of the marginal productivity
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of capital (in producing cepital, say) to the grovth rate A -«

*
g prescripbicon known as the golden rule of accumilation.

Phelps [1961].

6. - Existence and Characteristics of Optimal Paths

We now return to the original problem that allows Xy and Z, to

very in time and recogrﬂ.zes the restriction (104) of a historically given
initial capital stock, and lock about for a suitable meximend. We admit to

en ethical preference fo_f .‘ngi‘:ctrality as between the welfare of di.f"ferent
generations. After some hesitation, we tentatively and arbitrarily resolve
another ethical conundrum by interpreting this "timlng neutraility” in a per-
ceplita sense. That is, we assume first of all that lsbor force and population
grow in proportion. Furthermore we thus imply that, starting from the golden
rule path % » z of the preceding section as a base line, we welcome equally &
unit increase in consumption per worker in eny one future decade, say. DMere

numbers do not glve one generation an ed_ge over snother in this scheme of va.‘.l_ue_s.

The next difficulty we f‘ace is & technical one. A previous investigation
by Xoopmans [1960], continued by Koopmsns, Diamond and Williamson [1962],
‘has shown that there does not exist a utility;fungtion of all consumption

Dpaths, which at the same time exhibits timing neutraility and satisfies other
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reasonable postulates which all utility functions used so far have agreed
with., A way out of this dilemms was shown by Ramsey [1928]. One can define

an eligible set of consumption paths on which & neutral utility function can

be defined. HMoreover, the eligible set is a subset of the feasible set such
that the remaining, ineligible, paths are clearly inferior to the eligible ones,
in & sense still to be d.efined.. In Ramsey's case, in which population wasz
assumed stationary, the criterion of eligibility was a sufficiently rapid
approach over time to what he called a state of bliss. This state was
defined ss elther a saturation of consumers with consumption goods, or a
saturation of the productive system with eapital to the point where

its marginel productivity has vanished «- whichevei gtate would be encountered
first. We shall find that in the present case of s steady population growth
the golden rule path can take the place of Ramsey's state of bliss in defining
eligibility. Thus Ramsey's device can be applied to our case with what seems

a lesser strain on the imagination in regard to situations ocutside the range

of experience,

Ve have one more technical choice to make. For reasons of mathematical
simplicity, and at some cost in “realism,” we shall model our utility
function after the finite-horizon example of

T
(14) U= [ u(xt)dt .
[s]
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As explained slready in Section 1, this simple integration of an instantanequs
utility flow u(xt) implies noncomplementarity between consumption in any two

or more parts of the future.

We shall assume that the instantaneous utility flow is & gtrictly
concave, increasing end twice differentieble function wu(x) of the
instantanecus consumption flow x , This function does not change with time,
and is defined for all = >0 , Strict concavity implies that we attribute
greater weight to the marginal unit of per capita consumpiion ¢f a poor generation
as compared with & rich one. To assume u(x) increasing rules out saturation.

Finally, instead of introducing a subsistence minimr,we shall permit that

(15) lim u(x) = - =,
x+0

a strong incentive to avoid periods of very low consumption ss much asg is

feasible. On the other hand, we do not require (15).

Let u = u(x) dencte the instantaneous utility flow derived from the

-~

consumption flow per worker of the path x = X sy 2, =% , of the golden rule.

t t
We shall now work with the difference between the integral {15) for any
given feasible path and its value for the golden rule path, and study the
behavior of this difference as T goes to infiniﬁy. The following

statements can be made {for proofs see Appendix).

- (A) 'There is a number U such that

T ol
(16) Up= [ (u(x) -u)dt < T
Q

for all feasible paths (xt, zt) end for all horizons T .
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Thus, if wtility is measured in conformity with (1), no path is "infinitely

better" than the golden rule path. In particular, no feasible path x,  can

t

indefinitely maintain or exceed = u‘Eility level u in excess of U . Thus

the golden rule path conmtinually attains the highest indefinitely maintainable
ut{lity flow.

(B) For every feasible path, either lim U(T) exists (is a finite
T ' '

number), or U(T) diverges to - o ag T tends to « .

In the first case, we call the path eligible, in the second ineligible.
Then (B) establishes a clear superiority of each eligible path over each

ineligible one. On the eligible get we choose as the utility function

(a7) ve (s - B

Tt is not hard to find eligible and attaineble paths for every
admissible initisl cepitel stock z_ . If 2z >2Z , one only needs to refrain

At

from net investment until the capital stock ﬁt =72 e I.0 of the golden rule

path has caught up with the given initisl stock ZQ = ZoLo » éand to continue
along the golden rule path thereafter. If 0< = ° <z s once can through a
finite period of tightening the belt srrive on the seme path.

(C) For esny initial capital stock z, with 0<z < Z  there exists a

unigque optimal path (ﬁt, Et) in the set of eligible and sttainable paths.

For z, # z » both ;{t and Et exhibit a strictly monotonic approach to X and

~

z , respectively, from below if 0<z <2 , from above if 2<z, <Z. For

Zy = z » the optimal path is ;E't: =% s Et =7 for all t » the golden rule path.




(D) The optimel path satisfies the condition

(18) u'(xt) é‘t =1 - u(xt)

that at any time the net increase in capital per worker multiplied by the

marginel utility of consumption per worker eguals the nel excess of the

meximum sustainable utility level over the current utility level.

Thig condition is similar to the Keynes-Ramsey condition [Rausey, 1928,
equation (5)] formilated in terms of absolute amounts of consumption, and
reverts to it for A = O . Keynes'! intuitive reasoning in support of

this condition carries over with only slight reinterpretation.

A number of further results can be obtained that apply equally to the
case where the utility of a consumption path is defined as an integral over

the instantaneous utility flow discounted at a positive instantaneous rate p .

(E) The utility function

(19) Vi) = [ e u(x, Jat , where 0 >0,
(o]

ig defined for all feasible paths for which X P x for all t , whenever

X >0 ., Ramsey's device is therefore unnecessary in this case. We shall
however obtain sn economy of notation if instead of V(p) we use the

utility function

LAY
o
-

(20) oe) = [ (alr) -8 Jar, o

which differs from V(p) by a constant if p >0 .
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The stipulation in (E) that keeps consumption from becoming altogsther
too small is necessitated by (15), merely to prevent U(p) from diverging

to - » . However, we shall for p > 0 define as the eliglhle-and-

attainable set the set of all paths with the prescribed z_ = for which v(p)
exists. (E) assures us that no paths worth consideration are excluded from
the eligible set. If z, Wwere to be very small, we could still allow for
growth by taking x correspondingly smaller.

The following statements (F) through (J) apply equally to the cases
p>0 and p =0 . Optimality is defined by maximization of (20) on the
appropriate eligible-attainable set. It is assumed in statements (F), (G)
that an optimal path (gt’.;t) is given. The statements give economically
meaningful characterizations of that path in terms of implicit prices.of the
consumption good and of the use of the (identical) capital good, associated

with the optimal path. These prices generalize the ldea of a separating

hyperplane, illustrated in Figure 5, to an infinite-dimensional space. The
(dated) price of the consumption good is defined from (20) by
(21) P, = LAY (x.) >
. the present value of the marginal instanteneous utility of consumption at
time + if the given optimal path is followed. The price of the use of the
capital good is similarly defined by
— | ]
ac the present value of the marginal productivity of capital at time % multi-

plied by the marginal utility of consumption at that time. Finally, we denote by
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o

”~ o ~ ~
(23) Ulp) = f e Pt (u(xt) - u)dt
the utility of the given optimal path.

(F) If (x,, z,) is any path, feasible or not, for which U(p) is
= Vg %% is

defined, then

(24) ue) - Blo) § J p,(x, - F)av -
o]

Since both members vanish if x, =X, for sll t , this means that the

optimal path both

(1) meximizes utility subject to the "budget constraint"

o
‘ N
OI p, (%~ % )at S0

(11) ‘minimizes “comparative consumption expenditure at implicit
prices”

o

oj pt(xt" x.t )dt

on the set of paths with utility equal to or exceeding

that of the optimal path.

(¢) it (xt, zt) ig an eligible-attainable path

-]

~ o ~ . ,: « . ~
- < - - - : - ;
(25) OI pt(xt xt)d't' = of <q.t(zt zt) pt(zt ztbd‘h “o.r (q't + pt)(z-b zt)dt .
Agein, all three members venish if (xt, zt) is itself the dptimal path
(Qt, ;t) . The inequality in (25), rewritten as

oD -]

N ~ ) - <
of pt(xt+ Zy- Xy zt)dt of- q_t(zt ;t)dt o,
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says thét, at implicit prices, "revenue" from total output minus "cost

of capital used" is maximized in the optimal path,

(24) and (25) together give rise to the next statement.

(1) RKecessary and sufficient for the optimality of the given

path (:'Et, Et) is that the prices (21), (22) implicit in the given path

satisfy the differential equation

(26) q_b+1'>t=0 for t20.
A,
o I To interpret this condition, let
5. &
o t (x,s Zt) be a patl.
(a) "3
1{ | which differs from the optimal path
! : only slightly and only on a short
open interval 7 » on which Zg > Et
(see Figure 8a). Then x, will aiffer
/,_\: e from ?qt first because the slightly
N M K
t j’
(ﬁ g P\ ,’ higher capital stock on allows
- x{ xf'_ a slightly higher product, and secondly
because acceleration of investment

- ;
during the first part of j and

FL@ . deceleration during the second part
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leads to some postponement of consumption within 7 In the light of (21), (22),
the condition says that, in the limit for an arbitrarily smell difference

zy = ;t of arbitrarily short duration, the utility effects of these two
componente of X, - ;Et- mst cancel if the path (;E't’ Et) is to be optimal.

Statement (H) can be used to prove the existence and uniqueness of

the optimal path for p g 0, and establisgh its main characteristics.

(I) Iet %(p) , z(p) be defined as the solution x, z of

(27) £ (z)=21+p, f{z) -Az =x, where O<ALSA+p<£(0) .

Then if z_ = z(p) , the unique optimal path is :’Et = x(p) , ’z‘t = z(p)

forall t+20.

The determination of z(p) is shown irn Figure 9. Because of the strict

concavity of f£(z) , z(p) and %(p) exist and are unigue, and

0<2(p) <z(p¥) S Z for p >p* 20, and hence, since f£(z)-Az increases
for 0<z -2,
(28) x(p) = £ (;E(p)) -22(p) <x(p*) SXx  for p>p*¥> 0.

The constant optimal path made possible by the intial capital stock

Z,, = z(p) 1is found to be an asymptote for the optimal paths associated with

other values of zo -

ﬂﬂ. 9
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(7) For smy initiel capitel stock z, Witk 0 <3z < z

there exiets a unique optimal path (;Et’ Qt.) . For z # z(p) both ;ct and ;t

exhibit a monotonic and asymptotic approach to g(p) and ;(p) , respectively,

from sbove 1f z_ > z(p) , from below it z_ < z(p) .

For later discussion, we note from (28) that the asymptotic level

§(p) of consumption per worker, while independent of the initial capital z o ?

is reduced as the discount rate is increased. In particuler the maximum of

%(p) for p2 O 1s attained at p =0 .

Fipaelly, a word ebout the case where one tries to apply & negative
discount feactor p <0 . Writing « p = g , this means looking for a

utility function extending the finite-horizon example

o
Vol- o) = [ e“Culx, )a
o .

to an infinite horizon. This 18 not as far-fetched as it may meem. Affer
all, we have so far given no weight at all to mere pnumbers in comparing
generations. If we were to weight each generation in proportion to its
number, and otherwise seek neutrality with regerd to timing, the population

growth parameter XA would take the place of ¢ &bove.

In order to apply Ramsey's device in the present case, one would

have to find a feasible path (xt s zt) such thet

T
(29) W;(- o) = f et u(xt*)- u(xt)) at
Q
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is uniformly bounded from ahove for ell feasible paths and &ll values of T .

The following statement ssys that no such path exists.

(K) For each attainable path (xt, 2 ), where 0 < z < %,

and for each number N > 0 , there exist another attainable path (xg, z:)

and a number T* guch that

(30) w_’{;(.- g} >N for all T 2 T*

This says, essentially, that there is no attainable upper bound to the range, on
the stt~inzble set, of a utility function of the type we are seeking to

define. The case p < 0 is therefore analogous to the case in ordinary linear
programming illustrated by Figure 4. The same difficulty was noticed and
discussed by Tinbergen [1960] and by Chekravarty [1962] in connection with

the case pan 0 for a model.with constant returns to increases in the "

amount of capital alone,

In the present case, the reasons for the sbsence of an optimal

path if p < O can be illustrated in terms of the path (xt, zt) = (%, 2) ,

optimal 1f p =0 end 1z = Z . From (P1) we see that the implicit
price of the unit of consumption good per worker, associated with this path

is a constant,

p, = u'(x) forall t .
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Thie means that a sacrifice of one unit in per capita consumption,
now made for a short period as a slight departure from this path, can be
taken out by any future generation in the form of an equal augmentation of
per capita consumption beyond that provided by the path, for a period of the
same short duration. Now if either p <0, or if p =0 bdut some weight is
given to population size, it will always increase utility to delsy still

further the time at which the fruit of the initial sacrifice is reaped.

In the proofs of the statements (A) - (K), given in the Appendix,
one cammon characteristic of the problems considered is repeatedly used

without explieit mention. At any time in an optimal path (?:t, Et) ,

the cepital stock Et is the only link between the past and the future.
This is due, on the one hand, to the utility function being an integral
over time of instantanecus utilities (discounted or not), On the other
hand, it arises from the fa&. that the feasibility constraint {10a)

restricts ét but not :'ct +« Hence the function xt is in principle free

to vary discontinuously {even though it is found optimal for it not to do so).

However, é’t is bounded by (10a,b), hence z, can only very continuously. .
The resulting property can be exvressed formally as follows: If (fct, 'it)
ie an optimal path fer given Zy 9 then, for any T , the path

(x_':, z:) defined by

is optimal icx z'; =z
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T. Adjusting Preferences to Opportunities

Whet have we learned from our "logical experiments™ We have
confronted a simple model of production with a utility function representing
e sum of future per-capita utilities, discounted by a positve, zero, or
negative Instantanecus rate of discount p . We have found that p =0

is the smallest rate for which an optimsl path exists.

Let us assume for the sake of argument that the present model is
representative enocugh to be looked on as a tentative test of the applicability
of the ethical principles under consideration. Then we hsve just menaged
to aveld discriminating egeinst future generations on the basis of
remoteness ¢f the time at which they live. However, thils close escape for
virtue was possible only by meking welfare comi)arisons on a per capita basis,.
If instead we should want to weight per capita welfare by population size, then
we are forced to discriminate on the basis of historical time by positive
discounting. There seems to be no way, in an indefinitely growing population,

to give equal weight to all individuals living at all times in the future.

This dilemma suggests that the open-endedness of the future imposed
mathematical limits on the autonamy of ethical thought. The suggestion
mey come as s shock to welfare economists, beceuse no such logleal obstacles
have been encountered in the more fully explored problems of allocation
and distribution for & finite population. i‘b is true that the mere fact
that we are consldering an infinite number of people does not fully explain

the dilemma, For Remsey was sble, albeit by artificial sesumptions, to
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indicate a fair solution to the problem for the infinite future of & porulation
of constant size. Our difficulty is therefore comnected with the assumption

of an indefinite growth in the population.

The following reasoning mey further illuminate the reasons for the
nonexistence of an optimal peth with negative p . Assume that 0 >p >- )L .

(Of course, p = - A would correspond to equal weights given to the utilities of
all individuals. Ou.r ‘11lustration is clearer if we do not go quite that far).
Consider now an optimal path for the finite time period 0SS+t S T, defined

by initial and terminal perworker capital stock levels 2, = Zq = z both equal

to that level 2z which, if maintained at all times, would secure the

maximm meintainable consumption per head. The analysis associated with
the proofs of (H), (I), (J) in the appendix now indicates that, if the

level ; is prescribed only for t =0 and ¢t =T , the optimal

::}J>

*"f*' .
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path bulges out toward the level of z{p) , as indicated in Figure 10.

The interpretation is roughly as follows. The negative discount rate gives the
greatest weight to the per capita utility of the last generation living within
the planning period [0, T]. In response to this weighting system, the
optimel path providesufor a reduction in capital per worker (e "disinvestment"
in the per capita sense) during a terminal segment of the planning period, in
order to allow for high consumption st that time., To make this possible, all
proceding generations make a sacrifice. For the first generation, this takes the
form of heavy investment needed to increase the cupital stock more than in
proportion to population growth. For the intermediate generations, it consists
in approximately maintaining the capital stock -- by continued proportional

growth -- at a per capita level in excess of that which would maximize per

capita consumption.

Now if T is increaséd, the benefited generation hecomes a more and
more distant one, If T = , ‘there is no benefited generation, and the
limiting position of the curve in Figure 10, while mathematically well-

defined, merely describes a path of indefinite and fruitless sacrifice.

The problem sppears in even sharper light if technologicsl progress is

also recognized. A study by Tnagaki [1963] uses a Cobb-Douglas production

Tunction

¥(z, L, t) = const. P & o
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subject to exogenous technological progress at the constant proportional
rate B , an instantaneous utility function

ds
- log x

X
(31) ulx) =[] 1553

exhibiting suitable behavior for large values of X , and a labor force.
growing exponentially at the rate A . Among other results, Inagaki finds.
that, for the integral V{p) as defined in (19) to converge on the counterpart

of our path (x,, z,) = (?(p), g(pZ) , it is necessary that

(32) p >E .

Let us assume that Ramsey's device can be used also in this case, and

that it would again merely result in adding the borderline value p = 1%

to the set of discount rates defining a utility function for which an
optimal path exists. Then & predictable positive lower bound to the ra.ter of
technical progress, valld for an indefinite future period, precludes
application of the ethical principle of timing neutrality in per capita

utility -- not to speak at all of weighting generations by their numbers.

Thus, if in the face of technological progress we want to hold on to
the idea of maximlzing a utility integral such as (31} over time, we must
invez;st a discount rate p satisfying (32), or its equivalent for ancther
ﬁroduction function. Such a discount rate might just have to be &

pragmatic one having no basls in a priori ethical thought. While it might
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well be a result, conscious or unconsclous, of political processes or decisions,
it would have to be reviged upward 1f it is estimated that technological
rrogress will accelerste to such an extent as to "overtake it," and could

be revised downward if it is expected that progress will slow down.

One might instead conclude that the whole idea of maximizing a utility
integral i1s not flexible enough to fit the inequality of opportunity between
generations inherent in modern techmology. Two alternstive notlons have been
partially explored by the present author, using a discrete concept of time.
In one of these [Koopmans, 1960], the utility function of & consumption path

Xy s t=1, 2, ¢«esy can he defined by a recursive relation

U(xl, X0 ...)rav G(xl), U(xz, %g5 ...))

in terms of a one~period utility function u{x)} and an aggregator function

V(u, U) . This formilation allows the (scale-inveriant) discount factor

.

I

(BV!uU, U) {:

~ sasu(x), U = U(x, x, »00)

associated with a constant path to increase or decrease with the level x

at which the path proceeds. The second elternstive [Koopmens, 1962]

1s an attempt to express formally the ides of a prest;nt yreference for
Tlexibility in future preferences between different commodity bundles of

the same timing, or between physically the seme hundles spread out differently

over time, or between bundles differing in both resi:eets. Further a.tia]ysis
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will be needed to determine whether the first idea is sufficiently flexible
to enable us to avold the difficulties we have encountered, or, if not,

whether the second idea can be made workable.

8. Technical Progress and Population Growth as Possible

Policy Variabhles

So far we have treated both technical progress and populstion growth
eg exogencusly given. It should now be recognized that both varisbles can
be, and are in many countries, influenced by public and private peolicies and
ettitudes. Technical change is furthered by government conduct or support of
research and of education, by the tax treasbtment of depreciation and obsoclescence,
and by business policies with regaxrd to research and development. Population
growth is influenced by expenditures for public health, by famlly allowances,
by govermment policiles toward family plsnning, and by general cultursl and
religious attitudes toward the idea of populetion contrel. In addition,

both variables are in part endogenously affected by the level of income..

Both possibilities of partial control raise new conceptual
problems in formalizing the idea of optimel economic growth. In the
middle of the scientific explosion, it is hard to assess whether technolegical
progress can go on forever, so that also its rate can be raised or lowered for-
ever. Alternatively, a higher rate of discovery and invention now might entall
a lower rate of progress at some later time when the fund of knowledge usable

in production nears campletion. Another consideration is that technologiesl
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progresa raises transition and dislocation difficulties that affect the

relative welfare of different Individusls within the same generation.

The pousibility of influencing population size raises the guestion
of the value of population size in itself -- as dlstinet from the question
of the weight given to numbers in aggregating utility'over generations,
discussed above. It should be noted that all ubility functions discussed
in this paper imply neubrality with regard to population size as such., The
question is of some importance because e different attitude might lesd to
a different balance between the "value of numbers" and the loss of per
capita income that may result from the ratio of pepulation to land and/or other
regources. This problem did not come up in the more formal analysis of the
preceding section because the asgumption of constent returns to proporticnal
increeses in both labor and capital precluded the recognition of resource
limitations. .\
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