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PROPERTIES CF FEFFICIENT ACCUMUIATION

PATHS IN A CIOSED PRODUCTION MODEL*

By

Emmanuel M. Drandakis**

I. INTRCDUCTION

I1.1. The exemination of an abstract economy in which goods available at one
time period are produced by the use of the same goods available in the previous
period under constent returns to scale has been the subject of a continuously
growing literature, which among others includes Dorfman, Samuelson, and

Solow [1], Hicks [5], Morishima [12}, Radner [1%], Furuya and Inada (2],
McKenzie [11], and Nikaido [13]. Interest has been centered on the exasmination

of the behavior of "efficient" accumulation paths of finite or infinite duration.

1l.2. Most of these contributions consider paths of finite duration. Briefly
they have proved that -- under certain conditions -- efficient paths tend to move
near a von Neumann path (of maximal balanced growth) for most of their duration.
The corresponding theorems have been called "turnpike theorems" from the turnpike~

like function of the von Neumann path.

The most general type of proof of the turnpike theorem which has so far

been used is that of Radnerl[lh]n He showed that every efficient path cannot

1. Morishima [12] and McKenzie [10] have independently established ancther
version of the theorem using arguments based on the famous Solow and Samuelson [15]
relative stabllity theorem. However the approach seems to be restricted to

models with no joint production of commodities by each industry. The main
objection to such an assumption is that durable capitel goods cannot be considered.
If such goads exist, Joint production of commodities by each industry using
capital goods necessarily emerges.

*This paper is a revisged version of a chapter of a Ph.D. thesis submitted to
the Unlversity of Rochester in 1962. The author is deeply indebted to

Lionel McKenzie, not only for his initiation into the subject, but also for his
valuable suggestions and criticisms on previous drafts.

*x
The final version of the paper has been written at the Cowles Foundation
for Research in Economics under Task NR O47-006 with the Office of Naval Research.



be such that negative profits under the von Neumann prices subsist indefinitely.
Thus there always exlsts a finite number of pericds beyond which the path must
be close t0 a path exhibiting zerc profits under the von Heumann prices. If
only the von Neumann process is profitable under the von Neumenn prices tlen
the turnpike theorem is proved in a very elementary way, which moreover does not
place any other restrictive conditions on the technology (e.g., Jjoint preduction
ig freely admitted). However, this single condition is very strong indeed.
Essentially, it does not allow for decentralization of production in the
economy. Consequently, if production is carried out by distinct production
unite, the Radner-type argument can only be used to show that any efficilent
path will approxiwate for most of its course a particular facet of the aggre?
gate production set in which a von Neumann ray lies. This approach has been
used by McKenzie [11]. It is only under additional assumptions that the

efficient path will approach the von Neumann ray on that facet.

l.3. On the other hand, Furuya and Inada [2] examine efficient paths of
infinite duration. Using a Radner-type argument they have shown that in a
general von Neumanr economy [16] any such path converges asymptotically to
the von Neumann path. This global stability of the von Neumann path with
respect to efficient paths of infinite duration corresponds to its turnpike

property with respect to efficient paths of finite duration.

In the econcmy consldered in [2] many accumulation paths are feasible
from any initial position. However, if the von Neumann path is globally

stable, then it is shown in [2] that only one efficient path starts from any
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initial position. Thus such an economy exhibits accumulation paths of the

type postulated by Solow and Samuelson [15].

Most of the assumptions in [2] are not too restrictive. Their production
system admits joint production of commodities, and various activities may
produce every commodity. However, their assumption of strong superadditivity
essentially implies that the aggregate production set is a strictly convex
cone. But if production 1s carried out by dirtinet production units, then
the aggregate production set may very well not be a stricily convex cone, even

if each unit's production set has this pro;pe:r‘ty,e’3

We may therefore con-
clude that a model like that in [14] or [2] does not allow for decentrallzation
of production in the economy. Their wodel rather applies to an economy in
which production is planned by a central bureau. This raises the question

as to whether the results of [2] are valid in an economy in which production

is carried out by many different production units each operating on the basis

of its own production set.

1.k, In this paper we consider an economy with decentralized production

explicitly introduced. The production system is compoged of geveral

2. E.g., suppose that a price system satisfies the profit conditions of
competitive equilibrium and that more than one production unit is then operating
at positive levels. 1In this case, if the production processes used by the units
are not proportional to each other, then the dimensionality of the corresponding
efficient facet of the aggregate production set in greater than one. Thus the
aggregate production set is not & strictly convex cone.

3. This is the same objection as that ralsed with respect to Radner's model.
Actually, the production system in both [14] and [2] is essentially the same.
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production units each having its owm technology, and is more general than

that of McKenzie [11].

First, we examine the behavior of efficient paths of finite duration
and we establish the turnpike theorem along the lines of the proof used by

McKenzie [ 11 1.

Second, we consider efficlient paths of infinite duration. A modification
of the proof of the first part is sufficient for establishing the global stability

of the von Neumann ray.

Finally, we consider the problem of the uniqueness of efficient paths
of finite or infinite duration. Such paths are not necessarily unique without
further restrictions on the technology. The question whether in a general
closed production system with decentralized production efficient paths are

uniquely determined by their initial position is not fully answered.
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2. THH MODKL. PRELIMINARY RESULTS

2.l. The economy examined can best be described as a closed linear model

of production {see Gale [3]). 1In each time period there exist n commodities,

iel = i;, voay n~}.

The economy's production set T describes the technological possibilities

of production of these commodities,

Definition 1: T 1is the set of pairs of n-dimensional commodity
t b+l
{ -

vectors Yy»¥y ), t>0, such that the production of the output vector
yt+l, yt+J;;8,at t+1 from the input vector -yt s yt 20, at t is

| ks
technically possible if and only if (-yt, yt+l)e T. T R x &% t20 .

t t+1

T remains constant over tiume. Each (—yt, yt+l)e T is called a production

process at t .

2.2, Assumptions:

T is assumed to have the following properties:

n n
l) T is a closed and convex cone in R, X Rt+l s

(Constant returns to scale and additivity);

(T

t
(-v%, y™eT and -y

Ly

t < t yt+l > y,1:+J. 20,

(T -y, implies

o)

that (-y't , ¥ e T, (Free disposal);

k., R: is a Euclidean n-dimensional space, the commodity space at t , t2 O .

We consgider elements of RE as column vectors, and elements of the duasl space

n
of Rt as row vectors.

We also use  +to denote the positive orthant of the particular commodity
space under consideration.
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(T5) T N (e, 9) = (8, 8) , (Impossibility of free production); and

(Tu) For every 1ieI , there exists (-yt, yt+1)e T such that y:+l >0,

(Possibllity of production of every commodi‘by).5

2.3. Technical efficlency:

H
t+0

feasible accumulation path of duration H , + « > H >0 , glven yo , if

of H+l commodity vectors is a

Definition 2: A sequence {};?

t t+1
(-y Je

s ¥ T, forall te [0, H-1]

Such a path is also denoted by (-yo s yH)e TH . TH ig the H period production

set; it is easily seen that it has the same properties as T .

Definition 3: A sequence iyﬁ}tfb is a feasible accumulation path of

infinite duration, given yo , if (—yt s yt+l)

€T forall t =0, 1, ..., ad inf.

Definition 4: (-yp, yH)e TH is an efficient path for H periods if

o] H
<y, A<yl

and only if there is no (-y'°, yHe ™ such that y'°

Iet TH be the set of all efficient paths for H periods.

Definlition 5: A feasible path 'iy%}tzo is an efficlent path of infinite
duration if and only if for any H the finife path consisting of the first

H+l terms of the sequence ig efficient of duration H .

5. The above assumptions are the standard ones in the literature; see e.g.,
Karlin (6, p. 338]. We note that (Tg) and (Th) imply that T has

R n il
a non-empty interior in R X R ; , t 20 .
6. See Furuya and Tnada [2]. We may note that under our present assumptions
on T we may have an efficlent path of duration H , which is not an efficient
path of duration H' , for some H' , O <H' <H . Such a path cannot be a
part of an efficient path of infinite duration. On the other hand, i1f T has the
property that any one of the inputs can produce some ocutputs in positive gquantities
(e.g, by complete or partial free storage), then the possibility noted above is
excluded. Assumption (T.) , which will be introduced in Section 2.10, also excludes
the above possibility. 5
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2.4, T(y) = iyt-'-l!(-yt, yer, ¥yt S y} is the attainable production set,

given ¥ 20 . (7,) - (T,) imply that T(y) 1s a closed, convex set in the nonnege-

tive orthent of K. , T(6) =@ , and that there exists vHse,

t+1
¥y

e T(y) for y>8e. (T5) implies that T(y) is bounded.

similarly, T{y) =inf( 3°, e, y°s y j is the attainable H

period production set, given vy 2e. TH(y), for H finite, is a bounded set in
n

Ry -
Finally, T ° (y) = in eyt > F o yEi T(y)}is the

efficient attainable H period set, given y 2 6 [

2.5, A price vector pt s pt 2 ® , is an assignment of prices to the

n commodities available at t , t =0, 1, 2, css »

The exlstence of an appropriate nonnegative, non-zero, price system

{%t } tgo , assoclated with each efficient path {?ﬁ}tgo s is a well known

result in the theory of efficlent allocation of rescurces; see Koopmans

[7, pp. 61-65, 80-85], Malinvaud [8], [9]1. More expliecitly, it can be shown

7. yH e T H(y) if and only if (-y°, yH)e ™, Clearly, TH(y) is the efficient

envelope of [1; ch, 12] .
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(see McKenzie [10, ILemme 1]) that for every (-y° , yH)e T there exists a
8

L]

sequence p {éé}tgo » pt > © , such that

t
(1) -p y +p ¥y =0
t .t
-p ¥y +p y 20, t e [0, H-1] ,

for a1l (-y'°, y'He ™ . If p >, the converse holds.’

The above lemme can be extended so as to apply to efficlent paths of
infinite duration. The proof is analogous to that in Malinvaud [9] and thus

is not given here.

[+

=0 ?
pt > © , such that (1) is satisfied for

: )i
Iemma 1 : For every efficient path %_yt B & yv° > @, there exists a

t| =
sequence p = ?p { =0

all t 20 10 .

8. We note that pt = @ dimplies that pt+l =8 . Since, p>@ , po > 8.

However, in order to get pt >8, t=1, ..., H, we need poyo >0 . This
e.g., holds if y° > e.

9. It can be similarly shown that for every yH € TH(yo) there exists pH > @

such that pHyH =q 20, pHy'H S a, forall Y'H € EH(yp) .

10. We only note that the additional assumption in [9] which is needed for
the proof is implied by (Tl) and (Th)' p°y° > 0 1s again needed for having
pt > ©®, t>0. Moreover, we must emphasize that pt.aag , or pt_%,+ o

as t -»+ ® , are possible.
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Remark 1: An efficient price path associated with an efficient path of (in-)

finlte duration is such that it maximizes the output value at any period H

H

N 0 o
t=0 ¥ Wlth y' 5 y .

over all feasible paths {y't}

For ptyt = PO.VO 3 for all t>0 3 While Pty't 5 Poylo R Thus

bt <

Py ptyt for all t ¢ [0, H], all H .

This simple property of any efficlent path is repeatedly used below.

2.6. u-maximal accumulation paths of finite duration

The definition of an effleclent path of finite duration implies that

"social preferences" depend only on the final state of the path.ll

We may formally introduce this preference function on the final state of

the path as it is done in [1L4] and [13]:

Preferences are expressed by a real-valued function u(yH) defined on

the nonnegative orthant of RE . u 1is nonnegative, continuous and "gquasi-

homogeneous" 12 on 2 « Moreover, y'H > yH 2 © i1mplies u(y'H) > u(fH) .

11l. As Remark 1 shows, every (—yp, yH}E TH is a maximal solution of an

appropriate linear program, in which yo is given, and either pH or the

"desired proportions"among the components of yH are exogenously specified.

Conversely, if pH > 0 , any maximal solution to the above linear program is

an efficient path.

Thus the objective of an accumulation program for H perlods can be
expresged as a preference on the final state of the program.

12, "Quasi-homogeneity" means that for yH 5 y'H €, and A >0,

u(yH) 2 u(y'H) if and only if u(r yH) 2 u(hy'H) .
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Definition 6: If (-y°, yH)e T 1g such that u(yH) is maximum

over all (-y'°, y'H)e o , with ¥

°= yo, then _ytr'tgo is called s

u-maximel path of duration H .l3

If u is expressed by, (a) u(yH) = ijH , with pH > @ exogenously

H L 1H - H -H 2-m
specified, or by (b) ul{y’) =max Aly 2 Ay , for Y, 20 and Ty =1,

1
then u-maximal paths are efficient paths. Conversely, every efficient path is a u-

maximal path, for an appropriately defined preference function.

2.7. Von Neumann Paths

Definltion 7: For every (-yt, yt+l)e T we define the technological ex-

pansion factor of commodity i1 in the process by

r j
T t4l, t ( %
| vy /Yy | ¥; >0
: |
t b+l ; . t+1

(2) Di(y » ¥ ) \ %o :for \ yi =0 yi > 0 ;_
i ! i
' undefined i !.y: =0, y§+i = 0

t t+l . b t+l
ply’, ¥ ) = wmin pi(j » Y ) 1is the technological expansion factor of

1

the process (-yt, yt+l)

13. The existence of max u(y'H) over TH(yp) is insured by the compactness
H, o
of T (y")
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-

(3) p* = sup ip(yt, Py e, P> e i‘ is the maximum

rd

technological expansion facter of T .

Tt can be shown that 0 < p* < + ® . Further, the following is a

famous theorem:

Theorem 1 (von Neumann): There exists (-kt, §t+l)e T , with §t >8 , and

t+l
)

a price system (pt, P > ® such that

(a) §t+l > ¥ , and
(k) p=p", p = ¥ p* and
£ 1 t+l t t
-p*y 4+ ¥ ¥y < 0 for all («y 75 ¥ +l)e T.

By (7o) ,(-§t, §t+l)e T implies that there exists (~y*, o¥ y*)e T , with

y¥> 8., (-&ﬁ, §t+l) is called & maximum growth process, whereas (-y*, o* y)

is called & von Neumann process (of meximum balanced growth). Also p* and p* ,

are called the von Neumann factor of T and a von Neumann price vector,

::-espect:f.'vfely.J‘)+

For a proof of Theorem 1 see e.g., Gale [3, pp. 290-291]. Gale's theorem
is actually stronger than Theorem 1. He also shows that (a) if there exist
commodities which are not produced in any maximum growth process of T , then
in every von Neumann price vector the prices of these commodities are zero, and
(b} for every von Neumann price vector there exists a von Neumann process

(-y", p¥ y*)e T for which »* y*>o0 .

1k, The sets of maximum growth, and von Newmenn processes, as well as the set of
von Feumenn price vectors, are closed convex cones.
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The sequence {P*t’ Y*%LEO ;, BE® 4+, with P*t = p*-t o* , and

y*t s p*t y* , constitutes a von Neumann price-commodity peth of duration H .

2.8, Decentralization of Production

In our economy production is carried out by separate producers =-
called industries -- each having its own technology. Furthermore, conditions
are such that to each commodity there corresponds one industry capable of
producing it (possibly along with other commodities). Thus n industries
exist in the economy The ith industry operates under a production set

T, , ie I , having the properties (Tl)-(Th) of § 2.1. This identification

i
of commoditiees with Industries is accomplished by means of the following
assumption:

t _t+l

_ T4l + T+l
If (-y, vy )eT (

t
(A ; »diel, then p. (¥, ¥ ) > e,y y7T) for

l)

j#1 for which pj(yt, yt+l) is defined.

Namely, in any process of the ith Industry the technological expansion factor

of the ith commodity 1s strictly higher than that of any other commodity.

15. The von Neumann path % y*t} t§0 may not be an efficient path (i.e.,
whenever §t+l > p¥* §t holds). Additional assumptlons are needed in order

to insure that 3ot = p¥* §t holds.

15



- 13 -

(Al) provides a simple means for a classification of all individual
production processes of the closed linear production model of § 2.1. It is
undoubtedly a restrictive assum;ption,,:L6 but still joint production of

commodities iz permitted.

We also assume that

Thus no external (dis-) eccnomies among industries are present.

2.9, For any (-—yt R yt+l)€ Ti s other than free disposal processes, we may
write (-yt, yt+l) = u: (-ai, bi) » Where bi’ =1, (-ai, b )e T, . Thus, in
general (—yt, yt+l)e T, implies that (-y s yt"'l) i (-a s i) , and

n .
(-yt, yt+l)e T 1implies that (-y , yt”') 2 I u: (-ai, bl) , for
1
i 1 i 17
(-a,b)eTi » By =1

16. A particulerly restrictive feature of (A,) is that if any commodity other
than the 1ith 1is producedin positive quantities in the 1ith indu%tryf;_'_ hen its

input into the process must also be positive. For otherwise p.(y , vy ~) = + » ,
jJ#4i and (A.'L) is contradicted. J
17. Of course ui(-a.i, bi) + uf (-—a'i, b'i) = uf (-a.“i, b"i) s with
' u} u u} .

p i i 1 i 1 i i i
o 1 _al " - ' 1
ui_ui+ui,(a > P = ( (u+u' T )s (u—i-u.' Pt P ))

i i 71 i 71 oA §

and b'j‘_i =1 .
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t+l)

Thus for any (-yt, v € T we have

t t4l
2y

o)
=
It

(3)
t
¥y .

=
=
d
HA

n and [B] = [bl, ceey b*] , are nonnegative, n x n

[A] = [al, ce., &

2

matrices, the input and output matrices, respectively, of the closed linear

production model.18 ul = (ui, cees uﬁ)

19

is a nonnegative vector, the

activity vector.

2.10. We now assume that in ocur economy it is possible with any commodity to

produce in a finite number of periocds all commodities. Namely,20

(T.) TFor any yr > 6 , there exists a finite number s such that

>
' (-yo, ys)e T with ys > © , (Possibility of production of every commodity by

means of any commodity).

18. Clearly, [A] and [B] are not constant matrices. For different production
processes in T the corresponding input and output matrices in (5) may be
different.

yt » and Bru' > it

Zy' )
yt+1 + y,t+l, Au + Ay

19. sSimilarly to footnote 17, if Bu 2 y'™ , Au

Uy A

1
A'lu f y't then Bu + B'u' = B (u + u') = B"u"

2

= A"u" S yt + y‘t . Thus again bzi =1, ieXl .

20. See Furuya and Inada [2, p. 99].
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t o b4l
(

(T5) implies that for any ieI there exists (-y , y ~)e T for which

t t+1

¥y = 0, J#1, eand ¥, >0 for at least one k, n#1 2L

Ist us reformulate Theorem 1 s0 that the decentralized character of

production appears‘explicitly. Theorem 1 says that there exist processes

uz (-a*i, b*i)e T i€l , and a price vector p* > 8 such that

i,

BY u¥ 2 p¥ a¥ u¥

(4*)
B Sp*p*a holds,

with u® > 8 . Clearly (-5%, 75 = (A% u* , B* u¥).

(T5) enables us to strenghen the above theorem.

Theorem 1': Under (Tl) - (T5) > Theorem 1 holds and moreover, (a) p* > e,
(b) (-§t, §t+l) is a von Neumann process, and (c¢) there exists & von Neumann
procees (-y*,0* y¥) with y*>e.

Proof: (a) By Theorem 1 p* >6 , and p* §t = p* p¥ yt+l . Suppose that

p‘: =0, 1leJ, JGQI, I ¢J . (T5) implies that there exists a process
(«v% y*™)e T suchthat y' =0, forall igJ, and y§+l >0 for at

least one Jj €J . Then p* yt+l > p¥ p* yt = 0 which contradicts (4) or

(') . Thus p*>e .

21, (T5) is a relatively weak assumption in a production system permitting
Joint production of commodities by each industry. It can be seen that (T5)

cannot hold in a Ieontief production system.

Also, although (T.) is expressed as & property of the economy's production
set T , 1t must be cohsidered along with (A,) and (A ) « E.g., & not particularly
strong sufflcient condition for (T.) is the }ollowing‘ For each 1¢T , there is

an industry J, J#41i , with ( y%,yt+l)e T and y =0, k#i, t*l-_-. 0,

J >
nft, §, emd vy >0, ¥ >o0.
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(b) sime p* >0, 7% 2 p* 7 must nola.

(e) 1If every von Neumenn process does not produce some of the commodities,

then by Gale's stronger version of Theorem 1, p* > B cannot be true.

We thus see that

(,_,_n) B* u* = p* A¥ u*
p¥ B S p* p¥ A
holds, with u* >® , and p* >@ . Furthermore, for at least one of

u¥ , A¥ u¥ > @ is satisfled, In other words, with the addition of (T5)

every von Neumann path iy*t}tlio -- at least one of which is a positive

H

path -« is an efficient path, with which a positive price system ip*t}ho

ls associated.
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5. CONVERGENCE TO THE VON NEUMANN FACET

3.1. Iet C be a convex cone in R© . TIf for P e R™ , P#6,

p+*x £ 0 forall x ¢ C the set of all x e C for which the equality

22

holds is a facet, F(p), of C .

t t+1_ t+l

t+l) > 8 1is a price system and -pty +p Ty < 0

Thus if (pt, D

L+l

for all (-yt, y )eT , the facet F(pt, pt+l

) of T is the set of all

( t t+l)

t+1
-y s ¥ )

€ T for which the équality holds. T(pt, P is a closed, convex cone.

Definition 8: The von Neumann facet F* is defined by F* = F(p¥, —%g »*) ,

n
where p* , & p? =1, 1s 1n the relative interior of the closed, convex
i

cone of the von Neumann price vectors.

3.2. We will next show that the most general property of efficient paths of

finite or infinite duration is, respectively, their approximation to the

von Neumann facet for most of their duretion, or thelr asymptotic convergence
to it. The reasoning leading to this conclusion is rather simple and it has

been the basis of the Radner proof of the turnplke theorem. Namely, any

production process which does not lie on the von Neumann facet is strictly

22, Similarly, if p »x € o for all x ¢K , a convex set in o s the
set of all xeX for which the equality holds defines the facet F(p) of X .
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unprofitable under the von Neumann prices. However, an efficient path cannot
be unprofitable under the von Neumann prices except for a finite number of

periods not depending on the duration of the path.

3.3. Radner [14] shows that 25 for any thin neighboring cone of the wvon
Neumann ray every u-maximesl path {yt % tEO » starting at a common initial state,
stays within the cone except for a finite number of periods not depending on

the duration of the path.

It is not however indicated whether these periods can only be initial
and terminal periods, or not. WNikaldo [13] extends Radner's theorem and
shows, under rather wesk additional assumptions,guthat every such u-maximal
path liesentirely in the cone except for the k initial and k terminal

periods of the path; +w>k 20 .

3.4. For our purposes we can apply, with slight changes,the proofs given by
Furuga and Inada {2, Theorem L] or McKenzie [1l, Theorem 1]. Moreover, we have

exhibited a von Neumann process (-y* , p* y*) with y* > © . Finally, the last

23. This of course holds under, among others, his main assumption that

the von Neumann facet ¥F* is l-dimensional.

24, Namely. (a) y* > © , where (-y*, p* y*) 1is the von Neumann process,

and (b) u(y") 1is such that y' > y'® > o implies that u(y®) > u(y'H) .
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of Nikeido's additlonal assumptions is satisfied for efficient accumulation paths,
(see § 2.6 above). Thus we can use Nikaido's argument in the proof of the

following theorem, which corresponds to Radner's theorem.25

Theorem 2: ILet (Tl)-(T5) be satisfied, and consider any efficient path

{yt.ftfo , with yo =y > 8 , for which its assoclated price path : ptftﬁo

is such that poyo >0 . Then for every € > 0 there is a finite positive number Hi
such that:

t+l

(a) 1if the path is of finite duration, then da({-y%, , F) <e for

H St S H-H ,or

1
t+1 *}
(b) 4if the path is of infinite duration, then d (-y s Y ) Fr) <e

f St
or Hl =

In the interest of breviiy we mention only some pertinent points about
the preof: (a) The proof depends on the Radner lemma,26 and it uses the
property of efficient paths mentioned in Rewark 1 above; (b) For efficient

paths of infinite duration, we have seen that p? <+w , 1eT , and, with

poyo >0 , that pt >8 forall t>0. It is however still possible

n
25. The norm of vy € R% is given by |'y|l = = Iyilg the angle between any
1
non-zero vectors in R° 1is indicated by a(y, y' ) i iii Y - I %,I Y.
It can be shown that d is & metric in R° e-g . '
26, ©Namely, that for any (-yt, yt+l)e T for which d(l-y s yt+l) s F*)

Z2e>0 holds, ~(p* - 5) p* yt +p* ¥ g O 1is satisfied for a positive 5 .
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that [[pt‘\aao , or || pt“-a.+ ©, as t-»+ =, This does not affect the

proof of the second pert of the theorem. Actually, for any t i 0 we may

t

n
normalize pt so that || ptll = X p; = 1l , as long as no intertemporal

1

cost comparisons are made.
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4. GENERALIZED FROBENIUS MATRICES

4,1, We have shown that the general property of efficient paths is their

monotonic approximation or convergence to the von Neumann faéet F* . Their
approximation or convergence to a von Neumann ray on this facet can be shown
only under additional assumptions, whenever the dimension of F* is higher

than 1.

4.2. In order to do this we have to make a digression and introduce some new

concepts.

Iet C and D be linear homogeneous operators on Rn into Rn .

Definition 9: A scalar 3 1is an elgenvalue, and a non-zerc vector

x € R° is a right eigenvector of (¢, D) if
(6) D X = X C X
Similarly, a non-zero vector y € R® is a left elgenvector of D -~ A C 1if

(7) yD=AyC

Definition 10:°0 (C, D) 1s an F-operator if there exists a unique,

simple, positive eigenvalue A of (C, D) with positive right and left

elgenvectors x , and y , respectively.

My X, andy , are called the F-eigenvalue and the right and left

F-eligenvector of (C, D), respectively.

27. This is & generalization of the concept of an F-matrix introduced by
Uzawa [16].
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4.3, We now present sufficient conditions under which a particular operator
(¢, D) is an F-operator. let C, D be nxn nonnegative input and output
matrices of a von Neumann production system. Iet p be the von Neumann

factor, and v, and p , be a maximal activity vector, and a von Neumann

price vector, respectively. Then we may apply Theorem 1 and get
(8) Du 2 pCu, and pD S ppC, with u>8, p>8.
We have:

lemme 2: if &, >0 for all ieI, and d < for all 1 #J,

then the equalities hold in (8).

Proof: We consider only the case D u 2 P Cu . BSuppose that there exists a

maximal actlvity vector wu such that

n n

? dij u.‘j =p ; cij u.j 1¢J ,
J

n n

Zd..u, > c , ieJ o

PRI R ? 13 Y -

Now J¢I , hut I¢J for then the definition of p 1ig contradicted.
If there exlsts a maximal activity vector wu' such that J is not empty,

let u Dbe the maximal activity vector such that J is maximal. Then we have

n
diy Wy = I (pci‘j - dij) Uy PGy Yy ifJ s
1
n
d.. u, > & (pe,, - dij) u.‘j +pCyy ieJ .

ii 71 j%i i
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For each J eJ we can take (u,jo - €) 20 instead of LI such that

the inequalities are still satisfied. Then if there exists i¢J such that

(pcijo - dijo)ujo >0 , then by taking U, = € instead of ujo we will

have Du' = p C u' with one more inequality. But this contradiects our

assumption about the selection of u . Hence (pciJ - dij) uy = C for

all i¢J , J e J .

Let now u = (@, ud) , where u j e J , is the corresponding

J 3
component of u . Then we see that DU 2 p AU and that the equalities
for i¢J have both sldes equal to zero, whereas the inequalities for ieJ are

still satisfied. This again contradicts the definition of p s 8ince p

1s not then maximum.||.

28 .
Iemma 3: If dii >0 for all ieI , if dij

cij >0, and if C is indecomposable, then

<pe for 1i#j if

1J

(a) u and p are positive and unique up to scalar multiplication;

(b) p 1is a simple root of the characteristic equation

(9) Alp) = | D-pC | =0; end

(¢) no other eigenvalue of D = A C has & nonnegative right or

left eigenvector.

28. Ilemma 2 and 3 (a) are generalizations of theorems 6 and 8 of cale [3].
The proof of 3 (b) follows that in Gantmacher [4, p. 57].
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Proof: (a) Suppose that u is such that uy = 0 for jed, Jo I,

IgﬁJ . Then either ¢,, =0 for ie¢J, Jj ¢J , wvhich contradicts the

13

indecomposability of C , or there exists ¢5do>0, 1 eJ, Jo¢ J .

i 3"

Since d, ; <p cioJ > i £33, if cioj >0 , we have that ? c ]

(o]

J

<p Z ¢y 3 u, . But this contradicts the equation system Du=p Cu.
Hence u>@& .

Now suppose that u', u' % Mu, u>0 , is any other meximal activity
vector. Iet v = max i;vl u2 v u'} . Then u - vu'>8 is an activity
vector. Moreover, IL({u~vu') =p ¢lu~vu') by ILemma 2 . Hence
u=-vu is a maximal activity vector although it has at least one zero
component. Thls contradicts the result established above,

(b) Consider the transpose matrix E()) = (%ij(x)) of the cofactors of
[D-xcl. [D-2CIEMN) =A(A) I=EX) [D~-rC], vhere aA(A) =|D-21C| .
Then [D-pClE (p) =0=E(p) [D-pC)], since Alp) =0 . Since the
eigenvector which corresponds to p i1s unique, E(p) is & non-zero matrix. For
its elements are non~zero multiples of the {n-1l) x (n-1) minors of A(p), of
which at least one must be non-zero. Moreover, if we consider any non-zero
column of E(p) = [e'(p), +.., € (p)], we see that [D - p Cl ej(p) =8 .

Thus ej(p) is & right eigenvector of D - p € corresponding to p . Since

the eigenvector which corresponds to p i1s positive, all the components of

ej(p) are non-zero and of the same sign. Similarly, considering asny non-zero
row of E(p) = [el(p), veuy en(p)], we see that ei(p)[D -pC) =6, and

hence that all the components of ei(p) are non-zero and of the same sign.
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Thus all eiJ(p) are non-zero and of the same sign.

Now A()) = b2 (egn =) (dx(l)l - A cﬂ(l)l)....(d -\c

n({n)n x(n)n)’
over all permutations = in {}, ...,11}. Also A'()\) = Al()) Foees + Ah(k) s

where A (X) = - L (sgn ) Cn(l)l(dn(e)a- > cﬂ(2)2)""(dﬁ(n)n e cﬁ(n)n)

b 1 T am .
- Loy ey (») , ete. Thus A'(A) =z ¢ 5 eij(x) Hence
i 1JJ

&'(l)lh=p = -5 ¢ ;5 eij(p) #0, end p 1is a simple root of the characteristic

equation A(p) = 0.

(c) Suppose that there exists « such that Dx=a Cx , with x>86, and
x#pu, A>0. If a=p, part (b) is contradicted. Iet then a # p .
But pDx=apCx= —%&-p Dx. Hence pDx=0. But pD>8, since
4y >0, dij 20, and p>8 . Also x>8 . Hence p D x >0 and we

have & contradiction.

We see that under the conditions of lemmas 2 and 3 the input and output
operator characterizing a von Neumann production system ls an F-operator.
The von Neumenn factor p is the F-eigenvalue, and u, p , are the {(unique)

right and left F-eigenvectors, of (C, D).



- 26 -

5. FURTHER SPECIFICATION OF THE MODEL

5.1 In this section some additional assumptions on the structure of the
von Neumann facet F* , as well as on the individual production sets are
introduced. Our immediate purpose is to show that: (a) there exist
production processes on F* (with all industries participating) such that
The corresponding input and output operator is an F-operator; and (b) F*
is spenned by a unique set of individual production processes (with all
industries participating).

(_~t

5.2. Consider again s maximum growth process §t+l)e

which was established by Theorem 1. (-ﬁt, §t+l)

3 T , the existence of

(- Au*, Bu*) , with

A>0,3>0, and u*>@ is such that B u* 2 p¥ A u* .

We introduce

(T6)29 In any maximum growth process of T , if u; =0, keI, there
k
exists at least one production process (—ak, b )e T, such that the

resulting input and output matrices A and B have the following properties:
(a) For ifj , if &3 >0, then bg < p¥ a? ;

(b) A is an indecompossble matrix.

29, (T6) ig a far more restrictive assumption than (Al) .  Although
multi-product industries are still permitted, (T6) requires that each

industry speclalizes mainly in the production of 1lts own commodity.
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The consequences of the addition of (T6) to (Tl)-(T5) follow

directly from Lemmas 2 and 3. (A, B) is an F-operator. Namely

B u¥ = p¥ A u¥,

(9) and
p* B

p¥ p* A,

holds with uw* >8 , p*¥ > @ , (which are moreover unique). Furthermore,

p* is a unique and simple elgenvalue of (A, B). We conclude that all

industries participate in any von Neumann process.

2.3. The production set of each industry is assumed to have the following
property:

t+1 t+1

(T7)50 Iet ("yt: N ) €T ieT 3 and

t
) s ('Y' ;s ¥ i?

(-yt, yt+l) % 93 (-y't, y't+l) s 4 >0 . Then, there exists

(_(yt+ " y.,t+1) er, witn e N

super-additivity).

With (TT) we can show that the von Neumann process is unique.

30. See Furuya and Inade [2]. 1Irn [2] this is considered as a property
of the economy's production set. (TT) essentially requires each industry's

production set to be a strictly convex cone.
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Lemma 4: The input and output matrices associated with any von Neumann

procegs &re unlque.

Proof: Iet (-yt, yp+l), (-y't, y't+l)e T be any two maximum growth
process. By (T6) they are von Neumann processes; namely, (~yt, yt+l) =
(- A o , B ut) s (-y't, y't+l) = (= A‘u't, B' u't) s B ut = p* A ut , end
B' w'® = p*at wr? , kold with u? , wise . Suppose now that (- A, B)
# (- A', B'). Then (~ai, bi) # (-a'i, b'i) for some 1ieT , and thus by
(TT) , ‘there exists (4§t, §t+l)e T with §t+l =B a’ s §¢ = & ut and

—t t L t t ~t %

Bu' > Bu +B'u'”, AW =Au +A'u' . Thus Bu >p* AU holds.

However, by (Tl)-(T6) there exists p" > 8 for which

~

p*B=p*p* A, and p* B <p*p*a’ for any
("E. 3 b ) € Ti ] iEI .

t t

On the other hand, p* Bu > p*(B u t

+ B! u't) = p* p*(a ut + Aty

)

and this contradiets (*).{| .

The above lemma essentially shows that with the addition of (T6)
and (TT) the von Neumamn facet 1s spanned by a unique set of individual
production processes. ILet A¥  and B* be the corresponding input and

output matrices. Then F* = i}-yﬁ, yt+l)e T | -yt = - A% u® s yt'h:L

- B* o s u® 2 @:} . We have thus shown that (a) the unique, positive

von Neumann price vector p* is such that
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o¥ RS o* p* g*t

(10} i
p* bt < p* p* at s for all (-ai, bi) # (-a*i, ¥y, iel ,
hold; end (b) the von Neumann process (= A* u¥, B¥ u*) is unique. The ray

(y*) 1is called the von Neumann ray.
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6. CONVERGENCE TO THE VON NEUMANN RAY

6.1. The approximation of any efficient path to the von Neumann ray (y*)
on the von Neumann facet F¥* will be now proved. The procedure which is

used has been initiated by McKenzie in [11]. First, we examine sequences
! ® . .
wu) £=0 satisfying (12) below. Then, we extend the results established for

these sequences to efficient paths moving within a thin neighboring cone of F* .

6.2. By Theorem 2 every efficient path of finite duration moves within any
neighboring cone of F* except for a fixed number of initial and terminal
periods. If F* is l-dimensional, then of course our purpose has been
achieved. The approximation to {y*) on F* becomes a distinct problem
vhenever aim(F*) > 1 , and it can be as high as n . Our analysis will be

simplified if we assume that both projections of F* into RE and into

RE+1 are n-dimensionel, i.e., 1f we assume that

) A% anda B are nonsingular.5l

3l. It is easily seen that no essential differences are thereby created.

.., suppose that an accumulation path {?ﬁ } tEO lies on F* . Then
£t

(*) Bru =yttt ar oy

wlds for t e [0, H-1]. It is clear that y° 1is in the range of A¥, and

that yt > t € [1, #-1] is in the intersection of the ranges of A* and B¥ .
Ho essential difference is made 1f either one is a proper subspace of R: . With

(”8) we get from (¥)

(%%) yoT oo pX ® , for t €0, H-1] .
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We immediately see that B* A*-l is an F-coperator on R onto R

From (9) and putting y" = A¥ u* we get

(11) BY AL y* = % px , pRER ATl o* X

Thus p* is the F-eigenvalue, whereas y* = A¥ u¥, and p* are its right

and left F-elgenvectors, respectively.

N
6.2. We are interested In sequences %;wti tEO in V¢ 32 which satisfy the
following eq_uation55

(12) Wil o ope axl W , telo, H-1], W oe vV, w° > o8

From (11) we see that (12) has & unique "balanced4 growth soluticd' w* =y >a .

It has been shown in [11] that any sequence satisfying (12) will
approximate (w*) for most of its duration if H 1is long enough, provided
that an additional assumption is satisfied,Bh namely,

*o
(T9) p* ig different in absolute value than any other eigenvalue of B* A 1 .

32. Vn is an n-dimensional vector space over the complex numbers. For =z € Vn R
z=x+1y, with x, v € R . The distance function d is well defined over
v? {6} . Also et " V" te defined by "= §z|x 28,y=6, and
izl =l}-

33. Notice that no restrictions as to the signs of wt, t [1, H-1], are placed.

[4}]

34, See also Uzawa [16], where infinite sequences of nonnegative vectors
satisfying the above dynamic system are considered.
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Iemma 5: Iet N(w*) be a neighboring cone of (w*) . Then there exist

H2’ H5

starting from any W > © and satisfylng (12) under (Tl)-(Tg) s if

>0 and & >0 , such that for any {wt(wo)}tifo , we©) e v,

H>H, , H>H; , and a(v® , s%) <8 , then wi(v°) e N(w¥) for all

H-H, -8

t such that H2§t§H-H3,where 2 1l-9,n1
arbitrary.

35, 36

Proof: See McKenzie [11].

6.3. It can also be shown that, if an efficient path is within a nelghboring
cone of Fr for a finite number of perlods, & sequence satisfying (12) can
be found, which is near the path for these pericds. This has been shown in

[11] and is stated as follows:

Lemma 6: ILet (-y°, yH) ¢™ for H>O0 . For any & > 0 there exists
€ > 0 such that if d((-—yt ,yt+l)

tI—Io , Woe R, , satisfylng (12), and aly?, w') <8

for t ¢ [0, H] + € depends on H and 5 2T

, ) <e for t e [0, B-1],

there exists i&t}

35. We note that H2 3 H3 are not affected by incressing H . We also note

, t}H
that the same H2 ’ H3 suffice for any {Y- £=0

of the lemma, i.e., that the approximation to (w¥*) is uniform.

satigfying the conditions

36. The idea of the proof is falrly simple. If a sequence {?t} tzb which

satisfies (12) is such that d(wH, Sn) <% and H isg sufficlently large,
then the influence of both those eigenvalues of BY A*1 smaller in absolute

value than p* and those larger in absolute value than p* is "small" during

the time span from O to H except for some initlal and terminal periocds.

37. We note that a single ¢ suffices for all paths (—yo, yH) ¢ T

satisfying the conditions of the lemma.
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6.4. A combination of Theorem 2 along with the two previous lemmas insures
the approximation to the von Neumann ray of any efflcient path of finite
duration, as well as the asymptotic convergence to it of any efficient path of

infinite duration. We have:

Theorem 3: Iet (Tl)-(Tg) be satlisfied and consider any efficient path

£/
y':

- 4

there exist H' >0 , H' > 0 such that:

r“—)"w

£=0 gatisfying the conditions of Theorem 2. Then for every 8 >0,

(a) 4if the path is of finite duration then

aly®, ) <s for ®' < t S H-H', or

(b) if the path is of infinite durction, then
d(yt, v*¥) < B for B S ot.

H' and H" depend only on & and not on the duration of the path.

Proof: (a) The proof is carried out in three steps.
1) By lemme 6, forany H>0 , &' >0 , one finds € > 0 such that if

d((-yt , yt+l), F*) <e fer t=Hy, eeey B +H -1, H, to be specified
" H +H

— {
below, then d(y® , w') < &' , t = H., «vss H, +H holds for a iwtj' L
1 1 LYY em

satisfying (i2)

2) By Theorem 2(a), for € > C there exists H; >0 such that

d((-yt, v, F*) <e for H St S E- H, holds. Thus
£ t4l

d(Z-y , Y ) F#) < e fer Hl St S H- Hl and

a(y’, w*) <s' for H, S t SH +T|.

1
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H. 41 B

d(wt, w') < 8" ., Hence d(y

choose &', 8" so that &' + 8" <& . Therefore, for this & > 0, By

and H5 are determined -- and they are finite -- and
HL +H
aly L 2, ) <5 holds.

We repeat the above steps (for the same §) considering in turn the

{ & g Hl+H2+H5+t'

subsequences Ly ) o s V=1, 2, svey, H-2 Hl - H2 -2 H5 B
t=Hl+t
o H +4H +H_ +t'
t: H {'E} 1t
of iy g We thus find different sequences, 1w t=Hl+t' 3
and by the same argument coneclude that
H1+H2+t‘
a(y > W) <8 t'=1, ..., H=2H, =H, -2 H, , holds.
1 2 3
t * < <
Thus d(y , w) <8 for H +H, T ¢ SH -H H5 holds.
1 - T
IetH-—Hl+H2,H-El+H5.
The convergence pericd is indicated in Figure 1.
H1+H = H1+H2+H5
f i L e et WU W
L e <H. - H-
© By by, ~ —— R -Hy B

3) Consider now the sequence i-\wt} tEH . We have that w T > @ and
= il et
Hl+ H n Hl+ H Hl+ H
¢(w , ) <8' since d(w y ¥ } <8' holds. By lemma 5 for
any 8" > O there exist H2 >0, H5 >0, 8" >0, such that if
Hl+ H n . —
a(w , §) <8', then 4&(vw’, v*) <8" for H +H, St S B+ H -,
holds. Choose H =H, +H, . Then for t =H +K, ay®, v <s',
“H, +H
2

; W) <8' +8" . Forany 5 >0 we can

2 H 2
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(b) The proof in the case of efficient paths of infinite duration is similar.

All three steps are the same. Then we consider58 in turn finite subsequences

+H, +H, 4t
i } l 2 '5 ] fOI‘ t‘ = l, 2, "y ad infu, Of gy‘t tfo &nd
t:H +t B

we finally show that d(y , W) <8 for B, +H, < ot

38. We emphasize that the procedure followed is possible since the
approximations established in ILemmas 5 and 6 are uniform; see footnotes
35 and 37. Because of this we do not have to attempt to meke H larger
and larger. As a matter of fact, if we do this, it is possible that for

H-»+ o, e€->0, and thus Hy=>+ o Namely, if we wish to assoclate

an arbitrarily large part of tyt} t:o with a sequence ?_wt} (of the

same length) satisfying (12), then we may have to wait an arbitrarily learge
number of periods before this 1s possible.



- 36 -

7. SOME REMARKS ON THE UNTQUENESS OF EFFICTENT PATHS

T.l. We will make some observations on the uniqueness properties of efficient
paths of flnite or infinite duration. When we examine paths of finite duration,
then of course we conslder u-maximal paths with the preference function u
specified. TIn the sequel we assume that the preference function u is also

quasi-concave on the nonnegative orthant of RE , L.e., u(y'H) > u(yH)

implies that u(a y'5 + (1) ¥0) 2 u(y®), for 12« = 0.

It is easily seen that u-meximal paths are uniquely determined by their
initial commodity bundle, if the economy's production set is a strictly convex

cone. For then TH(yo) is a strictly convex cone for all H >0 .

7.2. Furuys and Inada [2] were the first to consider more closely the
problem of the uniqueness of efficient paths of infinite duration starting
from a common initial position. They established that, in an economy whose
production set is a strietly ccnvex cone, such paths saré uniquely determined

by the inltial commodity bundle they start from.

T+3. The situation however in an economy with decentralized production is
more complex. The followling lemmas are stralghtforward but nevertheless

important:



_37_

lemms 7: Let (T,)-(T,) be satisfied. If (-y°, y'*) , (=%, 3"

H

are on different facet559 of T , then there exists

(-;t s t+l) € T with yt <a y + (l-a) y , @and §t+l >q yt+l

+(l"‘ﬂ.) yl +l, 1>a>0.

- ~ t
Proof: Iet yt = q yt + (1l-a) y't , yt+l ay + + (1-a) y’t+l s

t ~t41
> ¥ )

1>a>0 (_37_ 't+.l) > ( ~t t+l

€T . If (-y s Y
~t+l

} implies

that (-§¢, §t+l) ¢ T, then (-§' s ) € boundary T . But

through each point in boundsry T passes a supporting hyperplane of T .

By (T } and (Tu) the normal to this hyperplane is (pt, pt+l

Thus -p . t+ pt+l §t+l =0 . Moreover, -pt yt + pt+l yt+l go

t
-pt y't + pt+l v 1 < 0. Hence,

£ tel t £+l +
(=¥ 7y )=y, ¥y )eF(p ,p

)> 8.

b

t+l) . This contradicts

the hypothesis. || .

39. Two closed facets of T (;r of T(yp)> are called different if
neither one contains the other.' Alcernatively, two facets F and F'
of T are different, if and only if for any (pt, ptfl)

t t+l
(Pl > p' )

>

, elements of the cone of normals to T on F and F' ,

B+l
D

respectively, (pt, pt+l) # A (p'® ) s A >0
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. i t)H ;t H' .
Iemm& 8. Iet (Tl) (Tu) be S&tisfied. If gly Stzo 3 i?’ §t=o Wlth

yo = y,o > @ are any two efficient paths such that y-r and y'T are

on the same facet of T (y°) , then y't and y't are on the same

facet Of Tt(yp) E] t = l, anay T »

Proof: Suppose that y'rl and y'n are on different facets of Tn(yp)
forany n =1, «0sy T -1 . Then, as in the previous lemma, there exists

P ey and ¥ >ay + (1) y¥", 1>a0>0. Also, by (1)) »

(_En =-n+1 +1

, P e such that P DL

there exists > q yn+l + (1-a) ¥ , and

o |
similarly for t =n +2, +esy, T » Thus the path ky%j tfo , with

7P eay’ 4 (1) " for t<n and 7° <3 for n S¢S 1, is
feasible and such that %' > a y© + (l-a) y'¥ . This shows that y° and

y'* cannot be on the same facet of TT(yp). Contradiction.|| .

T.4. 'The above lemma shows that any two u-maximel paths of the same duration,
which start from the same initial commodity bundle, are on the same facet of

Lt
Tt(yo) s, t =1, +¢4, H.+ For in this case a path ytj 5 » Wwith
t=0
: 3 JH
vy >ay + 1)y, 1>a>0, is feasible. Then

G > ule yF + (1-a) ) > u(y") , and this contradicts the hypothesis that

i tl -

&? 7 40 is a u-maximal path.

7.5. Similarly, efficient paths of infinite duration, which start from the

same initial commodity bundle, are on the same facet of Tt(yo) s t21.
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ko f bl pgrtle
Lemma 9: Iet (Tl)-(Tg) be satisfied, If i’\ly jt=0 » 1Y .}t=o with
yo =y'° > 8 are any two efficlent paths, then Yt and y't

are on the same facet of Tt(yo) , forall t21.

Proof: If yT and y'T are on different facets of TT(yo) forany © 2 1,

then similarly to Iemma 8 above, we can f£ind a feasible path %'rt t:O such

that Krt =a.yt+ (1-a) y‘t for 0 St< ¢ and §t>cx.yt + (Lea) y't for 175t .
If vy =ay +{l-a) ¥y  +y, where y2yy*>0 and (y*) is the von

~

Neumann rey, then 2oyt (1) y't + p¥teT

yy* for ©5%t.

Since both iyt} ,;0 and iy'tj? t:O converge uniformly to (y*) , the

o 1 1 1t o 1 1 1 ,t
sgquences y 4, T ¥ 5 ess; ‘—E Y 5 s0ey and Y = Y 3 eesey _*'—t'y 3 =ea

o* o p* p
have the same 1limit, B y* .
Iet € = ie, . e} ¢ R® . For every e > O there exists H > 0

such that for t 2 H

py*-T S = y° S pyrs
*
p
By*-Eg-;]:-Ey'tﬁ By*¥+%¢ hold.
p
Since -—J-'E ~t>=' a.-—l-;c-yt-l-(l-cx-)-% Y't'*'"];{ Y,
p* p¥* P o*
By =~-¢€¢ + T TY S ¥ o € can be selected so0 small that
P o*
1 = 1 ~t - 1 t
—- 7y 2z 2e. Then =% y 2 By +%e 2 E 7
*#T * *
P . 8] p
vhich contradicts the hypothesis of \tyt} t:O being efficient.|| .

Lo. The proof follows that in [2]. We note that here we use all the assumptions
needed to insure the convergence of any efficient path of infinite duration to the
von Neumann Iray.
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7.6. What are the implications of the above results for our model with
decentralized production? It is easily seen that in our production systenm,
vhere each industry's production set Ti ls a strictly convex cone, any

efficient facet of T 1 generated by a unique production process from

each participating industry. Thus if we examine u-maximal paths (of the same

duration), or efficlent paths of infinite duration, starting from & common
initial commodity bundle, we find that in every period within the horizon
each industry uses at most one production process only. This is true despite
the possibllity that the efficient price path pt » associated with these
output paths, may not be unique. Although more than one u-maximal (or
efficient of infinite duration) path mey start from y° > 8 , the

individual production processes used by the participating industries in any
period are unique., Differences -- if any -- in the output paths correspond to

differences in the proportions of participation of the various industries only.

7.7. Iet gLyt tlj{) be & u-maximal path {or an efficient path of infinite

duration), with y° > 8 . We have:

o o] o t t-1 t

y =AO'L}. 3 y' =Bo.u = Al u' 3 ouo,y =Bt-lu -_-‘.Atu 3 wew

n

where ut € Rz s " > 6, snd A = [di s sses a:] > B = {bi s eees bt]
are nxn matrices.hl At and Bt are unigue for every + in the horizon.

B, for which ut has zero components need not

41, The columns of A > By

be specified.
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A strong sufficient condition for such a path iy } £=0 to be

unique is that the get {atg » ©Of the inputs components of the processes used

L2

at t, is linearly independent in for all + in the horizon.hj

n
.
7.8. Iet us further consider the case where -{aig is not necessarily
N
linearly independent in R:: » We can still insure -~ under a rather weak
assumption -- the uniqueness of a u-maximal path, if the preference function

attains its maximum at a unique point of 'T-H(yo) .lm

We essume that the null-space of B, 1is properly contained in that

t
45 {-t} H { 81 H
of At s for all ¢ in the horizon. Iet 3y £=0 and 3y £=0 be
two paths with yo = y'° , and yt = At ut P y't = At u't » tell, +1].
If y' #y'" for some 7 e[l, H-1] , then we can show that yt # y't for
H

all te [-r, H]. ‘Thus with a strictly concave preference function ?y _5’ £=0

is uniquely determined, given yo .

42. T.e., those for which u’

i ls poslitive.

1#5. Of course, even if this condition is not satlsfied uniqueness of the path
br §t-0 is insured if N (Bt) ) N(At) for 81l t 4in the horizon; ./ (4)

denotes the null-space of the linear operator A .
kh, E.g. 1if u is strictly concave.

45, This assumption holds if e.g. {biﬁ s linearly independent.
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