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PROPORTIONAL GROWIH AND TURNPIKE THEOREMS*

Tjalling C. Koopmans

1. Introduetion

In 1936, John von Neumann published, in an Austrian mathematical periodical
little known to economists, a paper [von Neumann, 1936] that has greatly influenced
economic theory up to the present time, and of which all the ramifications have

perhaps not yet become fully apparent.

One can find in von Neumann's difficult short paper starting points for
three distinct and extensive subsequent developments in economic theory. Two
of these are not specifically connected with capital or‘grewth theory. 'The
paper contains the first expliéit statement, known to this asuthor, of what has
subsequently been called the activity analysis model of production. This is a
model In which there is a finite number of methods of production, each of which
is cheracterized by constant ratios of inputs to oubputs, hence by constant returns
to scale. The inputs and outputs invelved in the various methods together make up
a finite list of commodities (goods and services). The paper contains an explicit
statement of the relations between ccmmodity'priées apd the production coefficients
(input-output ratios) that describe methods in use and methods unused but available.
These relations are found to characterize both efficient use of resources (in a

sense. discussed below) and competitive equilibrium. .

¥The ideas for this paper were developed when visiting at Harvard Univerazity
as Frank W. Taussig Professor of Economics in 1960-6l. The paper was written after
returning to Yale, as part of research undertaken by the Cowles Foundation for
Research in Economics under Task NR O47-006 with the Office of Naval Research.
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In fact, to exhibit a model of competitive equilibrium was the main purpose
of the paper emphasized by von NeUmann. In this regard, together with a preceding
and a subseguent paper by Weld [1933-3L4, 19%6], von Neumann's paper became again
the starting point for a systemétic development of models of competitive equilibrium

that has continued up to the present time.

Finally, end most importeantly for our present purpose, the paper is the first

rigorous, formal, end fully explicit peper in capital theory known to this author.

Paradoxically, von Neumenn's paper shows that for a piece of work to spark
several new developments in economic theory, it is not necessary that it have any
particuler claim to reélism in its portrayal of economic life. Actually, the paper
is poor economics. I am not speaking merely of the assumption of an unchanging
‘technology, & highly wnrealistic postulate often justifiable by the wseful start
it provides. I% seems equally arbitrary, and contrary to all éxPerience about
economi.c growth, to assume that 811 production and consumption activities grow in
time at the same proportional rate. Worge than thet, it is quixotic to ignore
completely the his£orically given cepitel stock avallable at the beginning of the
time period under consideration, and to assume instead that out of some fourth
dimension one can.at time t = O pull forth a capital stock of precisely that
composition that enables proportional'growth to take place at a maximal rate and
through a continuing competitive equilibrium. Finally, it is a very poor model of
consumption indeed that assumes that growth in consum@tion is likewise characterized

by constant ratios of (consumer goods) inputs to (lsbor) outputs.

More than twenty years later, Dorfman, Semuelson and Solow [1958, Chepter i2]

perceived an implication of von Neumann's model that removes two of the foregoing
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objections. Holding on to the assumption of an unchanging technology of production
and consumption, they accepted a historically given capital stock. Instead of

von Neumenn's objective of & maximsl rate of proportional growth, they adopted as
objective the attainment of & maximal ceapital stock of some specified character at
a given time point in & distant future. They then esked what growth path will best
serve that objective, and suggested that if thé target date is distant enough, the
best growth path (in the sense indicated) will run along {or close to) the turnpike
of the von Neumann path of fastest proportionsl growth for most of the period
under coﬁsideration. By this .happy conjecture the von Neumsnn model, thus far
mainly a highly inspiring source of theoreticsl developments, was also given a
bearing on certain real-world phenomena, to wit, the forced development of an
economy in wvhich the aim is.to éonstruct a definlte productive capaclity for some

future date without regard for the ralsing of consumption levels in the meantime.

While the turnpike conjecture is basiecally vali&, .the sketches of proofs
presented by its originators are not rigorous. Kuhn [1959] wes the first to point
to a class of overlooked exceptions. Radner [1961] defined an important class of
cases for which he proved the éonjectureS, a.nd. Hicks [1961], Inada [1961], McKenzie
{19628, 1962b], Morishima [1961], Nikkaido [1962] end others obtained valuable

additional results.

The main purpose of the present article is expository. Drawing where needed
on the studies cited, we shall utilize a dlagrammatic device that makes 1t rossible
to exhibit, in terms of a two-commodity world, the essentials of the von Neumann
model and ites maximel growth properties. Those who wish to examine an explicit
mathematical discussion of the von Neumann model written wi'lbhout reference

to the turnpike property are referred to & paper by Gale [1956] or one by
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Koopmans and Beusch [1959, Topic 5]. The diagrems in the present article have
been developed from those in the latter paper by the addition, in proJjection,
of a third dimension, in order to permit separate coordinate axes to be used

for inputs and for outputs.

Von Neumann's original proof of the existence of a continuing competitive
equilibrium exhibiting proportional growth at a meximm rate made use of Brouwer's

fixed point theorem. Gale shows that e simpler separation theorem for convex sets

suffices.'

2. A Model With Two Commodities.

We shall consider a technology defined as & set of feasible activities.

An sctivity in turn is defined es a procedure whereby e pair x = (X, xe) of

inputs (one for esch commodity), svaileble at the beginning of any perlod, is

converted into & pair ¥ ;V(yl; yé) of outputs, available at the end of that

period. The amount of each input and of each output to an sctivity (=, y) is
positive or zero. The technology remains the same for all future periods.' The
activities it coﬁtains are called feasible in the sense of technical feasibility
of the required production processes. Aveilability of inpuﬁs for each period is
to be ascertained as a separéte matter, hence does not enter into the definition

of the technology.
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We shall now list the assumptions to be made about the technology. First

of all, we make an assumption of constant returns to scale (proportionslity):

if an activity (%, y) = ((x ; x,‘.__,), (yl, y2)> is fessible, then all the activities
A(x, ¥) = (M, 2y) = (Zxxl, 1x2), (1yi, 1y2;) obtained by multiplying all

inputs and outputs by the same nonnegative number M\ are likewise feasible.

Since A\ = 0 is permitted, this implies that the null agtivity(zo, o) (o, oi)
with no inputs and outputs is feesible. We further assume noninterference or
additivity of abtivities: if two activities (x, y) and (x', ¥') are feasivle,
then their sum (x + x', y + ¥v') = ((xl + xi, X, + Xé): (V_l + Y;_; o * Yé)):

& new activity whose inputs and outputs ere the sums of those of the two given
activities, is also feasible. In a context in which different activities are
pursued by different firms this assumption is often called "sbsence of external
econcmies or diseconomies.” Where we do not necessarily presuppose organization

through firms, the term "additivity" appears more a.ppi-epriate.

We express & fact of life by the assumption that with limited inputs one

cannot obtain unlimited outputs. That is, corresponding to any pair of bounds

gl, ge on the in;pt;.ts, there is & pealr of bounds N5 M, OR the outputs, such

: *
that for all feasible activities with x, S £15 %5 s £ one must have

1 o ?

*
Note that this implies a corresponding assumption by Gale to the effect
that one cannot produce something from nothing. That is, if (x, y) is feasible,
and x1=x2=0, then yl=y2=0 . For, if we hed xl=x2=0 and

¥, >0, say, we could by the proportionality assumption choose & ) such that
= = <
l.xl A.xe 0= gl, 52 but z,yl > Ty -
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¥y s s Tp < n, - For mathematical convenience, we also assume that the set
of feasible activities (x, y) in the space with four coordinates Xy ¥y 5

¥y» ¥, 1s closed, that is, contains all points of its boundery.*

*This essupption, devoid of empirical content because of the approximate
nature of all measurement, enables us to attain logical sherpness with simpler
formulations then would be required without 1t. It permits us to speak below
of a feasible meximal growth path, rather than s possibly unfeasible maximal
growth path that can be epproximated arbitrerily cleosely by femsible growth paths.

Gele shows that closedness of the production set together with his assumption
cited in the preceding footnote imply our fact-of-life assumption.

We furiher assume free disposal: if an sctivity (x, y) is feasible, and

if (x', y') is an activity with no smaller inputs (xi 2 X, ‘and xé 2 1;2) and
' no larger outputs (yi Sy, eund yé- s Yp) then (x', ¥') is likewise

feasible. The consideration thus expressed is that one can, either at the beginning
or at the end of a period during which the activity (x, y) takes ph.ce; dispose

without cost of any excess inputs (x:;_ - X, xé - xa) or excess outputs

(v, - yi, Yp - yé) thet arise 1f (x', y') is the sctivity that is wented.

Finally, it is assumed(output positivity) that there is a feasible activity (x, ¥y)

of which beth outputs are positive, vy >0, ¥p >0 . The reason for this

assumption is +that we will deal only with cases where no flows of commodities
enter the system from the outside -~ except for what may be available af the

beginning of the first period. Hence the inputs for the second period have to bhe
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found from the outputs of the first, and so on. If the oulput of a commodity
were zero in all feasible activities, then that commodity if initially present
would disappesar from the system after one .round of production. If, on the other
hand, for either commodity there is an activity producing some of it, then the
eddition of these two activities ylelds an activity that produces some of both

commodities, and our lest sssumption is satisfied.

All the assumptions stated ebove will be maintained in what follows.
In the von Neumann model as originally presented one further assumption was made.

This is that there is given & finite number of baslic feasible activities, from

which all other feasible activities can be derived by proportional variation,
addition, disposal or comb:t_.na.tiohs of these. We shall make this assumption in

some of our examples below.

Since we are interested in properties of the two-commodity model that carry
over into models with n commodities, there is no need to associate particular
nomed commodities with the inputs and outputs. However, we shall in some cases

below use a simple exsmple where the two commodities are food and tools, and

where the technology has a finite basis.

3. Growth Paths and Proportional Growth Paths.

Any sequence of activities (xt, yt) = ((x__Lt, xg), (y;, yz)) , carried

out in successive periods labeled t =1, 2, ..., T will be called a growth path

if the output pair from each period's activity equals® the input pair for that

% .
Since the disposal possibility has already been recognized in defining
the set of feasible activities, we do not need to edmit inequality here.
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X1>31

FL?.

of the next period,

t t+1 Bl 41
y = (yl’ ya) ( ) X .

In the commodity space with coordinates X5 %, » 8 growth path can be represented,

as in Figure 1, by the sequence of points

1 1 2 2 -1 T T
x:y=x:3r=lc3': see o ¥ = X H»Y

labeled to indicate the order in which they occur. Tt ie called a path even

though sctually it is & sequence of steps rather than a continuous path.

Von Neumann limited his discussion to proportional chth paths, in which

each step is a proportional Eg'owth sctivity. The latter is defined as a non~

null activity (x, y) = ( X, xe) » (yl, ya)) in which the outputs are multiples
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i = BX 5 Ty o= BXy p>0,

of the inputs, by & positive factor u called the grdwth fgg:t:or. There is actual
growth if p > 1 , stationarity if p =1, contraction if pu <1l . The terminal

outputs yg 3 yg of a propoertional gi-cwth path with initiel inputs x;L_ 3 x;' and

a growth factor u are, of course,

T LT 2 ;s

v, = X, Y, = (u)

wvhere (n)T denotes "y raised to the power T " (as dlstinct frem the use of

a time superscript to = ’ yT )« Figure 2 illustrates such a path.

Instead of the growth faciior B we will often use the growth rate pn - 1 .

4. Geometrical Representation of the Technology.

While the iwo-dimensional disgram of Figures 1 and 2 gives a clear image
of a growth path, the same diegrem is poorly suited to represent feasibility

considerations. Actually, each activity has four coordinates, X0s X3 Y1 ¥ -

To represent the set of feasible activities explicitly by & geometrical figure
would therefore require a four-dimensional spece. However, the proportionality
esswmption makes it possible to cut 'Ehis requirement d.own to three d.imén.sions.
There are many ways of é.oing thls, out of which we shall choose & perticular

normalization of the inmputs., If (x' ,.y'_) is & non-mull activity, at least one

of the inputs x._;., _xé must be positive, because 1f both inputs were zero the

outputs would vanisgh also, by one of our assumptions. Hence the sum of the inputs
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xi + xé is positive. By epplying & positive factor A = : 1 - to the given
| % + X,
activity (x' , y'), we obtain an sctivity
]
(, 7) = (xx'y xy') =
X y‘
. = ! , =
A TX G tX,
1 t L] i
X X2 ¥ Y3
' ! ’ _ ’ + ' ? .
7% "1 *TH 17 % T
with' the property that the sum of the inputs is unity:
t xt
P4
x._L + x2 = - - + - ; = 1 .
X F X ntx
The fact that we are adding bushels of wheat to plovws does not need to

detain us here. The preced.ure is an arbitrary normalization device, whiehl_ will

Yield us the same logical propositions if we choose to add pounds of wheat to

dozens of plows.

Since esch non-null activity is now represented by Just one normalized
activity, and since the coordinates of each normalized sctivity can again dbe
increased or e.ecreaSed. prepertionally to reproduce a.ny other activity it represents,
ve shall have obtained a useful geometrical representa.tion of the technelogy if we

can exhibit the set of norma.lized. activities. Since the two inpu‘cs add. up to
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wnity, they can be represented together by a single point on & line segment of
unit length. As indicated in Figure gf; the position of the point lebeled x on
that segment, relative to an origin in the left endpoint (0, 1) which we shell

label 01 s Tixes the first input X measured toward the right. The position

of that same point x vrelative to an origin in the right end point (1, 0)

lebeled O, fixes the second input X5 measured towsrd the left.

We shall call this segment the x-segment, the line coﬁtaining it the

x,-exis, with (0, 1) es its origin. At right angles to the x, -axis, we choose
additional coordinate sxes for y, &nd Y, , respectively, indicated in Figure 4

in stereogrephic projection. The technology is now represented by a set 2 of

points z = (xl, ¥y ya) » e&ch representing a normalized feasible activity
le, J.-xl), (yl, ya}) in which the input %, 21 « x of the second commodity

is implied in that of the first. We shall therefore hereafter freely use tiae_
-expression “activity z ," even though z has only three coordinates. The points
of Z eare &ll "above"” or in the ‘(hori'zon'ba'.l) xl-yl-pla.ne, “in front of" or in
the (vertical) X, <¥,-plane, and between,or inoneof, two other (vertical) planes,

one ‘being the yl-ya—pla.ne, through the origin 01 = (0, 0, 0), the other parallel

to it through the "alternate origin" 0, = (1, 0, 0) .

Since each of our normalized inputs is at most unity, our fact-of-life

assumption entails that both outputs are also subject to upper bounds, ¥y § Hl »

<

32 = aa » hence that the entire set 2 is bounded {contained in a finite box).
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Furthermore, the set 2 is comvex: 1if ?‘0 points =z = (xl, ¥ys ye) 3

7' =:-:?(x]'_, yi, y,) belong to Z , then all points of the line e¥gment z z'

joining z with 2z’ belong to Z . To argue this for the midpoint z" of zz'
one scales down each of the activities (x, y) and (x', y') -- viaere, of course
xae:l-xl, xé::l-x_l'_ — byapplying?.factor x:-é, and adds the resulting
inputs and outputs. The proportionality and additiviiy essumptions assure us that

the resulting activity (x%, y") 1s sgain feasible. Arithmetic shows that it

* . -
is again normalized, and therefore represented in Z by the midpoint 2z" in

* Xy X+, oy XX
xi+x;=§_é_§_+ 222="12"2+x12"2

1l 1
=-2-+§=l

: _ *% —_—
question. BSimiler reasoning epplies to eny other point of zz'., Finally,

** substituting A and 1-n for S and Z, where 0<A<1.

Z is sgain closed.

As the intersection of the (closed) production set with the (closed)
normalization set X + xa =1.
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4

Fd?. S
. on page 11 . _
Figure h/indicates one possible shape of Z . For any particular normalized
input, such es thet indicated by x in the figure, the set of feasible outputs is

found by intersecting Z with & verticel plane through x = (x;, 0, 0) parallel

to the yl-ya-plane .

Flgure 5 shows the implications of free disposal for the shape of 2. If

apoint z = (xl, ¥y0 3’2) belongs to Z , then by disposal of part or all of

one or both outputs one can gét to any point of the rectangle xz'zz" . shown.
Therefore &ll of these points belong to % . On the other hand, the two origins

01 » Op belong to any normalized production set, hence to Z , because they

represent disposal of one unit of one or the othe:;. input followed by the null

activity. By the convexity of 2 , thereforé, the enﬁire polyhedron 0,z'zz"x0,

must be contained in Z , any point of it being "produceeble" by disposal of none,

some, or all of one of the inputs, production proportional to le,l-xl) ,(31,.y2)) P
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and disposal of none, some or &ll of one or both outputs. We note that, because

of the assumption of output positivity, there is always a point 2z = (xl, yl,ya)
in Z with both outputs Y10 ¥y positive. It follows that Z cennot be contained

in & line or plane, but is always & three-dimensional body, containing interior points.

If the polyhedron Olz'zz“x 02

in Figure 5 is itself the technology set Z ,
it constitutes the simplest example of a normalized production set satisfying

von Neumann's assumption of a finite basis. " Apart from disposal, there is just one
basic activity, represented by z . Data for s somewhat more complicated example
ere given in Teble 1. There are two commodities, tools end food, where food as

an input is identified with the lebor it makes possible.

‘Pable 1 |
Basic Activities at Up:lt Levels
Produecing Foods Producing Tools
1y (@ (3 &) | 3 (6)
Cutputs
(1) tools .1 .3 5 5 .6
(2) food 1 13 1.5 1.5
Loputs
(1) tools .2 5 .8 .1
{2) food= 1 .8 5 2 1 9
lebor

The basic activities fall into two categories,those for producing food and thos_e
for producing tools. In each category, activities are lsbeled in an order of

increesing tool- {or capital-) intensiveness. Tool~using sctivities yield an



-16 -

output of remaining serviceable tools smsller than the ‘ool imput, to allow for
screpping of worn-out tools in a ratio that decreases a8 capitsl intensity lncreases.
The normalized production set for this example is shown in Figure 8 below. I% will
be clear that & technology with & finite besis elways gives riseto a normalized

production set Z | that is polyhedral in shape.

5:._ Representation of Proportlional Growth

In general, the highest proportional growth rate that can be achieved from
glven initial inputs will 'd.epend on these inputs, more precisely, on their ratioe.
We shall now lock for the highest rate achievgble with any inputs, and for the ratio of
inputs that makes that rate possible. It has already been polnted out that in this
formulation historically given initial inputs ere not recognized. It is assumed
for the time being that whatever initial inputs may be needed for a meximal

proportional growth path can be procured.

To facilitate our search, let us first consider how proportionsl growth can
“be represented in our disgrar without any réga.rd. to its feasibility. Since
proportional growth is defined only for non-null activities, it suffices to consider
_only activities normelized on the imputs. Figure 6 represents ell such activities
Bhowing proportional growtk by & factor @ . The input pair x.(_l')z (Q, 1) represented

by Ol gives rise to an activity point z(l) = (0, 0, p.) found on the positive

Ya-exis at a distence pu from O, . The input pair x(e‘) = (1, 0) represented'

1

by 0, similarly leads to 2(2) = {1, p, 0) found on the “alternate" positive
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@)

| SLM

yl‘-axis at a distance p from O, . For all other normalized input pairs

2
X = (xl, 2) 3 proportienal outputs ¥y = uxl, ye are represented, separately,
'by points of the line “segments z( ) t j y respectively, and hence jointly

by points 2z of the segment z('ljz('aj -

A higher growth factar p' gives rise t.o a similar segment with the distances

from 01 to _z(l) and from- 02 to z( ) inereased to ' . To indicate its

dependence on p , Wwe shall hereafter denote the segment ztllztgj by S(n) .
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6. Determination of & Maximal Proportional Growth Peth.

By putting together the diagrams of Figures 4 and 6 in Figure 7 we can now find a
normalized activity that represents proportiona.i growth at a meximel rate. We
observe that feasible proportional growth by a factr p is represented by a point
of Z which is at the same time & point of B(u) . We are therefore looking for
the lergest value p¥* of p for which Z and S(g) have at least one point In

CcOonmon.

Now first of all 8(0) = 9162 , the segment representing & zero growth factor
(i.e., complete collapse of the econoﬁ'v in one period), is entirely contained in 2 .
Better than that, & comparison with Figure 5 shows thé.t, for some small enough
positive value o of g , <the segment S(E) still has points in common with 2 .
At the other extreme, since we can obviously choose a u &0 large that S(g)

remains outside the box(of dimensions 1 by ;‘-l by ;'-2) ihat contains 24 , it
is clear that then S(u) and Z do not intersect.

There is therefore a unique largest value p¥ of u for which Z and

S8(p) have a point in comon,* and p* is positive but finite beceuse

o<p S wr<pEg .

¥ Let d(p) be the shortest distance between & point of Z and a point of
S(p) . Since both sets are closed, d{p) exists, snd d(p) = 0 if and only if
Z eand S(u) intersect. It is easlly seen that d(u) is a continuous function
of p . Furthermore, if d(p) =0 and pu>p' , then d(p') = 0 , because of
free disposal. Hence the set of p for which Z and S(u) intersect is an

interval [0, p*)] , which contains its positive end point p* because d(p) is
continuous.

Any common point z* of 2 and S(p) will be called & von Neumann point, the

Eforrespond.j‘_ng activity a von Neumann activity. It achieves proportionel growth
by a meximal factor u* .



Figure 7 1s so drawn that there 1s one unigue von Neumann activity

z*¥ = (x':t, y;, y;) , and thet this sctivity involves positive inmputs and outputs

of both commodities. (z* different from the end points z(l)*, 2% o s(p*) ).

Other ceses will be considered below.

If the outputs y; = p* xl* s y;_ = uf x; of the activity z* are again

' *
used in the next period as inputs to a stepped wp activity proportional te z ,

the second period outputs will be (pﬁQ- x; ,(p”De- ; ; and if this procedure is
continued, the outputs of the +t~-th period will be
*t = ot
Wt s (wd
any

We shall call/ such growth path a von Neumann path.* There is no alternative

Proportionsl growth path with a higher rate of growth.

*
Regardless of whether the initial input wvector ¥* 1s or is not normalized.
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7. A Price System Sustaining a von Neumann Path.

In von Neumann's discussion, the maximality of the growth rate was established
as an implication of the existence of a price system that sustaine a von Neumann
path. Our reversal of the order in which these two ﬁroperties are established is
favored by the simpler mathematical tool we use. We shall use the following

*
separation theorem for convex sets:

*For & proof of this theorem in n dimensions, see Debreu [1959],
Corollary 3, or Karlin [1959], Appendix B, Theorem B.l.2. For a discussion
of the importance of this theorem in the theory of allocation of resources,
see Koopmans [1957].

If A and B are convex sets in three-dimensional space which have no
péint in common, then there exists a plane P which ééparaﬁes A and B in the
sense that every point of A 1is either in P or on one side of P , whereas
every point of B is either in P or on the other side of P . The application

ve shall'make of this theorem will at the same time serve as an illustration of

its meaning and use.

If, as in Figure T, the point z* i not an end point of the segment S{u*)
it will suffice to take S{u*) itself as the set A in the theorem. However, in
order to include also cases where z* is an end point, we shall choose for A

the line 8(u*) obtained by extending S(s*) indefinitely beyond both end points.

Q

For B we chooge the interior Z of the normalized production set 2 ,

that is, 211 points of Z not in its boundary. We have already concluded from
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the free disposal and output positivity assumptions that Z does have interior

o —
points., It is intuitively clear that 2 and S(;.;*) have no point in common.*

+*
For a proof, refer to the definition of a&n interior point 2z of Z , which
states that there exists & positive pnumber B such that all points at a distance o
from 2z no lerger than B %belong to Z . Suppose z = (xl, ¥Yqs ya) is both in Z

and in S(p*) . Since z isin 2, 0‘§xl§l , apnd hence 2z is not in the
extensions of S(u*) , for which either X, <0 or 1<x . Hemnce z is in
8(uw*) . But then, for any € >0, S(p*(+ e)), contains a point z, = (xl,(1+e)y1,
(1+€) ye) of which the distence from 2z 1is e yje_ + ¥, » Since by suitsble -
choice of ¢ , +this distance can be made less than & , z, can be made te fall
in 2% . But then p* 15 not the maximm fessible rate of proportionel growth,
contrary to the definition of p.* .

— o [
Hence there is s plane P separating S(p.*) and 7 . Since Z is three-
o .
dimensional, not all points of Z can be in P, and some of them will be "behind"

: -
P . Moreover, since the boundary of Zisonly s skin without thickness, all points

** S\:;_)pose z of Z . ia "in front of* P, and D is = small  sphere,
congtructéd on a center in Z behind P ;, 80 as to be both behind P end in Z .
Then, by the convexity of Z , the convex buil of D and 2z is
contained in Z . But then E contains points of g in front of P ; &
contradiction.

of Z are in or behind P ,hence P "separates" S5(u*) snd Z as well. In

perticular, the common point 2z of S(p*) end Z must lie in P . But if
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all points of the straight line 8(p*) are in or in front of P , and one of

them, z¥ , is in P , all points of B(p*) must be in P, and a fortiori
all points of S(p*¥) arein P . |
Figure 7 shows the construction of the separating plane P . The diagram

*
uses a strictly convex production set Z , in which case P and Z have only

the point 2z¥ in common.

*
To be precise, we shall call Z strictly convex if it is the intersection
of the space 0 defined by O £x, <1, ot Y0 © < ¥, With an "extended" set

7 +that has no straight line segment in its boundary.

However, Wwe shall in what follows use the strict convexity sssumption only
vhere that is explicitly mentioned.

Let us write the equation of P as
LE+ P 7 TP Y = &

Since z(l)*= (0, 0, ¥*) and 2(2)*= 1, u¥, 0) ere in P substitution of
o » B » )

these coordinates for (kl, ¥q2 ya) in the equation gives

Wp,=a, BB =e,-a=9, s

Reintrodueing the input X, = 1~ X of the second commodity, we can therefore

write the equation of P in the symmetrical form
63 t(%55) = Py ¥y ¥ Py Vp B (pp %+ Pp%) = 0,

it being understood that X, needs t0 be replaced by 1 - % to make this the

equation of a plane in our normslized three-dimensional spaée of X5 Yy Vp -
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We have introduced the notation x(x,y)} as a short symbol for the linear

function in the middle member of (P).

The function =n(x,y) is positive on one side of P , negative on the other.
Since we are still free to change the signs of hoth Py and p2 in (P), we

shall choose the signs in such a way that
— _ L ox <
(P) w(x,y) = Py ¥y 4D, ¥, - (D) X + D, %,) OO

for all polints in or behind P . This includes all points of Z. In
particular, the < sign in (P) wmust apply to all points of Z other

than z* whenever z*¥ is the only point Z and P have in common.

We know that 2 contains the two origins (0, 0, 0) and (1, 0, 0) .

Inserting of their coordinates in (f) yields
», 2 0,0, 2 0, Dbutmot p =p,=0,

because in the latter case (P) would not be the equation of a plane. If, as

in Figure 7, both origins are "behind" P , we have¥

p, >0, PBE,>0.

*
This will always be the case if Z 1s strictly convex,

We will now interpret p, and p2' as prices of commodities ™"1" and "2,"

respectively, which we think of as constant through time. Ilkewise we interpret

u¥ -1 =r as an interest rate for one period, hence p¥ =1 + r as an interest
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factor. The left hand member =(x,y) in (P) then represents the value of the

outputs Yy2 Yo at the end of the period, minus the value of the inputs x5 X,

at the beginning of the period multiplied by an interest factor %o account for the
time lead of one period by which inputs must precede outputs. This is precisely

the profit that arises from engaging in the activity (x,y) during one period,

evaluated in the price system Pyy Py T for a time of reference at the end of
that period. Since z* 1is in P, the profit from the msximal proportional growth
activity z* is precisely zero. Moreover, by (¥ ) , the profit =n(x,y) from any

% o S
femsible activity (x,y) is nonpositive. 1In this sense, it can be said that the

* Strictly, Figure 7 shows thig only for the normalized activities of Z .
However, since any feasible activity is obtainsble from a normalized activity by
mltiplying all coordinates with a nonnegative factor X , the profit is likewise
multiplied by A , leaving the above statement true.

price system Pys Pyr T if remaining constant throwvgh time, sustains the

von Neumann growth path. It is immaterial for this statement whether the price
system in guestion is thought of as d.étermiriéd in competlitive markets in a growing
economy, or whether it 1s regarded as & set of centrally determined steering prices
guiding ellocations in a planned economy. If the maximal growth activity ip itself
& basic activity that can be arranged for in a single productive process or
establishment, the ‘price system will permii: continual growth of that activity if
the interest charge is the only obstacle to investment, because no loss is incurred

by meeting it. Nelther does there exist any other feasible sctivity which, by
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yielding a positive profit, would lure resources sway from the maximal growth
path.
It is, of course, 8leo possible that the (or a) maximal growth activity is

& composite
(x*ay “11(3‘5’3)"'1 (x.9¥)+-f~-*!)\.k (X,y)

of k bagic activities (xh,yh) » h=1, <eey, k With positive weights A, . We shall

see below that then eech .of these basic a.c’civities will also breask even. Use
of each of these activities is again made possible,as far as profit incentives are
concerned., by the fact that there is no competing feasible aciivity promising a
positive profit. Moreover, once the levels of these activities have the proportions

My = hgy cees R occurring in the sbove representation of (x*,y*), the outputs

from each round of production will Jjust suffice as inpuis for the next round at

levels stepped up by the factor u* .

The price ratio Py 3 p2 can be read off from Figure 7 as follows. The

equations of the line z(l) 2(2) in which P intersectis the plane through z*

parallel to the yl-yzuplane sre found from (P) +to be

= w*(p A
plyl + PQYQ = p' (Plx]_ + Paxa) ¢ b4 sa’y
- *
S R |

Hence - Pi/PE is the slope of Y, on Yy, a8 read off from that line.
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fn figure ’?"‘-’i’sﬁi‘&-‘ffalo;_ae - 18 uniq,'t:lely determined by the smooth shape of Z ,
A limited indeterminacy in pl/p2 can arise, for instance, 1if z happens to bg
& vertex of a polyhedral Z .
It will be useful later if we elso determine the slope of the line
z(l)*z(_l) 'in which P inmbersects the xj¥,-plane. (x£ P, = 0 ve must use

the x,~y,-plane instesd.) From (P) we have, if y, =0,

27, = ¥y tp,(1 - xl)) = WP py)x + 0" B,

- P4-P
Hence the slope of Y, on X is i.t* . _%__@, « It depends on the price ratic
2

p,/p, end slso on p* provided P £ P,
We have found that with any proportionsl growth activity with the maximal
growth factor i* one can associate a price system Py, Py T = ¥ - 1 which

sustains that activity. It is worth looking at the reverse question: BSuppose one
has obtained a proportional growth activity (x',y') = (x',n'x') and a price

system p]'_ 2o, p2' 20 (not both =0), r'=p' -1 vhich sustains it, in the
1 t t - 1 t ] <
sense that = (z,y) = P¥y *BY, TR (plxl + 1’2“2) S 0 for all feasible

activities (x,y). (Imserting (x',y ) in this imsqusiity obviously gives the
= sign, because y' = p'x'g@j} Does it follow that p' = p* end hence that %he given

sctivity is & von Neumenn activity?
The answer is affirmative whenever the given prices p,, yé are both positive.

To see this we eveluste a von Neumann sctivity (x*,y*), where y* = p¥x* o we
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elreedy know there exists one -~ in the given price syétem. Since this activity
is feasible

' (5") = pyrryE-m (o +285) 5 0 -
On the other hend, since y* = p* ¥,

2o+ Byl ¢ T < o
Subtracting we l}ave » after cancellations,

(" - 0") (g + ) S 0 .

Row xl_’l_", x; are nonnegative and not both zero. Hence, if p;_, pé are both positive,

p;x} + p Xy > 0, end therefore u* - ' S 0. On the other hand, since p*

is the maximal proportional gréwth rate that is fessible, p* - p' 2 0. It
follows that p' = p* , end hence that the given sctivity (x',y') 1s a von Neumemn

activity, the glven price system pi, pé, r an associated sustalning price system.

The foregoing reverse reasoning, from & given susteining price system to the
maximality of a proportionsal growth act;ﬁty, is important in verifying, 1’01_- a
numerjcally defined production set 2 , +that a proposed proportional growth activity
is indeed a maximal one. Proof is rend.ere;d by exhibiting positive sustaining prices

p_{, pé + This reé.soning does not ho;!.d if, say, Pl.. =0, wl?ile x; = 0 for the
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*
von Nevmann activity.

* _
An example is given by the technology with a finite basis (teble turned

sidevays). :
Outputs Inpuis
(1) (2) (1) (2)
Basic '
Activities (1) 4 1
(2) 3 2 1 1

where activity (1) is the unique von Neumann sctivity with p.* = 4 , but activity
(2) with & growth factor p' = 2 can be sustained by the price system P =0,
pl=1, r' = 1. A diagram of the type of Figure 7 readily reveals the geometrical

2
configuretion that mekes this possible.

8. A Numericsl Example

We shall illustrate the determination of the maximel proportionsl growth
activity and the asscoclated price system in terms of the technology with six basic
activities, shown in Table 1 sbove. A glence st Flgure 8 (before S(p*) is
drewm in) suggests that the segment S(p¥*) will cut one, or possibly i:wé, of the
edges leé.ding from activity z6 to acﬁvities z2 3 z3 or zllL +«  Without
looking for a systematic method for determining S(;x*) and its intersection with

a polyhed.ra_.l Z in more complicated cases, let us guéss’ that S(g*) cuts only

the edge z3 27 . Then p.* can be determined from the condition that the

point

(JL_L*: Y;:YZ) =z = 1.254-(1-}\.)26



on the edge 25 z heve outputs proportional to imputs, augmented by & factor

g* « Using the coordinates of 23 » z6 givea in Table 1, this requires

*

Bh 4 6(1-a) = u* (5 1(1-1))

(o o+ 9(10)

1.50

each of which cen be .solved.“for A to give -

*

*
U N T A

¥ + 15 * + 3
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The requirement that the two values are equal yields a guadratic equation p*

with

Fl* = 10292 e

as the only positive, hence meaningful, root. The corresponding von Neumann

activity is found to be, within errors of rounding,

* %
o5 7 = (o, 69), (et 085) )
provided our initial guess was correct. To verify that point, we determine the
prices Py Pp from the requirement that the coordingtes of z6 (and hence also

those of 2z ) satisfy ( P ) with p* = 1.292 ... . The result is
(Pl.? PE) = (2')48’ l ) 2

if we choose food &s the numereire. Finally we verify that the condition ( P ),

which now runs

2.48 y; + ¥, - 1.292 (2.48 x; + x,) < o,

is satisfied wlth the < sign by all activities other than z5, z6 (for which
the = sign holds). Our initial guess is thereby confirmed. The faillure of
activity zh to improve on 23 can be interpreted to mean that with an interest
rate T =g -1 as high as 29.2%, the higher capital cost of activity (k) is not

fully compensated for by the higher outputs end the lower labor iwput.

Figure 8 shows the maximal growth activity 2z , the segment S(p*) and

the plane P for the present example.



9. The Turnpike Conjecture

There is nothing in the assumptions we have made about the technology that

limits the discussion to & comparison of alternastive paths of proportional growth.

Dorfman, Semuelson and Solow therefore considered growth paths that are maximal in
some wider sense. They accepted as given the initial inputs xl = (xi, xé) , and
required that the terminal T-th period outputs yi, yg be proportionsl, -

b .
ym_]_ = 5 hl.v Yo = ‘}\heg hl+h2 = 1,

to two presceribed nonnegative numbers, h h,, not both zero, which we have

1 e’
normelized to have s unit sum. They maintained the reguirement tha'tr each period's
outputs are all that is available, subject to free disposal, for use as inputs for
the next period. We shall call & growth path subject to these specifications.
maximal (they called it optimal) if it achieves the highest value HK* of the
factor of proportionality X attainable by any growth path meeting these
specifications. They then formulated the following conjecture ag to the nature
of the maximel growth path:

"...if the programming period is very long, the corresponding

optimal capital program will be describable as follows: The

system first invests so as to slter its capital structure

toward the special von Neumann proportions. When it has come

close to these proportions, it spends most of the programming
period performing steady growth at the maximal rate {more

precisely, something close to maximal steady growth). The
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"system expands along or close to the von Neumenn ray Ox*

until the end of the programming period approaches. Then it

bends away from OR¥ and invests in such a way as to alter

the capital structure to the desired terminal proportions,

arriving at yT as the period ends."™

Dorfman, Samuelson, Solow [1958] Ch. 12, p. 331, quotation changed
only to correspond to present notation.

Thus the von Neumann path acts like a turnpike that attracts all discerning
long-distance traffic by the shorter travel time it makes possible, even though
the road mileage may be lengthened thereby. Figure 9 illustrates this idea.

The path that, starting with the normalized initial input xl reaches the farthest
point Xh on the ray Oh reachsble in T periods runs close to the von Neumann

path Ox* for most of its course, if T is sufficiently large.

One is reminded of the technologlcal reference in Lenin's well-known
dictum: "Soviets plus electrification equals communism.” The turnpike proposition
at least supports the idea that, in a given technology, a particular choice of
methods of production may be most conducive to long run growth regardless of the

more distant objectives of the full-grown economy.
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| X'LJ'1'1

We shall conslder a sequence of possible cases in order to bring out
vhy this remarksble conjecture 18 by and large velid, and to indicate how the

exceptions noted by XKuhn and Morishima arise.
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10. Access to or from the von Neumann Path

We must first exclude certain cases in which either the given initial stock

£ = (xi, xé) does not permit one ever to reach a point of & von Neumenn path

(other than the origin), or in which one cannot, from a von Neumann path that can

be reached, in turn reach a point Xh = ()(hl, 3{112) of the required terminal stock

ratio h.l = h2 with X > 0 . In such cases the proofs of the twrnpike conjecture

glven below are not valid, and it would seem that the conjecture itself is not

valid either.
It is clear that from a given point x = (xl, xa) one can by mere disposal

achieve any desired ratio of availebilities ss long as X and. X, are both

positive. The inaccessibility cases can therefore arise only if either the initial
stock xl or the von Neumsnn ppint z*¥ lacks one of the commodities. However,

special shapes of Z are needed in addition for such circumstances to give rise to
inaccessibilities that invalidate the turnpike conjecture. For instance, since in

Figure k neither the intersection of 2 with the yl-ye-plane s nor that with the

yarallel plane through O is contained in a single coordinate axis (yl or ¥,)

2 2
absence of either commodity from the initisl stock, or from a von Neumenn point,

does not give rise to inaccessibllity.

It is not difficult to enumerate all possible cases of inaccessibllity for
two, or for that matter for n , -commodities. We shall avoid this somewhat trivial
Problem by msking the reqguired accessibility & premise of the turnpike theorem. We

merely state without further proof that, if from a given point (xl, xe) another
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point with & given ratio ¥y - A is accessible at all, it is accessible in one

“or two periods.*

* .
More periods may be required if the model contains more than two
commodities.

Using this readily verifiable fact, the premise will be stated as follows.

Assumption A (Accessibility). The points x; ’ < » h in the commodity

space representing, fespectively, the initial stock, a von Neumann point, and a

point defining the final stock ratio, can be supplemenied by points x? 3 x!

such that, for suitasble positive numbers v , t , the activities (xl, xe) s

(x?, w*), (5%, x'), (x', ¢ h) are all feasible.

11. Rates of Growth in von Neumenn Value.

To associate a numerical growth rate or factor with & step or a seguénce of
steps in & commodity space of at least two dimensions, one has to reduce a comparison
of two vectors to a scalar measure of "growth." In von Neumann's discussion this is
done by considering only proportional growth, where the factor of proportionality

provides the wanted scelsr. We now obgerve that the prices p = (pl, pe) found

as a by-product of the study of maximal proportionel growth cen be used to extend

this scalar to nonproportional growth.

We shall use the abbreviated notetion

Px =Py X) + Py %,
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for the value of a commodity pair x = (xl, x2) for a peir of prices

p = (p,y P,)} - If these are von Neumenn prices associated with maximal proportional
1?7 F2 _

growth, we shall call px the (von Neumann) value of the pair x . Since no

normelization has been imposed on p , von Neumann value is determined up to a
positive constant factor, except if at least two(and hence infinitely many) non-
proportional von Neumsnn price palrs exist. In the latter case y We arbitrai‘ily

choose one price pair (with both prices positive), keeping it constant in &1l that '

follows.

Given any activity (x, y) such that the von Neumenn input valuve px 1is

positive, we can now use

I-l(x; ) = =

as a scalar measure of growth, to be called simply the value growth factor for the

activity. Clearly, for proportionel growth the value growth factor equals the

factor of proportionality.

Radner!s analysis is based on a study of inequalities that constrain the
value growth factors for feasible activities in general, and for the activities of
a2 maximal growth path in particular. The no-profit condition ( P ) immedisately

gives that

p(x, y) S o*

for all feasible activities with a positive input value.

Now let (xt, yt) ;5 t=1, ..., T be a maximal growth path as defined

in Sections 3 and 8 and illustrated in Figare 9. Then xl is the given initisl
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stock, which for simplicity we normalize by xi + xja' = 1 . Furthermore,

v = x™ for a1l t, end yT =X{*n is the meximal final stock having

proportions given by h = (hl, h2) « In order to be sure that the various value

growth factors occurring in the analysis are defined, we must make

Assumption B (Value positivity). The normalized commodity pairs xl, x*, n

possess positive von Neumenn values pxl, px* » ph.

This essumption is clearly satisfied if both prices are positive.

We denote the velue growth factor for the t-th step of the path by

%
t .t

me = mx,,y) = B |

: : . X

*
Then the growth factor for the entire path is

T 1 PY2 qu
m"‘:L = % . —'é' v sees 9 T = ul poa LR llT
px px px px - :

pxl>0 by assumption B . TIf we had pxtzo for any th, this
would imply pys =0 for =%, ..., T because of ('1'5) » contradicting that
PYT >0 by assumption B .

We shall now follow Radner in a calculation showing that only & limited

number of the factors B, can fall substantially below the wupper bound p,* . To

this end we consider a comparison path (Sc't, it) » t=1, .s.; T constructed as
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follows. The initial stock El = xl is the same as before. The first two steps
are used to arrive at the highest multiple
51:2 = v-x*
of the von Neumasnn point of Assumphion A that can be asttained in two steps. The
next T-4 steps proceed along the von FNeumann path at maximum growth
= p~ X » t=3,'oo_o,'l‘"2f

The last two steps are used to attain the highest attainable muliiple

v o- R

of the prescribed bundle h = (hl’ ha) s &attainable from §T'2 in two steps.

Obviously the latter muitiple XK cannot exceed the highest mﬂ.tiple )'[* attalnable
from xl in T steps, which is attained along the meximal path. Therefore

* -—
Py~ =A-ph 2 {eph = e

If we now factorize the value growth factor for the entire comparison path in &

L
similar manner, we find that

*
Again all denominators and pumerstors are positive by Assumption B.

T -

P _ Py == *T-ll- — ——
e 1y ¢ (17) * B P
B Hy¥p " A Hpoy Py
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where the -{I’c = p(;:'t,"ft) are value growth factors for the steps of the comparison

path. Using all these results together, we find that

By g eee by 20 "a(n)ThiT_lﬁr

Now let us choose any small positive number & , &and, remembering that
By Sp* for a3l t , let us demote by T' the mumber of value growth factors
B, in the macima) growth paths thet fall short of 1* by more then & ,

n, < W¥ -85 in T' out of T cases.
Then clearly
(1) (1*8)" 2 gy eee By T By By By By (07)

or, dividing through by (u 7,

T - -
* K -
g ) > bt

u*

Since 5 and u* ere positive,

*
O<-§T"—6-=l-5—*<laslongasb<p* .
i) M |

It follows that (1 - B/p*)n decreases as the integer n increases, and approaches

zero as n increases beyond bound. Since M 1is also positive, there must therefore

w*)® > M. Denoting this value by

be a largest value of n for which (1 - &/
Ef.‘,‘3 we must then have

<
S om .
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Thus the calculation has shown that there is an upper bound T

s on the

mumber of steps in a maximal growth path with g < p* - 8 .  This bound is

determined from & condition involving & , p.* and M 1in such a way that ‘1‘.6

inereases 1if & is chosen smalier. TB

and final stock ratios given by xl, h, and, of course , on the shape of the

also depends, through M , on the iritisl

production set Z . The important point is, however, that T,é does not depend

on the length T of the path, because ET-l . EI depends only on the normalized

points x* , h rather than on their respective multiples }E-Q ’ }‘T .

The simple reason for this beautiful result is clear. As the path length
T increases, the value growth factor for the entire comparison path keeps piling
up factors y.* . Since value growth factors in excess of p* are Impossible
in any path,- too many factors less than u* - 8 in the maximal growth path would
cause its terminal value pyT ‘o fall beiow that of the comparison path. More

Precisely, for any given 5 +the upper bound T

S to the number of such factors

1s determined by the relative factors f:.'l/p.* , EE/ w* -p;r_l/p* , "IT/”* ,

associated with the "weak links" in the comparison path. If more nearly maximal

paths of comparison can be found, they will lead to sharper bounds.



12. "Profit" Effects of an Interest Rate Reduction.

There is a natural economic interpretation for those T -~ T° steps in the

maximal growth path whose value growth factors My stey within & from the

. *
meximum (o,

Consider & price system having the same commodity prices, but an interest rate

r' reduced by &,

J_f"=r-8»

In this modified price system, the profit function is
(%, ¥) =py = (¢ ~8) « px

By dividing both sides by px we see that the steps in guestion are precisely
those that yield s positive or zero profit in the modified price system. Hence
our result cen also be formulated thus: For any reduction in the interest rate,
no matter how small, the number of steps in & maximal growth path with given
Initial and terminal stock composition that remains unprofitable is limited

regardless of the length of the path.
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13. A Varisnt of Radner's Turnpike Theorem.

The implications of this result for the course of & maximal gx'owth path
depend on the precise shape of the production set 7 . The simplest cese is

defined by

Assumption C . The separating plene P can be so chosen that P and

the production set Z have only the point z¥ in common K

*
Tt follows directly that 2z* is the only (normalized) von Neumenn
activity, since every such activity is in S(p.*) and S(p*) isin P .

This assumption implies that both prices Py 5> Dy are positive, since

otherwise one or the other of the two origins would be both in Z end in P,
and 2z¥ would not be the only such point. Hence Assumption C implies

Assumption B . The converse is not true.

Assumption € is necessarily satisfied if 2 is strictly convex. It

cen also be velid, for instance, if z* ‘happens to be a vertex of a polyhedral

By epplying Assumption C to the results of Section 7, we find that the

profit =n{x, y) in the original price system (Pl’ Pps r) 1is negative in any

point z of 2 other than z¥ . On the ofher hand, the condition

Ity
o

(") x'(x, ¥y) = py - (K -8) - px



of nonnegative profit in the modified price system (Pl’ pa,r') cuts a slice,

ZB say, off the production set. In Figure 10 this_slice, and the plane
: *
(B') a(xy) = py = (0W-8) "px = 0

that cuts it off, are shown for a production set similsr to that of Figure 7.

Clearly, in the limiting case % = 0 , the slice Z6 consists of the

single point z¥ . Moreover, z*¥ is contained in ZB for every positive & .

The significance of assumption C is that it mskes z*¥ the only point with the
latter property. For any other point z of 2 , since the origlnal profit is

negative in 2z , there exists en inferest rate reduction & small enough to
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leave the modified profit negative in z . It follows thet the slices Z6 )
which are nested one inside the ether as % Dhecomes smaller, shrink down to the

point z¥ as & tends to zero.

This mathematical fact is responsible for the turnpike theorem in its
present, simplest, version. It also suggesis that it will be convenient to use
& as a measure of the distance, in the (three~dimensional, normalized) activity
space, between z' and any point z of Z , instead of Radner's measure of
angular distance between points of the (two-dimensional) commodity space.
Specifically, given a feasible point z , we will define &(z) as the smallest
value of & for which 2z is still 1ﬁ Zg - In economic terms, 8(z) is the
smallest interest rate concession that prevents z from yielding a loss. From

continuity considerations, that concession will then just make =z breek even.

We can now summerize the resulis of our resasoning in

PROPOSITION 1. If Assumptions A and C are satisfied, then there exisgis

for each (sma.ii) positive number & an integer T

of eny length, 5(Zt) zﬁ for at most T, steps of the path. Here 8(z) is a

such that, in a maximal path

measure of the proximity of a normalized activity 2z to the von Neumann activity

*

z" of Assumption A. This measure of proximity is that reduction in the interest

rate that will meke the activity =z break even. It reflects the shape of the

production set in & neighborhood of z* . The upper bound T. +0 the number of

o]
steps which wpon normalization are more then & "awsy from" z" increases as &

decreases, and depends also on the initisl and finasl stock proportions xl, h,

but not on the length of the path.
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Note that this proposition is silent on the questlon where in the maximal
growth path the exceptional activities more than & removed from z* mey be

found. We return to this question in Section 16 below.

14. Other Cases.

Matters remain relatively simple if the common points of P and Z make
up & line segment S° conteined in S(p*) . This cese is illustrated by a
polyhedral example in Figure 11. All p;:ints of 8 eare now points of maximal
propo;‘tional growth, and define as many von Neumann paths, all capeble of being

sustained by the same price system (py, P, r) . The slices Z; all contain



s* , &nd shrink down to. s* as & tends to zero. Hence, in any meximal growth

path the number of activities ocutside a -Z.8 which elosely hugs s is limited.

This is 811 that can be said in this case.

Further complications erise if P and 2 intersect in a line segment S
not conteined in S(W¥) . In that case, S and S(p*) have only the unique
vonVNemna.nn .a.ctivity\ z*¥ in common. To avoid still. further complications, let us
assume thai positive prices Py s p2 can be essociated with z* . ‘The situation
ise 'l;hen as illustrated in Figure 12. It remains true that the slices 2.5 shrink
down to 8 , and that the number of activities in a maximal growth path outside
a given slice is limited. It no longer follows without further analysis that
therefore a maximsl growth path has to be close to the von Neumann path except

for a limited number of steps. The new complication is thet S may contain
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points "far" removed from z. . The turnpike conjecture would therefore be true
in the present case only if we can show that, in order 1o be close to points of S
most of the time, & growth path actually has to be close to 2*¥ most of the time.

This possibility arises because we have not yet made use of the equality

yt' = xt'+l between a period's outputs and the next period's inputs. (So fer we

have only needed to use the value equality ;pyt = pxt+l )

In order to exemine this question briefly, we first observe that it can be
clerified by the study of growth paths that consist of zero-profit activities
only, hence are entirely constructed from mtiﬁties in 5 . By the preceding
analysis, any such paths are themselves maximel growth paths, and are centers of

attraction for all other maximal growth paths, in the sense indicated.

Next it will help to change the units of the two commodities in such a way

that their prices become equal,
p1=p2=l, 80 px=xl+x2,

meking & normalized input identical with an input; of unit velue. Thereafter we
make the units of both commodities dependent on the time period + Dby miliiplying
each unit by (p*)® . This makes the new meximel "growth" factor equel to unity,
the new "interé‘st'rate“ equal. to zero. The service rendered by this somewhat

artificial redefinition of the units is that & zero-profit activity (x, ¥y)

now satisfies
X ~-py = 0,

end hence converts & normalized input x into a normalized output y .

Figure 12 has elready been drawn on this basis.
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The anelysis can now be completed within the zero-profit plane. P., which we
cen project, out of its position in Figure 12, onto the vertical plane, identified
with the plane of the paper in Figure 13. 1In this disgram the measurement of ¥y
and Yo along the vertical axis has become completely symmetrical fto that of

Xy and X, ‘along the horizontal axis, described in Section .

Disregarding feasibility, any growth path consisting of zero-profit
activities only is now representable by a sequence of points (xt,yt) st =1, 2, ...,
connected by the identity yt = xt+l in the manner indicated in Figure 13.
Feasibility considerations are introduced by insisting in addition that all

points (xt, yt) bellong to the segment S .
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If, &s in Figure 14A, the von Neumamn point z* is an end point of §
end if at the same time the slope of § (in the present diagram) is opposite in
sign to that of S(ﬁ*) » ‘then the only feasible sequence of zeréeprofit activities
consists of a repetition of the von Neumenn activity z¥ . Hence the ‘turnpike
conjecture is valid in this case as well. 1%, as.in Figure 14B the slope of S

is of the same sign as that of S(p*) , then there exist infinitely many feasible
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sequences of zero-profit activities, that either converge toward, or move away
from, z¥ , depending on whether the slope of S is absolutely smaller (as in

Figure 14B) or larger then that of S(u*) , and this holds regardless of whether

Z*

is an énd’point of S8 or not. Fiﬁaily, if the slope of S5 1is opposite in
sign but not equal in absolute value to that of S(p*) +there are egain infinitely
many pérmitted sequences, oscillating on S tcward.or away from 2¥ s depending on
vhether the slope of S 1is absolutely smeller (as in Figure 14C) or larger than
that of S(u¥) . Bince in sll these cases the permitted seqpenceé converge to

z¥ if time'is teken forwerd or backwerd as msy be needed, the turmpike conjecture

S on the number of

is still valid. However, for & given & , a larger bound T
steps more than 5 away from z* than would otherwise apply must be sllowed in
the present case, because the feasible sequence (xt, yt) of zero-profit sctivities
to which some maximal growth path is “close" may itself teke & long time getting
close to, or moving awsy from, z* . . Thus the turnpike assertion for these cases

is the more academic, the closer one comes to the following last case.

In this case, the counterexample discovered by Kuhn (Figure 14D), the
slopes of 8 and S(ﬁ*) are opposite in sign and sbsolutely équal. .There now
exist infinitely manjhoécillating maximal growth paths consisting of 2erofprofit
ectivities, that never come near the von Neumann point z¥* , as well as many other
maximal growth paths close to each of these, for which the ssme is true. Hence

the turnpike conjecture is false in this case.

Further counterexamples arise in the case where P and 2 have & two-

dimensional convex set in common. We shall not examine these possibilities further.
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15. A Remark about the Counterexamples.

The counterexemples eare important from a logica.l polnt of view, as part
of the intellectual process whereby a conjecture becomes a theorem. From a
realistic point of view, however, it is hard to teke the counterexsmples seriously.
They all involve an oscillation, or & more complicated continual change, in the
methods of production used. The assumptions of our model ignore a considerastion
that weskens the claim of the counterexammles to & long-run growth capacity
equalling that of meximal proporticnal growth. It is a well-documented fact of
experience that the mere repétition of a production process facilitates its
gradual improvement, through learning of the operations rather than through the
introduction of new technological principles. Much of this sdvantage is lost
in a peth in which & substantial part of the 1abox_' force oscirii.lates between
different methods of production. While clesrly this conside;ation lies outside
the model here being studied, it may influence the degree of detail in which

its study is pursued.
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16. Concluding Remarks.

We have already observed that the turnpike proposition formulated in
Section 13 does not touch on the gvestion where in & maximal growth path the
exceptional activities more than § removed from a von Neumann activity may

be found. Further light is shed on this in a paper by Nikaido [1962] through
| an ingenious argument in which Redner's reasoning is applied twice in succession.
Since his paper has not yet been published, I shall not go into the details of
his ressoning. His result is that, if in addition to Assumptions A and C it is
given that the von Neumsnn point x* has only positive compbnents

(xi >0, xz > 0), then for any positive © there exists an integer T

such that, in a moaximal path of any length T with initiel and final constrainis
given by xl ; b, the only steps which, upon normalization, are more than 5

removed Trom z¥ are found among the first Té and the last Té of the T

steps of the path. This important finding has already been expressed in
Figure 9. It confirms what was no doubt in the minds of the originators of

the turnpike conjecture.

It was stated in Section 1 that the von Neumann model, in its original
version quite remote from any real world problem, was given some bearing on
the problem of forced economic growtn by the discovery of the turnpike
propositions. It should now be admitted that the problem of growth at a
maximal rate is still a somewhat narrow and perhaps unnatural one. One would
want to go on to the further study of optimal growth where the criterion of

optimality expresses a concern with the desire for consumption levels that,
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if possible, are at all times above the minimum needed for self-reproduction
of the labor force at the growth rate envisaged. One may want furthef to
leave scope for an uncertain degree and kind of techmological progress, and

for a desire for flexibility in future consumer's preference.* Granted

*
See Koopmans [1962].

the need for these further steps of generalization, however, the study of
economic growth &t & maximal rate in a constant technology seems nevertheless
to have some justification beyond its immediate results. The solutions of
problems obtained by .generalizing or complicating another simpler problem

often continue to bear some of the traits of the solution of the simple problem.
Thus we may find as time goes on that the study of growth at a meximal rate

is ylelding returns that go beyond the confines of the original formulations.

Note: Upon completing this discussion paper I came upon & mimeographed

paper by Inada [undated] in which very similar techniques of reasoning are used.
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