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CONSUMPTION-SAVING DECISIONS WHEN THE HORIZON IS RANDOM™

Menghem E. Yaari¥

1. Introduction

Most problems of allocation under uncertainty can be classified as
either one-stage problems in which the source of uncertainty is a single random
event, or multi-stage problems in which the source of uncertainty is an entire
stochastic process. In the present essay we propose to study an alloecation
process which, in & sense, is intermediate in this classification: It is a
multi-stage process in which uncertainty is introduced by a single random event,
this event being the fermination of the process. While it is true that an
entire stochastic process can be defined so as to be equivalent to this event,
the nature of the event allows the treatment of the problem to be quite
different from the usual treatment of multi-stage problems involving uncertainty.
In most such problems the notion of flexlibility plays an important part. Roughly
speaking, flexibility means that at each stage the decision maker acts according
to a decision rule which tekes into account the information gathered up to that
stage. Buch a flexible decision rule is often called & policy or a stretegy.
Present information is partly a product of past actions and the present action will
in part determine future information. In our problem, however, flexibility has
no role. It is possible for the decision maker to form & once-and-for-all

decision rule {often called a plan or a program) which he would pursue without

* I am greatly indebted to Kenneth J. Arrow and Herbert Scarf of Stanford
University for their interest and for meny comments and suggestions which they
have made on an earlier version of this paper. This earlier version appears as
Chepter 3 of "Lifetime Consumer Allocation under Certainty and Uncertainty,"
Technical Report No. 120 under Contract Nonr-225(50), Stanford University; 1962.

*
* Research undertaken by the Cowles Foundation for Resesxrch in Economics
under Task NR O47-006 with the Office of Naval Research.



having to pause at each stage to tske account of new informetion. The

nature of flexible processes necessitates, in most cases, treatment by

methods of dynamic programming. However, in cur case the simpler informational
structure of the process makes treatment by classies] variational methods

possible.

The problem which we propose to study here is one in which a consumer-
unit allocates its resources over a lifetime, when the length of the lifetime
is uncertain. Before entering the discussion of optimal behsvior under this
kind of uncertainty, we need, for purposes of reference, a summary of the
mein characteristics of optimal behavior in the analogous decision process
with uncertainty altogether sbsent. A complete discussion of the perfect
certeinty case is contained in a paper [6] to which the present esssy is a

sequel. The notation and the basic assumptions of [6] will be retained.

Two types of utility functionals are considered, both of which asre of the
discounted-sum-of-utilities variety. First, what we shall refer t¢ as the

Fisher-constraint ubility functicrpal, to be used in a Fisher-type analysis,

vhere lifetime savings enter as a constraint [2]. Second, a bequest-mctive

utility functiomal, to be investigated in cases where bequests are assumed

to enter directly in the funcitional, thus rendering a savings-constraint
unnecessary. We define the twe functionals, denoting the former V  and

the latter U , as fellows:

T
(1) ¥(e) = [ oft) gle(t)las
3]



T
(2) We) = [ oft) gle(s)lat + p(T)els(T)] ;
]

where the definitlions of the various symbols are:
T is the unit's horizon, a non-negative number.

a(t), 0 St ST is a once differentisble function, assumed to be non-
negative and to obey the normalization a0} =1 .

@(t) is the subjective discount function of consumption.

B(T) 1is a positive real number. However, in the presence of uncertainty
T will be allowed to assume different values in some
interval [0, T] . In that case, B(T) will be assumed
to be & non-negative, once differentisble function on

[o, T] . It will be referred to as the subjective discount

function of bequestis.

c(t) describes the unit's consumption level at time t . The function

e(t), 0<%+ <T, will be referred to as the consumption

plan.

S(t) is the unit's stock of savings at time ¢ , and S(T) is the unit's

beguests°

g and ¢ are twice differentisble real functions. g 1s defined for
all non-negative values and is strictly concave. ¢ is
defined for all values and is concave. It is assumed that
at least one of these functions is monotone increasing.
In the Fisher-constraint caese the menotone function is

necegsarily g -
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8(t), the level of savings at time 1t , is further defined as the accumlation
of some income flow, net of consumption outlays, compounded at some given rate

of interest:

t
v [ 3(x)ax
(3) s = 5 & {an) - o) fae
Q

Wwhere

3(t) is the (instentaneous) rate of interest expected by the consumer-unit

to prevail at time + .

m(t) 1is the unit's receipts of income (other than interest) at time t .

m(t), 05+tST, is the unit's income streem.

Two assumptions are implicit here, nemely that m(t) end c(t) are measured
in the same units and that S(0) , the initial asset-level, is equel to zero.

Both of these sssumptions are not essential in owr discussion.

Consider first the Fisher-constraint case. The problem is:

(%) max V(c)

subject to: e(t) 20 0S5t S

s(T) 20 .

Slnce g is assumed to be monotone increasing, the constraint on S(T) will

be fulfilled exactly, so that the problem reduces to
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s
(5) max [ oft) gle(t)] at
subject to:  ¢(t) 2 0 0StSm

T tITJ(x)dx

[ e {m(t)-c(t)}dt = 0.

o

The problem of attaimment of this meximm in sny given admissibility class will
not be teken up. The present discussion will be confined to the formulation
of necessary conditions which an extremal function must satilsfy if it exists.
The admissibility class implicit in the discussion is one of functions which
are right-continuous on [0, T] . If an extremal exists in this class, then
the strict comcaviiy of g guarantees that this extremel will indeed provide

a maxingm.

Denote the extremal, i.e., the optimal consumption plan, by c* .
If c* exists, then in intervals where the constraint c(t) 2 0 is ineffective,
i.e., vhere c* 1is interior, the following differential equation can be shown

to hold:

. . gl [c*(t)]
ot
(6) ) = - |aw) + ZB| === -
] el
A dot above the symbol denotes differentistion with respect to time.
Equation (6) may be integrated to obtain a marginal utility condition applicable

in intervals where the optimel plan c* 1is interior:

T
¥ 3(x)ax
(7 e® a(t) g'lc*(t)] = x

where Xk 15 a constant of integration depending on the consumer's lifetime

wealth.
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Dropping the provision that + be taken in intervals where the optimal
plan c* is interior leads to the following modification of the marginal

utility condition:

T
| 3(x)ax
(8) e’ o(t) g'le*(t)] S x 0ftSr

e*(t) = 0  whemever < holds.

Now let us turn to the bequest-motive case. Here the problem is

T
(9) m{ [ o) ele(s)las + s(mcpts(m}
[+ ]

T .

WA

subject to: e(t) 20, 0%t

The remarks which were made in the case of the Fisher-constireint regarding
the admissibility class and the existence of an optimel plan hold true in

the unconstrained case as well.

It may be shown, once again, that in intervals where the optimsal plar
(if it exists) is interior, that is to say the constraint c(t) 2 0 is
ineffectiv?, the differential equation (6) must be satisfied. The optimal
plen also éatisfies the marginal utility condition (8), except that now the
constant of integration k is expressed directly in terms of the marginal

utiliity of bequests:



T
- (x)ax

t
(10) e oft)e'lc*(t)] S p(Te'ls®(T)], oSt 7
¢*(t) = 0 whenever < holds,
where S*(T) is the optimal level of bequests.

In both the constrained and the unconstrained cases, if an optimal
plan o* exists, then it can be shown to be continuous. Since we have
already stated that in intervals where the optimal plan is interior it is
also differentisble and therefore continuous, the above statement adds to
our knowledge the fact thet transitions to and from corner segments, where

the constraint c¢(t) z 0 is effective, are continuous and involve no jumps.

If we look back at the differential equation (6) and if we recall our

concavity and monotonicity essumptions, we conclude immedietely that

(11) sgn[é*(t)] = sgn ’J(t) + %}]

where sgn denotes the sign function, and t is taken in intervals where
c* is interior. Equation (11), together with the knowledge that c*(t)
is continuous, makes it possible to deduce the general shape of the optimal

plan without being given prior specification of thg functions g and ¢ .

We turn now to the question of what happens to optimal behavior when
T , the horizon, is not a fixed number but a random veriable distributed on

some interval [0, T] .
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When T is random; two of the quantities which determine the features
of the allocation process are also random: The attainable level of utility,
and total lifetime sevings, or bequests. As a general tool for dealing with
the fact that the attainable level of utility is random, we have at our
disposal the Bernoulli hypothesis of maximization of expected utility. The
Bernoulli hypothesis is derivable from a set of rather compelling axioms,
and it is usually accepted as a reasonably sound procedure. In cases where
bequests enter directly in the utility functional, the Bernoulli hypothesis
is all we need before we can proceed to a characterization of optimal behavior.
However, in ceses where a Fisher constraint of the type 8(T) z 0 is imposed,
there remains the so~ca&lled feasibility problem to he solved: The constraint
8(T) 2 0 restricts the choice of consumption plans ¢ %o & specific class,
sometimes referred to &s the feasible clase. When S(T) is random, membership
of a plan ¢ in the feasible class is a random event with an attached
probebility, and it is not clear in what sense one should optimize over

such & class.

Ordinarily, the feasibility problem iz treated in one of two ways:
(2) The "decisiom-theoretical” way would be to define a penalty-function which
would prescribe a penalty according to the extent to which the constraint is
violated. This method of approach would then proceed to minimize expected
penalty, as a part of the overall maximization process. (b) A procedure which
corresponds to many of the standard rules in statistical inference would be
to require that the constraint be met with a probability of a or more,

where a is some preassigned mumber in the interval [0, 1].
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In owr problem, the decision-theoretical penalty-function procedure
would compel us, in effect, to insert bequests directly in the utility function,
thus converting the problem into & member of the bequest-motive family of
Problems. It should be noticed, however, that our utility-of-bequests function,
®[{S(T)] , in general does not only prescribe a penalty for violation of a
béquests-constrad.nt, but it also prescribes a reward for oversatisfaction
of the constraint. If the r~tion of the penelty-function is applied in its

usual narrower sense, & ' must be restrained to satisfy the property
(12) o'[x] =0 for x z o .

As for the second procedure, in which the solution is required to
be feasible with @ probability of a or more, the arbitrery manner in which
@ 1is chosen opens it to many objections. These objections are analogous
in many ways to those raised recently in an article by K. J. Arrow [1] .
In one case, however, this procedure is the natural one to gpply: It is
when violation of the constraint is a physilcally measningless state of affairs.
In such cases it is appropriste to require that the constraint be fulfilled
with a probebility of a=1 . In ow situstion, a violation of the constraint
s(T) Z 0 is not only physically meaningful, but even empirically reasonable
under some circumstances. Nevertheless; in what follows we shall use a
constraint which says that bequests must be nonnegative with probebility omne.
This will be done merely to provide & framework for the introduction of

insurance transactions inte the picture.
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2. The Fisher-Comstraint Imposed with Probability One.

ILet T , the consumer's horizon, be a random varisble distributed
on some interval [0, T] with a known probsbility distribution. Iet this
distribution be specified by & probability demsity function =x(t), 0 St ST .

Define the symbols Q(t) and sc_t(-r:) as follows:

T

(13) a(t) = [ =(v)as, 05t37®
.b

(14) x(r) = M , 0StscsT.

2(t) 1s the probsbility that the consumer will live to see time + , and

xt('r) is the conditional probability density function of T , given that
T>t .
The utility functional, V(c¢), is defined in (1), and we denote

its expected value by V(c):

Ev(e)

)

(15) ¥(e)

T %
[ =(t) [ ofx) gle(v)ldr at ,
o O

]

and by & change in the order of integration we get

T
(16) Ve) = [ a(t)(t)ele(t)lat .
(2]



We wish to determine the properties of that nonnegstive consumption plan,

¥*

¢* on [0, T] (if it exists), which maximizes V(c) subject to the statement

that the Fisher-constraint shall hold with probability one:
(17) Prob{s(r):o}=1 .

This constraint is equivalent to the statement

(18) s(t) 2 o
whenever either =x(t) >0 or t=7 .

Because of our monotonicity assumption, we know that at + = T +the constraint

(18) is fulfilled exmetly:

(19) 8(T) = o,
and for other values of t , the constraint (18) may be rewritten as follows:
(20) s(t) > 0
vhenever =(t) >0 and S(t) =0,
which, in view of the definition (3), is equivelent to

(21) e(t) S m(t)

whenever =x(t) >0 and 8(t)=0.



The maximization problem may now be stated in the following way:

T
(22) max [ Q(t) oft)gle(t)lat
o

subject to (L) e(t) 20, 05t ST
(11) e(t) Sm(t) whenever x(t) >0 and S(t) = 0

(i11) s(®) =0 .

Assume for a moment that the constraints (i) and (ii) are both ineffective,
so that the optimal plan, if it exlsts, is interior throughout the interval
[0, T1 . Constreint (1i1) can now be converted into a boundary condition,
by expressing the function ¢ in terms of the function 8 . The definition

of 8(t) leads by differentiation with respect to t , +to the equation

(23) e(t) = m(t) + J(t)s(t) - 8(+) ,

s0 the problem reduces to

T .
(2b) m;-x ] a(t)a(t)elm(t) + 3(t)s(t) - s(t)lat ,
‘ Q

S(0) = 8(F) =0 .

Applying the Euler condition end substituting c*(t) back inside g[-],

one gels
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@) aweEiwel®] + & { aea@eew@ - o,

which simplifies to

(26) *t) = - a6) + Y - xtct):] el

g"[c*(%)]
If we now drop the momentary essumption that c*(t) is interior throughout,
we are still in & position to state that if an interval exists in which
¢*(t) is interior, then in that interval the differential equation (26)
must still ho;l.d. For agy feesible plan which is interior 1n an interval

[t o’ tl] ; & plan can be constructed which is also feasible and interior
in [to R tl} » the latter plan satisfying the differential equation (26)

in {to, tl] and being no worge than the former.

Equation (26), when compared with its enslogue, equation (6), in the
case where uncertainty is absent, gives us an opportunity to make a statement
about the effect of uncertainty of survival on impatience. Trving Fisher,
when alluding to this question [ 2 , pp. 216-217] seys:

Uncertainty of human life incresses the rate of preference
for present over future income for many people, although for

1
those with loved dependents it mey decrease Inmpetience.

x/
Fisher refers here to impatience in terms of a preference for
present over future income. However, it is clear wpon reading his
discussion that by "income" in this context he has in mind a consumption-

opportunity.
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In the present section we are concerned with a consumer who does not have
bequests in his utility functional, i.e., with a consumer with no "loved
dependents," and we see that in intervals where the consumption plen is
interior, the consumer is indeed more impatient than his counterpart under
perfect certainty. In equation (6), the expression - a(t)/a(t) was the
subjective discount factor. Now this expression is replaced by

-&(t)/a(t) + ut(t), an increase in the rate of subjective discount.

As far as the consumer who has "no loved dependents" is concerned, Fisher's
assertion is borne out in the following sense: The behavior of the consumer
whose horizon is random will resemble that of a consumer who knows with
certainty that his horizon is at T , but who hes en additional discount
factor of zt(t) , over and sbove - &Ja . There will be, however, one
difference: The uncertain consumer is, in general, constrained by the
requirement that he avolid getting himself into a position ﬁhere his net -
essets would be negative. The certain-but-more-impatient consumer is not

so constrained. This difference will, again in genersal, cause the behavior
of the uncertain consumer to be different from that of the certain-but-more-
impatient consumer even where this additional constraint [constraint (ii)

in equation (22)] is ineffective.

We turn now to formulating the marginel utility condition for the
present case. Such a copdition can be obitained by integrating the differential
equation (26), teking due eccount of the two inequality constraints. This

procedure leads to
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T
~f 3(x)ax
(27) e’ a(t)(t)r'[e*(t)] 5 K
<

c*(t) = 0 if holds

c*(t) = m(t) and s*(t) = 0 if > holds

The optimal consumption plan, if it exists, consists of alternating
segments of the following three types: (a) Corner segments where c*(t) =0,
(v) corner segments where c*(t) = m(t), and (c¢) interior segments, where
the differentisl equation (26) is obeyed. The merginal utility condition (27),
in conjunction with our concavity assumption, can be shown to lead to the

following theorem:

1f an optimal plen ¢* exists and if m is a continucus function,

then the optimal plan is continuous except possibly at points of transition

Y

imto corner segments of type (b), where & downward discontinuity may occur.

1'/ The proof is analogous to the proof of the continuity theorem
in '6], and it will not be repesated bere.

It follows as a corollary that if m(t) is positive everywhere in
(o, 7] y then an interior segment always intervenes between any two corner

segments of the optimal plen c¥ .

Whenever ¢*(t) is interior, the differentiml equation (26) implies

(28) sgn |:<':*(t)] = Sgn [J(t) + %%3— - nt(t):l .
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All of these facts, when taken together, permit us to attain &

*

fairly detalled characterization of the optimal plan ¢ For example,

suppose that the following situstion prevails:

(29) x(t) >0, 0S%ST

m(t) = 0StST
[j(t)«!-%—}-ﬂ(t)] 20 for 05t St
<o for t St IT

for some t  in [0, 7] .

With these specifications, and with no information on the shape of the
function g , we can make certain assertions on the behavior of the optimal

plan c*(t) , of which the following four ere the most immediate:

(30) a. ¢*0) m
b. c*(T)

c. If c®(t') =0 for some &',

v oA

m

then ¢¥(t) =0 for all t in [0, %'].

d. If c*t*) =m and S*(t") = 0 for some t",

then ¢*(t) =m for ell t im [t°, T) .

By drawing a simple diagram one can convince oneself that the negation of

any of these assertions 1s incompatible with the information which we have

on the behavior of c* .
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Under the assumptions of this section, the uncertainty of survival has
an effect both on the rate of saving st any point of time and on total lifetime
savings. The two effects happen to be in opposite directions. At any moment
of time, the uncertainty of survivel tends to discourasge the consumer from
withholding eurrent resources for future consumption. Over the entire lifetime,
however, the uncertainty of survival causes the consumer to have positive
expected savings, when in the sbgence of uncertainty his lifetime savings
would be zero. The positive level of lifetime savings under uncertainty is,
of course, unintentional and due only to the unpredictability of time of death.
It would be natural in this situation to introduce annuities into the picture.

We shall undertake to do so in Section k.

5. Optimal Behavior in the Beguest-Mctive Case.

Suppose now that the consumer's utility depends on bequests as well
as on consumption and that, in particuler, the utility functional is given by

U(e) of equation {(2). We dencte the expected utility functional by (c):

EU()

H

(31) T(c)

T t
f ﬁ(t){ I alx)gle(x)lar + ﬁ(t)w[s(t)]}at
o |

]

o}

i

T
I {ﬂ(t)a(‘c)s[c(t)] + n(t)ﬁ(t)cp[S(t)]}dt .
Q

Our task is now to maximize U(c) subject only to the comstraint ¢ :

o .
Assuming for & moment that this constraint is ineffective, we may investigste

the veriation of U as the function ¢ varies, by writing
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(32) ¢ =c" +ex

vhere x 1is an erbitrary admissible function on [0, T] . A necessary
condition for o to be optimal is that the first variastion of U vanish

for all choices of x . The first veriation of U 1s given by

= dy
3) U= o
(33) = |
%
T J J(u)au
= [ {Q(t)a(t)s'IC*(t)]x(t) - x(£)B(t)o' [8%(£)] [ €T J‘:('r)d'r} dt
(o] [»]
T
T 7 I 3(u)an
= [ x(%) {ﬁ(t)a(t)s'IC*(t)] - tf x(z) e’ ﬁ('r)tp'[s*('r)]d'r} dt.
Q .

Setting ®U = O for all choices of X , one arrives at the following first~

order condition for a maximum:

T
= [ 3(u)du
(34) T N
a(t)lt)gtle*(t)] = [ =a(1) e B{t)e'[8%(1))ar, for all t in [0,?] .
t

Note that for + = ¥ , condition (34) is trivially fulfilled, so that a separate
argument will have to be made to derive a condition for t =T . Por + other

then T , bowever, condition (34) can be divided by (t), leading finally to

= 3w
(35) * T " . _
at)gtic (t)] = [ xt('r) e B(r)e'[s"(t)ldr, for a1l ¢ in [0, T) .
+
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Condition (35) is clegrly & merginal utility condition. It says that at
time t , the marginal utility of consumption should be made equal to the
conditional mean, given that the consumer survive to time t , of the

properly discounted marginal utilities of bequests.

To derive a condition for t = T we make use of & limiting procedure.
Since the right-hend-side of (35) is an arithmetic mean, it must setisfy the
following inequalities:

T
J 3(u)au

6 ¢ ‘[s*
co = | o(x)o*[s%(0)] }

[ s(w)an
2 tf %, (7) e’ (v )p' [8*(1)]ax

3)

Fowen
mn b B(x)o*[s*(x)] ¢

t in [t,T]

v

for a1 t in [, T) .

As we now let t approach T , we see that

[ (3(w)an
v B(v)e'[s*(x)lar + B(T)o' [*(T)] .

H|

SN IENOR

We may now define the first order condition for t =T as the limlt of the

condition for t+ as t+ T . ‘hus,

(38) oA F)g' [*(F)] = B(Fe'(s"(T))

is the desired condition. This condition is stated merely for the sake of
completeness, since the probsbility that the consumer will reach T is

equal to zero.
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Restoring the constraint c(t) z 0 into the analysis causes the
following modification in the first-order condition:

.
(39) T [ 3(u)au
) [X(e)] T S xle) a(e)e's"(x)laxr , 0S5t <T,

¢*(t) = O whenever < holds.

Whenever the constraint c(t) Z 0 is ineffective, we may differentiste

equation (35) to obtain a differential equation in c¢*(t) . Observing that
(40) = x(r) = x(t) x,(x)

dt "¢ t t ’
the differentiation of (35) with respect to t leads to

(81) o)’ [e*(£)] + a(t)a"[e*(£)1e*(t) = - x (£)B(t)p' [S¥(¢)]
- [3(Ehm (£)] ele)g' Le(£)]

which, in turn, can be written as follows:

(52)

) - - At) _ g'lc*(t)] _"t(t) 8(t)o' [s*(+)]
() = - [3(6) + ZH - 2. ()] € e - = B

To equation (L42) one mey add an equation in S%(t) , and thus obtain a system
of two simulteneous differemtial equations. This additional equation is linear,

and it is an immediste consequence of the definition of S*(t) :

(43) §%(t) = m(t) - c*(t) + 3(t)S*(%) .

From the point of view of cheracterization of solution, the syetem (42)-(43)

is not very promlsing, to ssy the least. Even when g and ¢ are of simple



- 2] -

shepes, the solution of this system is very difficult indeed. As & result,
little can be sald in this case about the shape of the optimal plan c*

-except that it is continuous.

If there is a point t in [0, T] at which x(t) = O , then at that
point the differential equation (U42) is identical with its analogue in the
perfect-certalnty case (6). This, of course, does not mean that the optimal
plan itself will resemble its perfect-certainty analogue even at points where

x(t) =0 .

Equation (42) also shows that the wncertainty of survivel affects
impetience in two ways: On one hand, the consumer is less likely to withhold
present resources for the sake of future consumption, because he knows that
he maey not live to see that future. On the other hand, an increase in present
consumption is simultaneously a decresse in assets available for bequest in the
event of death, and since bequests enter the consumer's system of preferences s
the overall effect of uncertainty on impatience is smbiguous. This is indeed
what Fisher expects the case to be. By rewriting equation (k2) with e slight
modification, we can point out the conditions under which uncertainty of

survival would cause impatlence to increase or decresse, &s the case may be.

() (1) | glef )], %) ofe)e'(*(8)] - p(e)o'is?
= = 13t g:c g'lc B(t)e'[s*(t)]
1) E( )+ %5} g"[c*(t)] o g"[c*(+) ]

We may interpret anything which causes ¢* to increase (glven the levels of
c, J and S) a8 a decrease of impatience and anything which causes co* to
decreese as an increase of impetlence. Given this interpreteation, equation (hh)

says that at time t the consumer is more impatient than he would be in the
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sbsence of uncertainty if o(t)g [ (5)] > B(t)pt[s*(t)] , end fhat he is

less impatient than he would otherwise be if a(t)g'lc¥(t)] < B(t)p'[s¥(£)] .
Both of these situetions are possible under the assumptions which have been
made. The effect of wncertainty on the rate of saving depends on very much

the seme considerations, and its effect on total lifetime savings is,
unfortunately, equally ambiguous. The attempt to assess this effect by
Introducing veriations of differenthkinds in the probability distribution of

T does not seem to bear fruit. More definitive results are, however, obtainable

after the introduction of insurance.

L. Ammuities, Life-Insurance, and the Fisher-Constraint.

Consider once again the consumer who is required to observe the Fisher
constraint, S(T) i 0 , with probability one. Suppose, however, tlia.t an
institution exists which, for a fee, would be willing to relieve the consumer
of this predicament by undertaking to insure that the constraint be met at all

times. The next few paragraphs describe how this would be achieved.
As we have seen, the requirement that the Fisher-constraint be met

with probebility one is equivalent to the statement
(45) c(t) Sm(t) whenever S(t) =0 and x(t) >0 .
Suppose now that at some point of time, say to s this constraint is effective.

PThis means that at to the consumer would have liked to consume more by going

into debt, but he cannot do so because in the event of death he would be leaving
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a lega.cy of debt which, the consireint says, he must not do. In reality,
however, the consumer would usually have a way of circumventing th:Ls constraint
by getting a life-insured loan. In other words, & financial institution will
lend him the given amount and simultaneously sell him a life-insurence policy
for the same amount. The consumer, in effect, pays an sdditional interest
charge, in the form of a premium, which is computed from what is believed to

be the consumer's probebility of survival.
Now consider the possibility that at some other point of time, say tl ’
the consumer's assets are actually positive. At tl » then, the consumer is

saving some of his resources for future comsumption, and these resources are

stored in the form of notes bearing an instantaneous rate of interest of j(tl) .

However, the consumer may not live to see the future for which he is saving.

If he actually dies in the meantime, hie savings hecome a legacy in which

(as in all Fisher-constraint cases) he has no interest whatsoever. Once again,
e finencial institution, in most cases an insurance company, would be sble

to offer the consumer an arrangement in which both parties stand to gain.

Under this srrangement, the consumer would deposit his savings at the financial
institution and the institution would pay him a rate of interest which is
higher than the merket rete, provided that in the event of the consumer's death,
the institution would be held free of any obligation. In effect, the consumer

who enters such an arrangement is buying en annulty.

In the Fisher-constraint model, if annuities were available to the
consumer, then he wouwld invest his entire savings st each point of time in

such enmnuities. The reason is obvious: With annmuities, the consumer gets
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a h:l.g_her rate of Interest on his savings so long as he lives, and he pays
fo;- this excess interest in resources which would be left over after his

death and which are therefore of no value to him.

For convenlence of reference, let us now define two types of finencial
obligations which the comsumer can either buy or sell: (a) "J notes," i.e.,
notes which, at time t , bear an instanteneous rate of interest of j(t) .
(b) "3+ notes," i.e., notes which bear at time + an instantaneous rate
of interest larger than j(t) according to some actueriel schedule, but
which are autometically canceled in the event of the consumer's death. Thus,
taking a life-insured loan is & transaction in which the consumer gells 3+
notes, and buying an annuity is & transaction in which the consumer buys  J+
notes. In the Fisher-constraint case, the consmer's assets or liabillities
would be entirely in the form of Jj+ notes, and none would be in the form
of J ﬁotes. The difference between our j+ notes and reslistic snnuities
or life-insured loans is mainly that the Jj+ notes are extremely short-term

obligations, whereas life-insured loans and annuities frequently are not.

We now have to meke some assumption concerning the rate of interest
wvhich Jj+ notes yield to their bearer. In other words, we have to make an
agssumption concerning the behsvior of the financial institution with whieh
the consumer would negotiate a life-insured loan or from w_h_ich he would huy
an annuity. We shall assume that the rate of interest on ‘j+ notes is

actuarially fair. In other words, we shall assume that the buyer of J+

notes requires the expected value of the interest payment at time + +to be

at a rate equal to the market rate, Jj(t) . Ordinerily, if the finencial
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institution is "risk-averse,” i.e., if it has a concave utility function
and it maximizes expected utility, then it would demand an expected rate of
interest which is higher than the market rete, and it would psy at a rate
whose expected value is lover than the market rate. We make the assumption
of an actuerially fair rate in order to avoid a detailed anelysis of the

decision procese facing the financial institution.

Denote the rate of interest on Jj+ notes at time t by =r(t) .
Suppose 1 dollar's worth of j+ notes is bought at time + and then redeemed
with interest at time € + A, unless the consumer's death intervenes. The
return (including principal) at time t + A, if the consumer survives, is
approximately equal to 1 + Ar(t) , with the approximation approaching
equality as A+ O . The assumption that r(t) 1is sctuarielly fair meens

that it has to satisfy the equation:

(46) [1+Ar(t)]Q;:A =1+ 4 i(%)

where = denotes approximation which tends to equality es A+ 0 . The
ratio Q(t + A)/a(t) 1s the conditional probability that the consumer survive
to time t + A, glven that he had survived to time t . Isolating r(t)

in (46) leads to

(1) w0 2 HOTHERE v an iy

The exact expression for r(t) is now obtained by letting A + 0 1in the

right-hand-side of (47):

(48) r(t) = =, (t) + 5(¢) .
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As has already been mentioned, if J+ notes are availeble to him, the
Fisher-constraint consumer will keep all his assets or liabilities in the
form of J+ notes. The effective rate of interest for purposes of calculating
this consumer's optimal plan is therefore x(t), 0S5t <% . Tt may be
noted that if for some t , =x(t) = O then at time + +the consumer cen hold
liebilities in J notes. But this does not cause any complication because

if =n(t) = 0, the J note and the Jj+ note are one and the same thing.

Holding assets and lisbilities exclusively in the form of J+ notes
means that the Fisher-constraint is always exactly fulfilled &s s result of
the actions of the financial institution. Hence, the only constraint which
_1;as 1o be taken into account in the formation of the optimal consumption plen
ig the constrdint c(t) 20 . Wherever this constraint is ineffective, the
optimal consumption plan is interior and it must satisfy the differential

equation (26), with r(t) replecing J(t) as the rate of interest:

N é-!- = - ; 1 ﬁ'[c*(tl]
e * l}(t) &= “"(t):l RIETSY

But in view of (48), this eguation reduces to

(50) H(t) = \}(t) - 29 ;E:* =Y

which is identicel with equation (6) of the perfect-certainty case. So far
as the differential equation in the optimal plan is concerned, the introduction
of annuities and life-insured loans.is equivalent to removal of the uncertainty

of gsurvival. This is clearly not true, in general, for the constant of
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integration which would have to be evalusted in solving equation (50). It

is, in fact, meaningless to speeak of "the" constant of integration in the
perfect-certalnty cese, beceuse for each horizen T in {0, T] s ‘there would,

in general, be e different constant of integration, depending on the corresponding
lifetime wealth. A question which still remsins to be answered is the foliowing:
What constraint would have to be used in the evaluation of this constent?
Alternatively, what is the constraint which keeps the consumer who has acceas

to Jj+ notes from an unbounded consumption stream? Clearly, the constraint

is given by the requirement that at time T +the consumer must plan to settle

his accounts with the financial institution. The appropriate way of writing

this constraint twrne out to be

4
= = r(t)dr
(51) fT e’ {m(t) - o(t) } at =0,

o

i.e., over the entire interval [0, T] , the accumulated excess of consumption
over eernings, discounted backwerds to t = O at the actuarial rate r(t) ,
mst be equal to zéro. Constraint (51) is expressed in terms of a discounted
sum rather than in terms of a compounded sum even though we have been using
compounded sums all slong. The reason for this is that the integral corres-
ponding to (51), where compounding 1s used rather then discounting, does not
exist. It is not without a detailed argument that we cen justify the
substitution of & discounted sum where the appropriate compounded sum does not

exist. We shall attempt to give such a detailed argument in the next secticn.
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In any case, it 1s interesting to note that constraint (51), upon
substitution of j(t) + ut(t) for r{t) , reduces to:

£
I 3(x)a

3 ;— T
(52) 1 o { a6 - e(6) fato,

which, in turn, is equivalent to

%
-/ 3(x)ax
i
(53) E| | o° { o) - o8 fae |- o,

o

where T 1s the random varisble over which the expectetion E is taken.
In the perfect-certainty case, i.e., wvhen T was a fixed number, we had
the constralnt S(P) = O which, for finite T , could have been written &s

follows:

t
-f ¥x)ax
T
(54) [ e° {m(t) - e(t) }dt = 0

0

Now thet T 1s a random varisble, we find that the introduction of insurence
and annuities in the syétem lesds to the reguirement that (54) hold on the
average. Equatlon (53) also bas a different interpretation: It says that

if we view the transactions which the consumer makes with the insurance CoRpAnY
a8 a single lifetime contract, the expected profits which the company will
derive from the contract will be equal to zero. This is, of course, ancther
expression of the fect that the rate of interest which the insurance company

charges and pays 1s actuarially fair. The consumer's lifetime contract with
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the insurance company is one in which he offers to transfer to the company

a stream of funds m-c (that is, & flow of m(t) - c(t) at time t ) =0
long es he lives. The profit which the insurance company would meke from
such a contract, neglecting operating costs, is equa.i to the value of the
stream of earnings, discounted for alternative use of resources. Therefore,
given thet the consumer dies, say, &t time 7T , the profit which the company

derives from the contract is

%
- i(r)arc
P
(55) J €° {m('b) - c(t) }dt .

Q.
What condition (53) says 1s that the contracts which the consumer offers the
company on terms acceptable to both are constrained so as to give rise to zero

expected profits.

Suppose now that an economy exists where all the consumers satisfy
the assumptiomsof this section. Lifetime consumer savings in such an economy
are zero and ipswrance companies have zero profits. If, in addition, the
population structure and lifetime incomes in this economy are stationary, then
it can be shown that expected eggregate savings genersted in the consumer sector
of such an economy ere zero &t all times. However, if it is essumed that
insurance companies lend at more than the actusrially fair rete and borrow at
less than the actuarially fair rate, then expected aggregate savings generated
in the consumer sector would elways be positive. If the insurance companies are
risk-averse in the usual sense of this word, the latter would indeed be the

case.
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5. The Bequest-Motive Case: A Portfollo Problem.

The usefulness of annuities and life insurance is clearly not restricted
to the Fisher-constraint case. Let us return once sgain to the _uncons‘crained
case, in which the consumer's preferences depend directly on bequests as well
&8 on consumption. In this seltuation, it will, for example, be advantageous
to the consumer tc buy an annuity if his current asset level exceeds what he
considers to be an appropriate bequest in case of death. As for life insurance ’
in the Fisher-constraint caese buying life insurance was necessarily in
conjunction with a consumption-loan. In the bequest-motive case, however,
there is room for the more common phenomenon, where the consumer buye life
insurance to provide for his survivors in case of death. In the present section,
then, .we shall look for a characterization of optimal bebavior in the case where
bequests enter directly in the consumer's preferences, and vhere life insurence

and annuities are available to him.

Once again, we shall refer to regular notes, bearing the merket rate
of interest J(t) at time t , as "Jj notes" and to sctusrial notes, which
bear the rate of interest =(t) at time t , as "j+ notes.” We recall that
J+ notes are automatically canceled in the event of the consumert's death,
whereas J notes remain valid and in case of death they become a part of the
consumer's bequest. Under the Fisher-constraint hypothesis, the consumer
held ell his assets (positive or negative) in the form of j+ notes. Under
Present circumstances, however, the consumer will, in general, hold his assets
in the form of both J notes and J+ notes. The consumer's decision problem
now consists of choosing, for each point of time + in ([0, T] , both the
optimal consumption level and the optimal portfolioc-mix, as between

J notes and Jj+ notes.
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As before, the quantity S(t) will be used to denote the consumer's
stock of J notes at time t . It will also be convenient to define two

other quantities:

Q(t) will denote the consumer's stock of J+ notes at time t .

R(t) will denote the consumer's total assets at time t .
S(t), Q(t) amd R(t) ere all in terms of dollars invested, so we can write:
(56) R(t) = 8(t) + Q%) for all t in [0, T] .

On the other hand, R(t) 4s made up of the accumulation of income receipts

minus consumption outlays, plus interest charges:

t + %
(57) R8) = [{a(x) - o)} ac + [ (x) s(ear + [ x(x) Qe)as
(=] 0 [+

Substituting from (56) in (57) leads to the eliminstion of Q and to the

following recursive reletionship in R(t):

t t t
(58)  R(3) = [{a(0) - e(m}ar v [r(0) R(e)ar - [ (e) (o)
Q Q 0

which, in twn, is eguivalent to

t
% J r(u)du

(9 w9 = 1 { ) - o0 - a0 s far
Q

Thet (58) and (59) are equivalent can be seen by differentiation of both

with reapect to + .
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It is importent to recognize that, in the present case, S(t) is no

longer determined by the stream {c(-r), 053+ } . Since R(t) is in

no way resiricted, equation (59) does not constitute e restriction on e(r)
and S(r) . Indeed, ¢ and S are the two decision varisbles in our problem.

Consequently, the expected utility functionel, U , now depends on both:
_ T
() Teys) = f {at)a(elele(t)] + x(6)p(t)ols(s)] fae.
o

Our aim is to characterize the maximizing functions » ¢* and s* s 1if they

exist.

Clearly, the maximization of (61) is not without & constraint at all.
The functions ¢ and S , though not locally constrained, are in fact globally

constrained. It is reasonsble to think of the global constraint as
(61) «F) = o,

which means thet &t time T the insurance company will refuse to write a
life-insurance policy for the consumer, and that the consumer, for his part,
will have no use for an annuity. This is signified in the model by the fact
that as t epproaches T , r(t) , the rate of interest on j+ notes, tends
to infinity. An infinite rate of interest means, as it usually does, that no

transaction can take place.
The fact that x,(t) , and with it r(t) , diverges as t + T is clear

vhenever #(T) > 0 , because % (t) = x(t)/(t) . However, when x(T) =0,

the divergence of s:_h(t) hes to be demonstrated. We shall do so now for the
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case where =x(t) 1is monotone decreasing in the neighborhood of T . If |
x(T) = 0 , then the case when x(t) is monotone decreasing in the neighborhood
of T will certainly cover those probability demsity functions which can
reasonably occur in statistics of mortality. To prove the divergence of

n:t(t) , let a quantity n:('rt) be defined ss follows:

(62) %(t.) = mex x(7) .

ap—

< in [£,T]
Then, by the mean value theorem:
(63) a(t) S (T - t) x(,) for all t .

It therefore follows that

mt) » 1 it
(6%) 0 2gt— My s

But nmi, if =(t) is monotone decreasing in the neighborhood of T , then

ﬁ(t)/ﬁ(rt) = 1 in that neighborhood, so that

(65) )l > 1 for t near T,
[+] = e
T-%
i.e., n(t) diverges as t + T . Since the rate of interest on j+ notes

becomes infinite as t approaches T , one has to require that the consumer's
net holdings of j+ notes at time T be zero. This is precisely what

condition (61) says. Rewriting (6l) in view of (56) yields:
(66) R(T) = s(T),

which, in view of (59), becomes
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T
. = [ r(s)ar
T
6 T) = e’ m(t) - e(t) - .
(61 o(F) - J {501 - o) - xors0) far .

At first blush, this condition locks like a bona fide constraint. However, a

second look reveals that, in general, the integral in (67) does not exist.

It is interesting to note that the situstion here 1s anelogous to that
discussed in a controversy between A. P. Ierner [3] and P. A. Samuelson [5]
a few years ago. There an economy of infinite duration and no capital was
consldered, in which each genération consumes more than it produces by recelving
from younger generations transfers which exceed those it had made to older
generations. Here we encounter a similar phenomenon in a world in which the
horlizon is finite but randem. If the consumer is required to settle his
accounts with the insurence compeny at time T , then he can consume more
than he earns and in faci sustain any consumption plan whatever. He does this
by borrowing with life insurance at an ever increasing rate of interest, with
the complete certainty (probability one) that when the time comes to settle
his debts he would be safely dead. In short, the integral in (67) does not

exlst because & constralnt does not exist.

In order to remedy the situation, one must agree that the constraint
which requires the consumer to settle hie accounts with the insurance company
should apply to some stage in the consumer's lifetime which he has & positive

-y

probebility of reaching, sy T - € . With this in mind, 1t 1s possible to

derive a constraint which retains the convenience of saying T , while actually

1—/ Alternatively, one could assume positive probability mass at T .
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meaning T - € . To start out, we write the constraint

(68) Q(.'i-'-é)=0 forsme§>0o
By (56):
(69) R(T - €) = S(T - «)
and; by (59),
Tec
_ _ Tg tf r(z)dr
(70) S(T - ¢) = o[ e {m.(‘b) - e(t) - xt(t)s(t) }d.t .
Tog
~f r(t)dx
Multiplying both sides by e° lesds to
Feg t
= r(e)ax Pec -f r(z)dr
(71) e® S(T-¢) = [ &° {m{t) ~e(t) - xt(t)s(t) }dt .
Q

We may safely assume that S(T-¢) is finilte for a1l € , because otherwise an
optimal sclution (c¥*, §*) does not exist, and we are seeking conditions which
have to hold given that an optimel solution exists. Thus, by picking ¢ small
enough, the left-hand-side of (71) can be made arbiirerily small. The right-
hend-side of (71) can be made arbitrarily close to

%
5 = r(z)dg

(72) [ &° {m(t) - e(t) - xt(t)S(t)} at .

(o]
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80, a constraint which approximates (71l) for small ¢ is:

t
T ~-f r(t)drt

3y f & {a8) - o) - (0se) fas = 0,

o

which is the desired constraint. Clearly, (73) does not approximate (71)

for ¢ actually equal to zero, because then (71) 15 not defined.

In ligat of the fact that

(74) r(t) = J(t) - &= log a(t) ,

constraint (73) reduces to:

%
¥ -f 3(v)dr
(75) / oa(t) ° {m(t) - e(t) - = (t)8(t) }d.t =0 .
[+

Our problem is now to maximize (60) subject to (75) and also subject
to o(t) 2 0 . Iet the optimsl functions, if they exist, be denoted o*

snd 8* as usual, and let

(76) () = ¢*(8) + e x(t)

S(t) = s*(t) + eay(t)

for some arbitrary functions x and y on [0, T} . ILet us now form the

Lagrangian for our maximization problem, denoting it by IL(e,S)
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5 |
(17) L(e,8) = [ [a(t)a(t)ele(t)] + x(t)B(t)pls(t)]
Q

%
-f 3(x)ax

+ A0(t)e’ {:m(t) - o(t) - x,(t)8(t) }:] dt ,

which in view of (76) is a function of €, and 6, + A first-order condition

for a meximm, ignoring for the moment the constraint c(t) i 0, 1is obtained

by setting
(18) .
1
Cl‘-'-ea'ﬂo
2l .
2
elaeazo

identically, for &ll choices of functlons x eand y . This procedure yields

the following two equations:

t
=f 3(x)dr
(19) a(t)oft)gr[e™(£)] = »a(t) e

+
-f 3(r)dr
(80) x(£)B(t)p'[8*(£)] = ax(t) &° ,

and in both cases obvious cancelletions can be made, so that the final pair

of eonditions is:
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t
-J 3(x)ar
(81) oft)g'[c¥(£)] = »e°
+
~f 3(z)dr
(82) B(t)pt[s*(t)] = ae° ,

both holding for + in [0, F] , (81) holding only for + where c¢ @ is

interior and (82) bolding only for t where =(t) >0 .

A problem arises when wx(t) = 0 . In that case, equation (80) is
trivially satisfied and equation (82) can no longer be derived from it. But
this is entirely according to expectation. If =x(t) = 0, the quantity
S(t)} , which is the consumer's bequests in case of death, ceases to be of
consequence. Hence, whenevef n(t) heppens to be zero, S(t) may be pilcked
arbitrarily. For the sake of consistency, we fix S*(t) to satisfy equation
(82) also when =n(t) = 0 .

Conditions (81) end (82) can, of course, be merged into one marginal

utility condition:

(83) oft)g' [* (1)1 = B(t)e [S*(t)] ,

which says that the marginel utility of consumption at time <+ must be equal

to the marginel utility of bequests at time + .

Conditions (81) and {83) have to be sdjusted to allow for the comstraint
e(t) Z‘ 0 . 'This is done introducing the inequality : in both and requiring

that o*(t) be zero whenmever < holds.
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By differentiating (81) and (82) with respect to % » We obtaln two

differential equetions, in ¢* whenever it is interior , and in 8* .

part iy

(8%) Fe) = - a(t)+§g‘=} z—g—z%)lll
: R
(85) HONENR FIORY- & i;%*g-%

Equation (84) is once again identical with the differential equation governing

optimum consumption when no uncertainty is present.

Equations (84) and (85) make it possible to describe in deteil both the
optimel consumption plan c* and the optimal bequest plan S* in eny given
example. It 18 interesting to note that the possibllity of insurance makes it
possible to determine ¢* and s* independently, up to & constant of

integration.

6. Conclusion

In an earlier essey [ 6] an attempt was made to study the differences
between the implications of the Fisher-constraint hypothesis and those of
the bequest-motive hypothesis in a world of complete certainty. It may

therefore be appropriate to conclude the present essay with the following



guestion: How does the behavior of the consumer in the face of uncertainty
of survival reflect on the relative plausibility of the two hypotheses?
The enswer which the foregoing discuselon seems to give to this question

goes back to Marshall's Principles [4, p. 228]:

But were it not for family affections, many who now work
hard and save carefully would not exert themselves to do
more than secure a comfortable annuilty for their own
lives.

++.That men labour end save chiefly for the sske of their
families and not for themselves, is shown by the fact
that...in this country alone twenty millions a year are
saved in the form of lnsurence policies and are avallable
only after the deeth of those who save them.
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