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CONJUGATE FUNCTIONS AND SYMMETRIC DUALITY >

*
by Andrew Whinston

1. INTRODUCTION

In & recent paper by Dantzig, Eisenberg, and Cottle [3] & very
interesting and useful approech to duality in nonlinear programming has

been presented. They consider the following duel programming problems:

Primal . Dusel
)
(1.1) Min., K(x, y) - y¥' EK Max, K(x, y} - x* ?EK
X, ¥ X, ¥
oK oK
8. to S 0 B t- & Z 0
xeR,, YeR, XeR, yeRL
l‘ —
oK _ oK(x, v) OK(x, ¥) aKéx! ¥) '
ox i axl ’ axe Ty e N

K _ oK(x, v) IK(x, v) oK x y_'
Bo | Hpn, S, a0

m

* I am indebted to my colleague Herbert Scerf for discussing several points
in the paper with me and for suggesting the proof of theorem 1.2, One of the
referees suggested several points which resulted in alterations of the original
draft. I remaln responsible for all possible errors.

*¥ An esrlier draft was completed while the suthor was at the Internationsl
Center for Mensgement Science and Stockholm School of Economics, on leave of
absence from the Cowles Foundation and the Department of Industrial Administration
of Yale University supported by a grant of the National Science Foundation. This
research was undertaken by the Cowles Foundation for Reseerch in Economics, under
Task NR O47-006 with the Office of Naval Research.



Under the following conditions they prove certain duality theorems:

" (1) X 1s real valued on the cartesian product U XV where U and V
n . n m

are open subsets of R and respectively, such That R cU, RcV.

(11) X is twice continuously differentisble on Ux V

(111) for eech fixed xeRf, K is strictly conceve in ¥

(iv) for each fixed yer_l , K is strictly comvex in x ."

We concentrate on weakening the copditions (1ii) and (iv) by requiring

only that K be concave In y and convex in x instesd of the strict
concavity - convexity requirement. This weskening will allow the duality
theorems 40 be applied to the genersl convex programming problem including
such cases es linear programming and guedratic programming with & semi-
definite quadratic form. Under the assumption of strict concavity - convexity

these latter cases are, of course, excluded.

We shall epply the theory of conjugate functions as developed by
W. Fenchel [L] to the function K(x, y) . In an earlier peper the present
suthor [8] studied duality theory for nonlinear progremming, using conjugate
function theory. By also basing the present development on conjugate function
theory we mey be able to understand the differences and simllarities between

the varlous approsches to duality,



For use in the paper we record the following definitions and
theorem concerning conjugate functions. Let £ (x) be a closed® comvex
function defined on a convex set C in E®. Then we define the conjugate

function ¢ (&) by:

(1.2) @ (g) = sup [(x' &) - £ (x)]
xeC

T = {te” | sup [(x' §) - £ (x)] <+ )
xeC .

Let g (x) be a concave closed function defined on & convex set D in

E? , Then we define the conjugete function V¥ (¢) by:

(1.3) ¥ (&) = inf [(x't) ~ g (x)]
xeD

A (geEY inf [(x't) -~ g (x)] > -w ).
x6D

Theorem 1.1 If the sets M0 and T'N\A are non vold then

sup [g (x) - £ (x)] = 1of [ (&) - ¥ (£)].

xeCMD. gel'N A
2. General discussions of conjugate functions can be found in [4] and [6],
A convex function defined on & convex set S will be closed if for any xo

lim
xX*>x

o
where 0f (x) is finite, £ (x ) is defined and is egual to —= 0 £ (x) .

X+ X
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If the relative interior of COD # ¢ then we may replace inf by min,
Correspondingly if the relative interior of TNA# ¢ we may replace sup

by max,

Before proceeding with the formal discussion in the paper it may
be useful té indicate the underlying ideas and the basic method of proof.
The underlying idea behind the use of conjugate function theory and thus
the duallty theorems presented here is that we maAy represent & closed convex
set elther in terms of the locus of points of the boundsry or as the inter-
section of its supporting hyperplanes. We may fwrther characterize the
supporting hyperplanes in {terme of a space representing slope and intercept.
Thus in problems concerning the minimization of a convex functlion we may
consider elther the problem in terms of the space of the locus of points

or dually in terms of the space of slope and intercept.

The above observation forms one of the basic steps in the proof
of the main result, Iet £ (x) be & closed convex function defined on En.
Then we msy consider the pro’bleml
(1.%) Min, £ (x)
x 2 0
Alternatively we may consider the problem in terms of the slope intercept space.

In this space we have the problem: Among &ll hyperplanes in the non-negative

slope, choose the one with a maximm intercept. We may write



(1.5) Max. £ (x) - x!' g}%
x Z 0’ & Z 0 & &-L sesve &n

Problem (1.5) for the cese of the function f (x) differentieble is the
dual problem of Fencheli and we may apply Theorém-l.l to assert the equality,
under certaln conditions, of these two problems., However, because of the

simple structure being dealt with here we may, instead, present the following:

Theorem 1.2
If problems (1.4) end (1.5) are solveble then we have

£(x) =2 () -x° o

Ny

where .« solves (1.4) and % solves (1.5).

Proof

By the convexity of the function £ (x) we have

f(x)zf(x0)+(x-xo) '%O
zf(xo)-xot?afo

where x > 0

f(;)nm.n.f(x)zf(xo)-xo'%ﬁo=m.f(x)-x' £



~
On the other hand we know that x must satisfy a+£ >0 and
N

end consequently x is a feasible solution to problem II.

Thus

Max, £ (x) - x & > £ (%) = Min. £ (x)

x>0, X0

q. e, d.



2. SYMMETRIC DUALITY THEOREMS
Let X(x, y) satisfy the conditions (1), (i), (iii)' for

each fixed xeR_I:, K is concave in y , (iv)' for each fixed yeRl:, X is

convex In x .

We first consider K(x, y) &8 a convex function of x . Define

(2.1) ¢ (&) = swp [x't - K(x, y)]
xeX _

n
X =R,

r, = (teE"| sup [x't - K(x, y)] <+ =) .
xeX -

For & maximm of (2.1) to exist’ we npust have for some xeX, teE" and some

yeE"

(2.2) t-F <o
(2.3) Xy (51 - %i) = 0 i=1, eeup n
(2.4) x > 0.,

Substituting (2.3) into (2.1) we have

3. For the purposes of the present discussion we may, without loss of
generslity, only consider functions K(x, y) for which if an extremal value
of the function exists it is achieved on the domain of definition of the
function. For a function not possessing this property the dual problems will
have no feasible scolution.



(2.5) 9 (8) = x . k(x, 3]

vhere x and ¢ are related by (2.2), (2.3), end (2.4). We define

(2.6) ¥ (&) = inf [x'¢]
xeX -

= (¢] 1nf [x'e] > =-w } .,
Al Ian-- ) .

Tt 1s immedistely seen that ¥ (¢) = O where A = (ke > 0} . We

next wish to compute

(2.7) inf [x' -3% - K(x, y)]
ger NA .
where
3K

anr = felt - 2 < 0,x>0, £ > 0)

(2.7) may be written

(2.8) inf [x! %I% - X(x, y)]

A
BV
o



(2.8) can be written

(2.9) - s;.crgp [k(x, y) - x' %I%]
% 2o
x > 0.

By Fenchel's Theorem 1.1

(2.10) inf K(x, y) = sup [K(x, y) - x' 5;; )
xeX xeX
2o
as long a: there exists = feesible solution to the right hend side, Finally
we have
(2.11) sup inf K(x, y)} = sup sup {K(x, y) - x! 5 ]
yeY xeX yeY xeX -
n
Y =R,
& 2o

Considering XK(x, y¥) &8s a concaved function of y we derive, proceeding as
above, the following:

(2.12) inf sup K(x, y) = inf inf [K(x, y) - y' % ]

xeX yeY xeX yeY

% 20



We thus consider the two dual programing problems

T IT
, 9K oK
(2.13) Mex. K(x, ¥} - x x Min, K(x, y)-y'w
X, ¥ _ X, ¥
K > 0 Xk < 0
3 ¥y
x > 0,y > 0 x > 0,y > 0,

When considering duality relations between problems I and I we shell sssume

that the constraint sets of each problem have non-empty interiors.

Theorem 2.1 b
(2.1%) sup swp [K(x, y) - x! g%c-{ ] < inf inf [K(x, y) - ¥ % ]
yeY xeX . xeX yeY .
oK - K
S to & 2 O Be to & S 0
Proof

We first note that

(2.15) sup inf K(x, y) < inf sup K(x, y)
yeY xeX | xeX yeY

., We set sup sup K(x, y) - x' %{' = = e 1f the constraint set for this
YeY xeX )

problem 1s empty. Corresponding inf inf [K(x, y) - ¥' gl;{ ] = + » under
xeX yeal -
the same condlitions.




Then using (2.11) and {2.12) we have the result.

d. e, d,

Leyms 2,1

If Max. Min, K(x, ¥) = K (=0, ¥°) then K (x°, °) is & saddle point of
ve¥ xeX _ . :
_ 0 .0 * 0 _0)
K(x, y) . Correspondingly if Min. Max, K(x, y) = K(x", ¥} then XK(x s Y
x€X yeY

is a seddle point. Under either hypothesis we have

Max, Min. K(x, y) = Min., Max. K(x, y)
yeY xeX . xeX yeY

Proof
We give the proof for the first statement. Define the closed sete

X, = {x|o <x <

4 xiz’ i = l, seey n]

v, =lo<y; <y,,, 1=3, ., m)

and the half-open sets

-~

YZ= {y|05y1<yiz, i-"—“l, sray m]



where (xo, 3-0) €eX xY . Since X, and Y, ere closed, bounded, convex
sets, by the min-max theorem for general finite games [5] there exists

* *
(x'y ¥y ), vhich is a saddle point for X(x, y) defined on X, xY, . Thus

on Xz sz we have

¥* *
(2.23) Min, Mex, K(x, y) = K(x , y ) = Max. Min, K(x, y)
x ¥y ¥ x

Since by our hypothesls we have

(2.24) Mex. Min. K(x, y) = k(:®, y°)
y x |

(xo, yo) must be s saddle point in X XY . The following conditions are

necessary and sufficient that (xo, yo) be a saddle };.‘o:ln’r.:5

(2.25) 91-{0 2 0 X <0
¢ P
Xoé-ls = 0 1“19 seey Il Y'a—K =0 i=l-’ veey I
iaxo :LayO
1 i

5. These conditione are presented in [7]. Note that (xC, P)ex . XY,
and thus only lower bounds of the set are.relevant.
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These conditions are independent of the end points (xz » yz) chosen to

define X x Yz and are therefore satisfied for end points (=, «) .

Therefore (xo, yo) is a saddle point on the space X x Y.

Theorem 2 .26

If elther duasl problem possesses & solution then the other problem

possesses a solutlon, and the optimal values of the two problems are equal.
Proof

We glve the proof for the case where & solution (xo, yo) exists for

(2.26) Mex. [K(x, y) - %' %ﬁ]
2,7
20

X220, y=20.

By sssumption the constraint set of (2.26) has a nonempty interior so that

there exist points (x, y) such that Msx. Min. K(x, y) = K(x, ¥} «» By

yeY¥ =xeX
Lemme 2.2 we have Min. Max. K(x, y) = K(x, y) . Let T, and A, be the
xeX yeY
6. This theorem wes first proved in [3] under conditions (1), (i1), (iii),

and (iv), :



-1k -

domains of definition of the conjugste functions obtalned by considering
K(x, y) as a function of y . Since K(x, y) is bounded sbove by
K(x, ¥)y £ = 0 dis in the set I, N4, and therefore T N4, £p . By

Theorem 1.1 and noting that the interior of the set Y 1is nonempty we have

Msx. K(x, y) = Min. [K(;, y) -y (%; ]

ye¥ _ yex
AKY ~
(@) <
and
. 3K
Min, Mex. K(x, y) = Min. (k(x, ¥) -y 5.}—‘]
xeX yeY xeX, yeY.-
JK
<0
5; —_
q. e. d.
Lemms, 2,2

If a solution to the program

Max. [K(x, y) -x! %l
X, ¥
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exists then there always exists a solution (xo, yo) such that

X, —~—== =0 =1, eesyn

Correspondingly if a solution to the program

3K
Min. [K(x, ¥) -y' <]
X, ¥ ’ 3y

exists, then there always exists s solution (xo, yo) for vwhich

= 0 i=l,aoo,m

o
Q/
IR

Proof

We give a proof for the first part of the lemmm. By the assumptions of

the lemms
0
Max. Min. K(x, y) K(x", ¥y') .
ye¥ xeX
The point xo satisfies xo §_I_§ =0
i ax.O
X 5,
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end consequently (xo, yo) is the required solution to the dusl problem.

. e. d,

Theorem 2.3

If either dusl program is solvable then there exists a common solution

t0 both progrems.
Proof
0 0
Assume that there exists an (x, y°) such that

vex. [K(x, ¥) =<' ] = x(°, y°)

Such e solution is guaranteed by the previous lerms. The point K(xo, yo) is

a saddle point and consequently (xo, yo) is a solution to the duel prograem,

k)
Min, X(x, y) -y 3%
X, ¥
K <o

q. e, d.
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3. APPLICATION TO PROGRAMMING FROBLEMS

3.1 Linesr Programming

Consider
px ~ y(&x - b) = K(x, ¥) .

Note, of course, that K(x, y) 1s convex in x and concave in y . Then

we have two dual programming inroblems.

(3.1) Min. px - y(Ax - b) + y(Ax ~ D)
X, ¥ )

which gives
(3.2) Min, px
x
Ax > b
x 2 0
and -
(3.3) Mex. px - y(Ax - b) - x(p - yA)
p-yA > 0
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which glves

(3.1(‘) M&X- yb
YA < p
y 2 0.

From Theorem 2.1 we have that

sup yb < inf pr

Yy X

y 20 x > 0.

From Theorem 2.2 we know that if there exists & :,r* which solves the meximm
problem then there exists a feasible x* which solves the miniwum problem
such that

* +*
Yb=opx,

The reverse lmplication is also true.

Te We may, of course, replace sup with max and Inf with min if the
problems possess feasible sclutions.
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3.2 Nonlinear Programming

Let
K(x, v} = £(x) + y' &(x)

where

E(X) = gl (K)

&, (%)
i.e., g(x) 1s a vector of convex function, and f£(x) is convex. We obtain
the following dusl programming problems from 2.13.8
Min, #(x) Mex. 2(x) + y' glx) - x' [ +y B )
s. t. g(x) <0 s.’c.%}%+y'%§20
x >0 x > 0, y 2 0.

Applying Theorem 2.2 we have that if either problem has an optimal solution,
then the other problem has an optimal solution and the values of the criterion

functions are equal.

8. We may assume here that the constraint set has a non-empty interior.
See [9] for this type of duality theorem.




4, CONSTRATNED GAMES9

We now consider more general constraints on the spesce of

strategies, Let
x = (x|x >0, a(x) >0}
Y = {yly >0, B(y) < 0)
a(x) = [a(x) .o 8 (x)]"
h(&) = [hl(vj ees B (V)1
a(x) 1s a vector of concave contimuously differentisble functions and h(y)

1s a vector of convex continuously differentisble funectlons. The sets x'

and Y heve non-emply interiors.

oa, o dm]
Vel =) >
e ase e

2 &,

o, -

E_'Jj aes Fm'
valy) =| :
oy Oy

Ty Ty

-~ -

9. The toplc of comstrained gemss was first introduced by A. Charnes in
[1) and further developed in [2].



Thus we consider the game K( Xy y) where pleyer one must
choose sn x ¢ X and player two 8 ¥y é Y . In order to motivete the
choice of dual problems related to the constrained game, we apply Fenchel's

conjugete function theory to K(Xy y) .

We write the constraint a(xl) - X, =0 where x, = (:4:21, ooy X5 )"y

X, = (X9 eeep %) C = (x5 %, | alx) - x, =0, x >0) Let

By = (800 ooes E3p)"s 85 = (Eops coes £5)"

(4.1) p(g) = sup  [x] &, + x} &, - K(x, ¥)]
()%, = 0 T RS- Bt
* 20, X, 20
P={t,:, | s ®& +x'E -Kx,y) <=)
12 gy 0 TL T R 2 *yy ¥
X, 20,  x,20.

Conditions for ¢ (&) +to have & meximm are that:

(4.2) 3 < %:I—é « ut Va,(x_l_)
E, Su
oK )
Xy By = %y x, " Ve (x,)]

i=1g eoay n
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§21x2i=uixzi 1=1, «cop, m

xl, x2 >0.
Using these conditions we mesy write
(4.3) o(e) = x; [ & - e ()] - Kx, ¥) + valx)

where (:L_L, xe) and (gl, §2) are related by conditions of 4.2

Let
D==[:Ll,x2|:L_L>0,x > 0)
Then
(b %) ¥(e) = inf [xie, + xte,]
X 20, % 30 X5 T ®ebp
A= {8, & 3 > - o}
10 2|’&i°ﬂx>ﬁl
Thus



aew -

(%.5) y(g) = 0
where

xigl = Q xégg =0,
We may write

oK
A= {x,x, | 05 g -w'oalx), u>0, ex) >0, xy 20, x, 20).
We thus have computing

(h.6) o(e) - ¥(&)

the expression

(1.7) xt [ X wvax)] - Kx, ¥) + w'ax)
0 < %EK - u'Ja(x) a(x) >0

u>0, x>0

where we may drop the varisble xa and write % = x , We mey consider the

following dual programming problems:

I

(4.8) Max., K(x, y) - x' { % - u'Va(x)] - u'a(x)
Xy ¥y 0. :



8. t. % - u'Va(x) > 0
h(y) <0, a(x)20

X>0,¥y20,u>0.

1T
(4.9) Min. K(x, ¥) - v' [ - 2 9n(y}] - An(y)
X, ¥ A
K _ \r9n(y) <0
a(x) >0, n(y) <O
x>0, y20, A220.
Theorem 4.1

If either dusl problem has s solution then the other problem

possesses & solution and the values of the criterion functions are equal.

Proof

The proof proceeds in a menner similar to sectlon two and we omit the details,

Exemple: Let

5 pia'i,jqj

K(x, y) = -
. 13



(%o - B aEJ'In 2=
Fon x - o - Tl w5 - FoFlat 4o fﬁnfb e (7Th)
IT
c02% 0z a2
a5 By g
=g
0z oz - g - EfT g-— "q s
(°p - "Fpla 2 °x 2)-
(s‘il_psx; ) é L BCT, :Ev-)?a s PP Ty o S’fx;ib ‘'a (TT°1)
I

igmorqoad BurmrsaFoad TeEGD FUTMOTTOF 9L 9ABY B GSUIL
rozh ozt

£ T

x R (oT*4)

oL - g -
q>?'bfqz"9<

¢ T
T=bz or=Taz oy -8

,-ga-
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o
oY
v
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10

Combining terms we have

I
(4.13)

1T
(h.14)

Max, 8+ 2 x 4
5 B

8. to Zaijqj +e+rxd <O
d 8
g, =1
3 o
<
gbrjq,j L

Min. p + Zwrb
r

r

o Go + p+ L
8. & fai;jpi P iwrrj—o

10.

See page T4 of [2] for the following two dusl programs.
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5. FURTHER EXTENSTIONS

In this section we shall indicate how the duality conditions
discussed earlier, may be generalized to cases where K(x, y) is not
necessarlily differentisble everywhere.ll This will indicate that the

concept of symmetriec duwality is not limited to differentiable functions.

Considering K(x, y) as a convex function of x and recalling
the earller definitions and Theorem 1.1 In section 1 we have
(5.1) Min. X(x, y) = Max. Min, [K(x, y) - x'¢]

x>0 ,gerln x>0

We assume that the relative interior of TNA ¢ § . Note that A = Ef

from 2.6, and thus we write

n
E e I‘ln E+
Lerme 5.1
If a solution exists 4o
(5.2) Mex., Min, [K{x, y) - x"¢]

ger,NEY x>0

1. It is well knowr that K(x, y) i1s differentisble except at most on
s dermersble set of points.
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(x, £) vhere x ' =0 is a maximal sclutlion.

Proof

Suppose the theorem is not true. Since (5.2) is assumed solveble then &

solution to Min. K(x, y) exists. It is clear that x ig such a solution.
x > 0 )

By the Fenchel duaelity theorem we have for some value of ¥y
rh * * *
(5-3) Kix, y) = K(x , y) - x 't

vhere * % ¥ ® ~ A
(x, &) is a solution to (5.2) and x '¢ >0 . Since (x, &)

is assumed nonoptimal we have
* *  x ~
Kx , y) - x 't >Kx, y)

which is s contradlction.

go €. d,
We mey stete the following duml programming problems:

(5.4) Max, Max.  Min. X{x, y) -x "¢
y>0 g@rlﬂE+ x>0 .

(5.5) Min., Min. Max., K(x, y) - ¥™
£>0 nea,NVEr y>0
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The set 4, is determined when considering X(x, y) as a concave fumection
of y . If either dual problem possesses & solution we mssume that the

relative interior of the respective sets
Awl
Fl E+ or ﬁbf\Ef is nonvoid.

Theorem

If either of the dusl problems possesses a solution then the other problem

possesses & solution.

Proof

Utilizing Lema 5.1 we proceed exactly &s in section two.

gq. e. d.
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