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Substitution, Fixed Proportions, Growth and Distribution

Edmund S. Phelps

Two opposing concepis of capital pervade contemporary models of economic
griwth, The fixed-proportions school treets the lgbor requirements of capital
goods as rigld, not subject to choice. The neoclassical school imagines that
capital is like putty; it can be éonﬁinuously reshaped to accommodate &sny supply
of labor. There may be some truth in both concepts. This paper presents a

model which incorporates elements of both.

In the present model, only new capital is pgtty. Before their instsllation,
machines caﬁ be designed to utilize any desired amount of lsbor. But once this
pubty tekes shape, it turns to hard-baked cley. The lebor requirements of
machines are fixed forever at the time of construction. The utilization of

these machines may chenge over time but that is a different matter,

Cne of the products of thls model is a theory of the operating life and
isbor intensity of cepltal goods. A mechine is retired here when rising wages
have absorbed all its revenues.  Therefore a machine will operate longer the
smaller its lebor intensity. The labor intensity of the optimal type of new

mechine depends upon the snticipated course of wages and the rate of interest.

These relationships introduce a new dimension to the connection between

investment and the growth of productivity.’ An increese in thrift -lowers the

* The author is grateful to Edwin Mansfield and T. N. Srinivssan for
discussions with them of this subject.
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rate of return on capital, reduces the labor intensity of new machines and

thus ultimately lengthens the operating life of all machinery. We call this
process "capltal lengthening” to distinguish it from capital deepening, which
denotes here the multiplication of machines without any change of their longevity.
Increased thrift affects productivity through both the lengthening and deepening
of caplital.

It follows that an increase in thrift, far from modernizing the capital
stock, except temporarily, must eventually increase the average sge of machinery.
But is maturity of the capital stock a bad thing? It is shown that the capital
lengthening efféct, on balance, acts Lo reinforce the capitel deepening effect
of increased thrift upon productivity so long as there is so little capital that
the rate of interest exceeds the long-run rate of growth. This condition appears
to be the rule at least in technologically progressive economies. Thus investment
may be a more effective growth agent in these economies than it has been judged

1o be on the basis solely of its capltel deepening effect.

Another.product of the model is a‘theory of fﬁctor shares, Since labor's
relative share of aggregate output is a weighted average of its relative share
of the outpui of every machine and that share 18 normally higher at old machines
than new, the average age of machines is seen to affect aggregate shares. The
average age will tend to be greater and the share of weges (quasirents) in total
output smaller (larger) the thriftier is the econdmy. Thie may help to explain
the positive.relation observed between saving and profits (as shares of income)

acrosg economies.



In neoclassical models, capltal's share equals the capital elasticity
of output. Solow and others have used the former as an estimate of the latter
in order to assess the lmportance of investment as & source of productivity

#*
growth in the American economy. In the present model, capital's share falls

* Robert M. Solow, “Technical Change and the Aggregate Production Funetion,"
Review of Econowics end Statistics, 39, (August 1957).

short of its neoclassical level, so the procedure indicated would understate
the importance of investment, wherever thrift is insufficient to drive the

*%
interest rate down to (or below) the rate of growth. Therefore, in the

*% In the model here, "capital" and the "capital elasticity" do not exist
but en gppropriate substitute is the investment elasticity of additions to
capacity. The sentence gbove states that capital's share is smaller than this
elasticity under the condition glven.

United States, where this condltion is satisfied, it may be that the effectiveness
of capital deepening has been underestimated (quite apart from the matter of
capital longevity discussed above). 'Thus the resulis here encourage & certain
amount of opfimism toward the utility of investment as a means to increase’

productivity.



-k -

Finally, some brief acknowledgments of the related literature:
The notion that labor cen be combined with new investment in variable proportions

*
but with existing capital only in fixed proportions was introduced by Johansen.

*  Leif Johansen, “"Substitution versus Fixed Production Coefficients in the
Theory of Economic Growth: A Synthesis," Econometrica, 27, (April 1959).

A model slong similer lines recently appeared by Massell. This paper oves

#% ° Benton F. Massell, "Investment, Innovation and Growth," RAND P-21L9
(revised), (Rovember 1961). .

nuch to - them. Tts differences from them erise from its capitel-theoretic
treatmgnt;dfrthé longevity of machinery as a dependent varisble, rather than a

parameter.'

A third paper that takes s point of view nearer the one here is by Solow.

%%%  Robert M. Solow, "Substitution and Fixed Proportions in the Theory of
Capital,” Review of Economic Studies (forthcoming, 1962).

His paper is directed toward capital theory rather than growth theory, &s here.
However it has been useful at a number of pleces in the present paper, especlally

in section 3.

b



1. The scene.

The scene 1s an economy or industry producing a single good by means

*
of two scarce inputs, machinery and labor time. While there is an infinlte

* The "economy" interpretation raises the question of the source of
machinery. One can think of the single good as homogeneous putty of unchanging
quality in consumption. At the same time, engineers find increasingly efficient
ways to shape this putty into mschines. We ignore the machine-producing sector
by assuming that no scarce inputs are required to mold putty into machinery.

variety of machines with respect to their lebor requirements, theilr durability

cannot be varied: all capital lests forever.

A basic notion of the model is the "capacity" of a machine. This is
defined as the maximum oubtput rate obtaineble from it by means of inereasing
the amount of lebor employed on it. §(v, t) shell denote the capaseity output

at time % of all machines bullt at time ¥ .

To produce their cepacity output at time + , mechlines of vintage v

require a certain (minimm) smount of labor time, denoted N(v, t) .

A1l investment consists of the purchase of new machines. Existing

machines cannot be modified in any way.

Wnile certain patterns of efficiency loss through wear and tear of
equipment would be essy to introduce, it is simplest ‘o assume that the capacity
of a machine remains constant throughout its life. The labor requirement at

cgpacity is also sssumsd to he Tixed. Thus
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i

(1;1) Q(v, v) Q(v, v) for all t > v

(1.2) (v, +)

i}

(v, v) for all © > v

Next we suppose that the producer neglects any possibility of Keynesian
und.ei‘utilization of cepacity when he buys a new machine. He assumses he can

sell whatever output he can produce., Pure competitlion prevails.

Further, a downward sloping relation between capacity utilization and
unit varisble (labor) costs is postulated meking it optimal (profit maximizing)

*
for the machine to produce at cepacity if it is preferable to produce at all.

* This assumes the sbsence of escapable overhead (lebor) costs. All wage
costs are varisble costs and all varlable costis are wage costs.

Therefore it 1s optimal to produce at capacity if revenues cover capacity labor
costs with some quesirent left over; otherwise it is optimal to shut downm

the: ma#hine « Thus

Qlv,v) ir w(t) N(v,v) < Q(v,v) ,
(1.3) Q*(v,t) =
' 0 otherwise .

when w(t) demotes the wage rate at t and Q*(v,t) denotes the optimal

output rate of vintage ¥ mechines at time % .

Under these conditlions the producer~investor who buys a new machine will

expect to gperate 1t at capacity as long as he expects it to be profitable to
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operste. The producer 1s supposed {0 predict the future course of the wage
“rete with complete confidence and to predict that the wage will riee at a
constant reletive rate. On these conditions he will expect to operate the
machine continuously (at capacity) up to the date on which he expects the
' machine t0 cease to earn positive quasirents. He will expect toretire the

machine permanently at that time.

Let G(u,t) denote the wage rate expected at time ¢ to prevail at
time u, u ?_'t . Of course, W(t,t) = w(t) . And let o(t) denote the
constant relative rate of increase in the wage rate which is e@ected. by

producers at time T .
(1) w{u,t) = eF“’(t)](‘._"t) w(t)

Thus & machine with cai)a.cit'y- G(t,t) . and lebor requirement N(t,t) would be
_ expected wheh. new -- thet is, &t ¥ - to produce and yield q_uasifent for

_ 2(1;) years where 2(_1;)' is determined by the relation
(.5) o w{t + z(t),t) M(t,8) = Q(t,t)
vhich, using (1.4), reduces to

(2:6) SO (1) Ws,0) = Atst) -

It is evident that the prospective lifetime of new machines may vary

through time so that 2z{t) is not & constent. Variations in o(t) , for
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exemple, will clearly produce changes in z(t) . In section 4 a growth model

* Also, note that it is only when we ignore gestation periods, as we do,
that the initial wage rate that a new machine owner would haeve to pay, w(t) ,
can be taken as a datum. If a gestation period were introduced, the investor
would choose & machine for time w , wu >t , on the basis of the wage rate
expected to preveil then, w(u,t) .

is presented in which w(t) is made a dependent verisble instead of a parameter.

In order to select the optimal type of new machinery the producer needs
& discount rate to compsare prospective quasirents occurring at different times.
Let T(u,t) denote the rate of retwrn which the firm expects at time t to
earn 611 investments of time u . of course, the firm can calculate the rate
of retuwrn which they anticipate earning on current investment: this is denoted
r(t) « It will be assumed that producers expect the rate of return on new
cé.;pital 1o remain at iis current level, even though pest rates of return may

have differed from the present rate. Thus
(x.7) r{u,t) = r(t) for ell w > t

Of course, producers may be wrong and r(t) may in fact change through time.

Producers have to determine the scale and labor intensity of new
machines in the light of these expectations and the technological possibilities
betore themnm. | To eliminate the scale decision we take as exogenous the constant-

dollar level of expenditures on new machinery at time v, I{v) end derive the
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implied »(v) . With I(v) given, the problem reduces to the question of
"labor intensity": Shall those I dollars be spent on a type of machinery
requiring much or little lsbor (at capacity)? Presumably an engineer who is
hired to design a machine costing I dollars can offer one heving greater
capacity <the greater is the amount of labor which the machine can utilize.
Labor-using machinery which does not produce more than lebor-saving machinery
is inefficient and never leaves the drawing board. We shall assume that the
relations among capacity, labor requirement and cost of new (efficient) plants

at time v are given by the familiar Cobb-Douglas funciion:

B'(v)> ,
(1.8) Ww,v) = B(v) (v v, 0<p <1

The function B(v) indicates the state of the technology at time v . The
assumption of cé@etition requires that a + f <1 and through much of the

*
peper it ie required that o+ B = 1 (constant returns to scale).

* On the economy interpretation, I(v) cen be measured in the same units

as Q(t,t) , e.g., pounds of putty. On the industry interpretation, (1.8)
effectively assumes that the prices of all machine types move equiproportionately
50 that investment outlays can be deflated without any index number problem
arising.
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2, The lebor intensity of new machinery.

Since the labor requirement (for capacity output) of any type of
machinery is immuteble, once chosen, it is impossible to buy a machine now
which uses the optimal smount of labor at all times during its lifetime.

The machine having a labor requirement such that it yields the greatest possible
flow of quasirent in the near fubure will not be the machine yielding the
greatest possible flow of guasirent later when the wage rate is higher. The
optimal machine type at time t has the labor requirement, N(t,t) , which
maximizes the sum, denoted by U , of the expected discounted gquesirents over

its expected lifetime:

(2.1) U = 7+z(t) R{u,t) o Ir(t)1(u-t) o
. )

where R{u,t) i1s the flow of quassirent expected as of 1 {0 accrue at time u .

By the assumptions made above,

(2.2) R(u,t) = Atst) - w(t) ) §p 0

Equations (2.1) and (2.2) yield

(2.3) U =q(s,t) 1}+z(t)e_;r(t)](u-t)du_w(t) Rt t) '}+z(t) e;@(1;)-1-(1-,)](1;-t) au

which is to be maximized with respect to N (%t,t) , subject to the production

function (1.8) and the operating lifetime function (1.6).
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o

To find the optimal N(t,t) we take the derivative

s letting

o/
=

both z(t) and Q(t,t) very with N(t,t) , end equate it to zerc. This yields

- t+2(t) t+§(t)
g_l% tf e'tr(t)](u-t)du - w(t) tf egé(t)-r(t)](u_t)_du

(2.k)
+ %—% e*r(t)g(t) t,t) - w(t)W(t,t) em(t)g(t,)] - o

The expression on the left has to be evaluated et the optimal g(t) if the
solution of (2.4) for W(t,t) is to be optimal. Recalling {1.6) we note that
the bracketed expression must equal zero. The fact that a slightly smaller
lebor reguirement will increase slightly the prospective lifetime of the plant
is irrelevant to the choice of machinery because guasirent towsrd the end of

the life of the plant is zero!

Since the integrands in (2.4) are exponential functions an additional

simplification is possible and we obtain:

M = ct(g) w(t)

(2.5) 3 R(t,t)
3 _ o-lr(t)=(£)12(%)
~ - it . -
where ct(z) Y ) T 1 . e T(®) z(t)

Thus the marginal product of the capacity labor requirement is equated to
the current wage rate multiplied by some constant, ct(;) » VWhich is a

reflection of expectations.
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Assuming that r(t) > w(t) , it is shown in Appendix A that

ct(O) = 1 . But of courge g(t) >0 . It is shown also that ct(;) > 1

~
and moreover that ct(g) is monotonically increasing in z(t) , for all

it

z(t) >0 . It is obvious from (2.5) that co(®) = ok,

which is the upper limit on ¢ t(:*«;) and which is approached asymptotically.

The assumption that r(t) > w(t) seems reasonable in view of the
rélatidn between actusl rates of return and actual growth rates of real wage
rates in progressive economies. It is clear from (2.5) that as o(t) approaches
r(t) the lebor intensity of new machinery epproaches zero. The growth model
of section 4 shows that the operating life of machinery would become infinite
and the produétivity of lebor would vanish in this process. Therefore we can

safely rule out the case where o(t) > r(t) .

Combining the merginal productivity formuls from the production
function (1.8)

(2.6) 0 8lt,8) . g 8ltt)
9 W(t,t) N(t,t)

with (2.5) yields

o) Fop) _ Cel®) W)
A N(t,t) B

Equations {2,7) and (1.6), which can be writte

(1.62) Yat) | (e)a(t) w(t)
(t,t) ’



constitute two equations in two ur¥nowns: the prospective life of the new

machine, g(t) ; and the machine's optimal "lebor intensity", as defined by

the ratio M . These two equations are graphed in Figure 1.

Q(t,%)
3 .
N
/T< o Py
.
Tk — — _-._/~_WWWM___
AR
/, ' / o(z)w
‘ B
g /
Y /
o e z
Figure 1
The intersection of the curves marks the optimal values of % and 2 .
N

By virtue of the assumptions O<o (t) <r(t) and p <1 & unique solution

exista,

The values of N(t,t) and Q(t,t) depend upon the amount to be invested,

I(t) , which we take &s exogenous. The production Ffunction (1.8) and (2.7)

imply
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| - B . 2

(2.8) At,t) = P B(t) 1B 1(e)rP
(e (2)w(t) P |

and

> N .

(249) | Nt,t) = _B3B(t) {1 I(‘t)i:g

e (2)w(%)

The rate of return, r(t) , remains to be determined.

This is defined by the relstion

AR 42
(2.0 [ aRIuﬁt o b0 (u-t) o L 4
S &
Why should this rate of return be expected to prevall forever? If our
- competitive producers sre continuously maximizing profits they must be investing
~at a rate such that the rate of retwrn is equated to the rate of interest
charged in the credit market. (If there are constant returns to scale, the
interest rate must do the adjusting.) Thus the assumption of a constent v{t)

meens that—pfoducers expect the rate of interest to remain constant.

Ru,t) _ (L,
From (2.2) we have 1%(“5))' = T](:-(_'ETl .

Meking this substitution in (2.10) and evaluating the integral, one finds

t,t) r{t) -
I{t = l_e-r(t)z(t)

(2.11)

which, upon differentiating the production function (1.8), ylelds
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I(t - r(t) _
M 1 o ()z(%)

(2.12)

Eguations (2.8) and (2.12) determine r(t) . Of course r(t) depends
wpon w(t) . If there are constant returns to scale (a+ p = 1) ‘then r(t)
it independent of the extent of current invesiment, I(t)s (But w(t) will

depend upon the total past investment.)

Equations (2.7) and (2.12) yield the least-cost capital-lsbor ratio.
If there are constant returns they imply

———

O DR SR L - o lr(6)al)]a(t)
R(e,e) @ ) e(t)

(2,13)

e
——

The righthand side is the marginal rate of substitution. In the neo-
classical case, in which capital is continuously reborn, the future drops out
and the marginal rate of substitution is equated simply to w(t)/r(t) . Here

the future hags to be tgken into account.
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5. Eguilibrium aggregate output and employment.

The equilibrium or "capacity" output of the entire industry (or economy),
*
denoted Q (t) , is defined as the sum of the optimal outputs of the constituent
* *
firms., N (t) =ball denote the asssociated level of employment. By (1.3), @ (%)

is equal to the sum of the capacities of those plants which are currently profitable

1o operate.

Ae indicated by (1.3), the vintares of those existing machines which are
profiteble are those for which w(t)N(v,v) < §(v,v)} . Dencte the set of such

vintages by V(t, w(t) ) + Then aggregate equilibrium output is

* This notion of the set of profitable vintages is borrowed from the related
paper by Solow clted above.

(3.1) QL) = f v, v) av
veV(t,w(t) )

and eggregate equilibrium employment is

(3.2) N(t) = Fv, v) av
vev(t,w(t) )

Substituting {2.8) into {3.1) and (2.9) into (3.2) yields

- 1 e
(3:3) Q(v) = ai% / 2 B ()P gy
vel(s,w(t) ) {{e (2)w(v) )P |
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and

1 L -
(3.4) N(e) = 8P g ol R R
veV{t,w(t) ) CV(Z)V(V)

Bquation (3.k) provides & demand function for labor. At a sufficiently
high current wage no.existing machine cen cover wage cosis s¢ none operate and
the amount of labor demanded is zero. As the wege rate falls, eventually the
least labor intensive machines become profitable. The amount invested in that
vintege determines the amount of lebor demanded by these machines as shown by
(2.9). The smaller the wege the larger is the set of machines (or vintages)
that can operate and earn quasirents (up to the point where all machines are

*
operating)., Thus N (t) is a decreasing function of w(t) .

If the industry or economy being modeled is small, the real wage might
reasonably be treated as a parameter. If we want to meke the wage an endogencus
variable, the simplest way to determine its level is to assume that the wage rate
equates labor demand, N*(’c) s 1o a perfectly wage-inelastic supply of labor,

denoted I(t) . Then, in equilibrium

1 1 a
(3.5) Lt) = P BV | I )P gy

veV(t,w(t) )| e (2)w(v)

(3.5) determines how large V{t,w(t) ) must be, and thus how low w(t)
must be, in order to employ the availsble lahor supply. We assume that a non-

*
negative eguilibrium wage rate exists.

* This is Solow's "nonredundancy assumption" {op. cit.) .
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Wwith V(t, w(t) ) Xnown, sggregate output cen be computed from (3.3).
A polnt of some methodological interest is the absence of I{t) from the output
equation. In Appendix B it is shown that it is not posgible in genersl to express
output as a function of labor and "capital.” The reeson appears to be that,
loosely speaking, lsbor is not allocated over machines in any systematic way
(2ccording to & set of rules which apply at all times, e.g., "equalize lsbor's
merginal productivity on all machines”) but rather according to historicel
accident. Certain special histories do edmit & production function. If the wage rate
is stationary and expected to be so {w(t) = 0) then aggregate output can be
written as & Cobb-Douglas function of sggregate lsbor and cepitel. If the wage rate

is constant it mekes no difference whether cepital is putty or clay.

Summarizing; Given the history of investment end employment -- thus an
inventory of machines and their lebor requirements -- we can determine potential
output end e_mployment at verious wage rates. Given the current labor supply, the
equilibrium wage rate, output end employment are determinate. From the wage rate
and the current rate of investment we cen determine the labor requirement and
cepacity output of new machines, provided we know the expected rate of increage in
the real wage. Thus the whole future course of output and the wage rate is
determined.

As & model of growth, the above is incomplete in that it treats investment
and wage expectations as exogenous. There is however one special case -- the
famous ;’gold.en age" of exponentisl growth -- in which these problems can be solved
simply i’f not entifely satisfactorily. These simplifications suggest certain
short-cuts which might be tsken in practical application of the modiel. In particular
the set V(t,w(t) ) cen be characterized guite easily. Also, to the degree thet
the exponential case approximates actual experience, the analysis may eld in the

understanding of long-term growth and distribution.
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4. Exponential growth.

Exponential or golden-age growth may be defined as an equilibrium in
which labor, investment and output all grow at constant relative rates with

the latter two growth rates equal.

In meny models this equilibrium will be approached ssymptotically upon

the following conditions:

{4.1) I(t) = s Q*(t) ’ 0<s<1l
(4.2) B(t) = B M 23>0
(43) i(t) = 1, ¢, y>0

That is presumably true of the model here but we are unable to show
the necessity or inevitebility of this exponential eguilibrium. We are able
to find a golden-age solution to these equations. The difficulty lies in

showing that it is the only asymptotic solution possible.

The solution found has the following properties. First of all, outpub

and investment grow exponentially. Thus

(Lak) Q(t) = 5% Q(0)

Second, there is an age level, z(t) , such that all machines at
time t which are older than z(%) sre too lebor-intensive to be profitable
to operate while all newer machihery is profitable to operate; and this age

level is constant through time. Thus

(L4e5) z(t) = =z

*
Of course the values of g , Q (0) and =z have to be determined.
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Qur procedure for showing that this is a solution to the model is to
adopt {4.4) and (4.5) as assumptions. Then it is shown that associated with
this trial solution is & time path of the real wage and Interest rate which

will sustain this equilibrium.

The first step in finding the long-run golden<age solution is to find
the limiting distribution of employment over the operating vintages of machines.
In Appendix ¢ it is shown, by virtue of the eguation (derived from {3.2), (U4.2)
end (ke3) ). |

t
(4+6) L, e”® =‘b [ K(vyv) av ,

that, in long~run equilibrium, the smount of labor assigned to new plants (and
also to plants of any age x < z) must grow exponentislly at the same rate 7y .
Therefore, the "equilibrium" pla.ﬁt-age distribution of lsbor requirements is

“exponential." The labor assigned to new machines ie relsted o the totel

ia.bo:_' supply as follows:

. T = I AN rATE S A
(keT) N(t,t) L(t) o L, e e

Substituting into the production function, (1.8), the expression for

E(t,t) in (4.7), I(t) as given in (4.1) and B(t) &s given in (k.2) ylelds:

(L.8) At,t) = B, MPr IV @ Q ()% Lg Pre —-?1—-‘_-1 B
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Noting that, by the constant 2z assumption

t

(1.9) () = [ v,v) av
Ttz
we obtain
' %
(4.10) Q(t) = B, & 154 [;—7—_;5 Bt [ MPTNGN () ay
-2 -2

Little seems to be known sbout the asymptotic behavior of the solution(s)
of non-linear integral equations like (%.10). One solution is the exponential

*
growth of Q (%) .

Retreating behind the exponential growth assumption, (h.h), we can write

t
(4.11) Q*(t) = B ga Lg ;2’._75:\ Bt J e(l+ﬁ7'|'f18)v Q*(O)a av
-e -7

Tt follows essily that Q {t) grows at the rate X + By + ag ; but

*,
also at the rate g by definition. Equating these we find that Q {t) grows

MPy
at the rate T .

"

Next, solving for the "level," at some erbitrary t =0 , of the

exponential time path of output, Q,*(O) , one finds

o 1
: - * T [ .p |1eE P Bl T
(Le12) Q(0) = = {§0Lo [g [;e_?z] }

where g = -l—_gz .
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Solutions resembling {L4.12) have been obtained by Johansen(3p. cit.)
but our model differs from his in that the opersting life of machines, z(t) ,

is & varisble decided by economic considerations instesd of a fixed pa.ra.fneter.

We turn now to the remaining unknowns. Capital’s relative share, its

operating life and its rate of return have to be solved simidltaneously.

One of the links between the wage and the operating life of machinery

is the ex post snalogue to the expectational equation (1.5):
(ka13) w(t) Wt-z, t-z) = Q(t-z, t-z)

Tf 2 4is constent and G(v,v) and ¥N(v,v) grow exponentially at rates g

and 7y Trespectively, then w(t) must grow exponentially at the rate g -7 .

Recalling the exponential-growth relation beitween N(t,t) and IL{t)

in (4.7) and the _ou’ci:ut analogue

~g2

i

(h.1k) At,t) = Q*(t)[ .

we find the equilibrium wege rate as a function of productivity:

- (g-r)z Q(t
(_h.l5? w(t) b(z) e i
where
b(Z) = ..g_ . E.:E;.Zi
, 7 1. 8

This equation is essentially (1l.6a) of section 2 and it is the first

of three equations we need.
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Another equation necessary for determining the operating life of machinery
involves the rate of return on new investments. ‘We suppose that investors are
gble in golden-age equilibrium to predict accurately the rate of return, the
rate of Increase of the wege (w(t) = g - y) and the lifetime of new machinery
(g(t) = z) « Then from the golden-age relations (%.1), (k.7), (4.1%) and
equation (2.12) it follows that

%- = £(z)

where

l-e-gz

B — .-

T
l-e

-
(%.16) £(z) =| =

g
Since g, o, and s are constents, r (and f(z) ) must be constant

through time if 2z 15 constant.

The third and last equation for determining distribution and the operating
life of machinery recognizes that the labor intensity of the economwis productive
processes (whence also the operating life of machinery) is the product of
investor decisions and is thus & function of the rate of return and the real

wage. Turning back to (2.7) and combining this with (L.7) and (4.14) yields

*
Q (t). w(t) <z
(4e17) TE T B _H} =

where
5 ~{r-w)z
Q(Z) = 1 . L "2
k JEE i\ 1~e

-ra
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Of course, c{z) is cv(z) of section 2 without the time subscript. Since _

r and ® are constant over time, the function c(z) is independent of time.

The three equations (h.15), (4.16) and (4.17) contein three unknowns,
the operating life of machinery, the rate of return and the ratio of the wage

rate to output per unit of labor (i.e., labor's relative share).

To solve for r and 2z , write

(4.158) ‘ﬂ*EL = b(z) o-(8-7)z
| Q (%) |

and

(b.17a) ?‘:(%)_ - B ‘53

vhere W(t) denotes the wage bill, w(%) L{t) .

Equating the two expressions ylelds

(%.18) e(z) = pel8Y)

(4.18) together with (4.16) constitute two equations in two unknowns, r &and

z . These equations are graphed in the upper quadrant of Figure 2 below.

The diagram shows that a solution exists for almost all values of s .
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*
Readers who wish to pursue this further may consult the accompanying footnote.

* The relation between z and r in {%4.18) can be derived from the lower

gusdrant of Figure 2. As r 1is increased, (e.g., from r, to T } c{z) pivots
downward around the vertical intercept at ¢(0) = 1 . This causes the inter-

section of c(z) and Be{g'ﬂz to move downward and leftward along the latter
curve, thus reducing 2z . As r approaches infinity =z tends to a positive

lower limit, 2 , where Be(g"'y) =1 . On the other hand, as r falls and
approaches @ =g -y , c{z) shifts upward toward infinity, causing the

intersection with ﬁe( €772 &5 move upward and rightward without limit. Thus a
finite 2z requires r >@® . The relation between z and r in (L4.18) is
therefore inverse and asymptotic to these two lower limits.

- (4.16) also implies an inverse relation if s <a . Then r > g so that,
relying once again on Appendix A, f£{z) is increesing in 2z with upper limit

?g' « As 1 1is increased, £(z) pivots upward around the vertical intercept
where £{0) = 1 . This moves the intersection of f{(z) with %> 1 +to the left,
thus reducing z . As r approaches infinity z tends to zero. As r falls
and spproaches g— g , f£(z) pivots downward, approaching horizontality, so that
the intersection with % moves to the right without limit, so that z approaches
infinity. E£iace % g>g>w, the inverse reia.tion between 1T and g dimplied
by (4.16) must intersect the relation implied by (%.18).

If s=a, r =g independently of =z .

If s>qa then r<g and f(z) is decreasing in =z with lower limit
Ig; s0 that r and =z are positively related rather than inversely. As 1
approaches zero so does 2z . As r approaches g— g , z approaches infinity.
Unless this upper limit to r , %g , from (4.16) exceeds the lower limit to r ,
which is ® , from (4.18), the curves do not cross and there is no sclution.
Evidently = solut?.on requires that g g>w or -§~< % = 14 + %Z « In progressive
economies r > g Seems to be the rule so that s <@ and this problem does not
really arise.
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Figure 2
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The graph indicates the effect of a change of the investment ratio from

s <a to 5, > o « The rate of return is decreased from Ty >g %to Ty < g

and the operating life of machinery ls increased from Zy to Zy -

What effect has a change in thrift upon labor's share of output?
(%.15a) indicates that thrift influences lsbhor's share through the operating
life of capitel. Appendix D shows that the righthand side of (Y4.158) is decreasing
in z and approaches zero as & lower limlt. (See Flgure %.) Therefore increased
thrift, by increasing the operating life of machines, decreases the share of

wages in total output.

What 1s the relation of labor's share, thus d.etermiﬁed, to the share
lebeor would earn in this modelfs ‘neoclassical analogue in which capital is putty?
In the neoclassical version lebor receives a share equal to B, the labor
elesticity of output, of the produce of every machine throughout its operating
life, Then laebor's aggregbte share 1s also equal to $ « There is no such
tendency in the present model where lebor receives 1ts marginal product on &

given machine only for an instant during its operation.

Figure 3, which graphs equations (4.15a) and (4.17a), shows the relation

between‘-‘—gl— end, B8+ If =, thenm r=g andzz = 1L for all 2
Q (t)
in which case E;,(&EL = B , The number of "young” machines yielding a share to

Q (t)
lsbor below B is balanced by the number of "old" machines on which lsbor earns

8 share exceeding B « If s <@ then r>g and 2z d1is smeller so that
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Figure 3
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E&El_ >pB + The "average" machine is more labor intensive as reflected in
Q (t)

the smaller z and higher r . Obversely, if s >a then r <g and z

is lerger so that Wil < B . It takes a long time, in this highly
Q (t)

capital intensive case, for a machine to grow old and yleld labor a share
of its output greater than B ; the relative scarcity of old machines depresses

*
labor's share below B.

* By (4.17a) if g =19 (or o = 0) then labor's share equals B
independently of g eand 2z . Labor emrns 1ts marginel product on all
mechines at all times and the neoclassical result is cobtained. But the
economy of the model is progressive (A > 0) sothat g~y =0>0.
However the example suggests that the scope for possible divergence
between P and labor's share is greater the more progressive is the
EeCONOHY
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5., Productivity and thrift.

These latter results cest new light on the question of the historical
importance and future utility of investment in raising productivity. The degree
of importance, by almost eny nessure, is a function of the caplital elasticity
of output, o . (This might better be called the investwent elasticity of new
capaclity, gross of retirements.) Recent practice has been %o teke the relative
share of capltal income in total output as a measure of this elasticity. This
is correct, under the neoclessical assumption that old and new capital are
both putty. But if old cepitel is brittle (and presumsbly if only old cepital
is less malleable than new capitel) then capital's share underestimates the
capitel elasticity in those economies where the rate of return exceeds the rate
of growth. A&s & rule, progressive and industrislized economies do exhibit a
growth rate well under the rate of return. In the UiB.4., for example, the
latter might plausibly be put anywhere between 8% and 20% (averaging over
all capital goods) but it is surely greater than 4% , the epproximate Americen
secular growth raﬁe.

This finding is encoursaging because if « is lerger than has been thought
then 80 too are the copportunitles for higher productivity through lncreased
thrift. This follows from the solution for output as a function of 8 and 2z
in (k.12).

‘The relstion between thrift, as measured by s, and the equilibrium
exponential ocutput path, Q* is interesting. Flrst there is the direct (capital~

deepening) effect upon productivity of an incresse in the investment retic. A

one per cent incresse in 8 will inerease by one per cent the number of machines
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of every age in the new equilibrium. The magnitude of this direct effect upon
productivity is measured by the partisl elesticity (holding z fixed) of Q*

=

TG which is increasing in « ;

with respect to s in (k.12), It equals
for this reason a high «a 1is favorable.

Second, there is an esdditional indirect (cepital-lengthening) effect of
an increase in the investment ratio. As s Increases so does z , in the
mammer described by Figure 2 . Bow does a change in the operating life of

mechinery affect productivity?

One can imagine an economy in which the operating life of machinery is
80 small that productivity suffers from the crowding of labor around brand-new
machines. If the operating life were increased, productivity would rise because
the aveilsble labor would have more s albeit less modern, machines on which to
work. Continued lengihening of machinery's operating life would increase
productivity without limit were it not thet the progressively older machines
being dusted off and assigned a portion of the labor force are progressively

*
less "efficient" (more lsbor using) than the competing new machines. Eventually

* Could e mechine be found sufficiently old to sbsorb the whole labor force?
No, because the labor force was never as large 88 now 30 none such machine would
have been builti

a finite operating life is reached, call it z , such that any further lengthening
produces a net decline in productivity: The effect on productivity of spreading
workers over more (s&lready existing) mechines is more than offset by the resulting

decline in the average modernity and "efficiency" of mschinery.
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What is the typical position of the progressive economy with respect

to this indirect effect? If thrift is sufficiently little that z <z , then

the indirect effect of an increase in thrift will reinforce the direct effect,

both working to raise productivity. If thrift is so great that z > E', then

the capital lengthening effect works against the capital deepening effect of

" increassed thrift. We show now that progressive eéonomies ere typicelly in the

former situation.

To find the algebraic sign of the indirect effect we take the logarithmic
pertial derivative of Qf with respect to 2z in (4.,12). Assuming constant

reburn to scale, this equals

£g__ . p L
e8%.1 NARE

vhich is positive for z <z and negative for z >z . A little manipulation

shows thaet the derivetive is positive if

b(Z) e-(g'7)z > B

%
in the notation of the previous section.

* The result was first obteined by Messell, op, cit.

The ramiiier letthand expression is none other than labor's relative

share, E; (see 4.15a) « Therefore, the indirect effect is positive if
Q . .

labor's share exceeds P . As argued earlier, the latter condition is the

rule in progressive economies.
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It follows that the indirect gffect of an inerease in thrift supports

the direct effect up to the point where § reaches « , whence r =g eand

E{* = B o« Further increases in s will cause H* < B 50 that the indirect
Q Q

cepital-lengthening effect will work against the capital deepening effect. Thus

there are increasing, then decreasing, marginal returns to thrift.

The proper objective of investment policy is not meximum productivity
but an optimal path of consumption. The erea of invesiment policy is well
beyond. the scope of the present paper. However it may be of interest to many
readers that ﬁhe policy of equating investment to profits (quasirents) which
was proved to be a quasi-optimal policy for certein neoclassical models is

also a quesi-optimal policy here.*

* Edmund Phelps, "The Golden Rule of Acctmulation, "  American Economic
Review, 51, (September 1961)

The investment ratio corresponding to the highest attainsble exponential
time peth of consumption, C€(t) , will be said to be quasi-optimsl. Along this
: *

maximel path the totsl derivative of € = (1 - 8)Q with respect to s will

therefore be zero., This derivative is the sum of a direct end indirect effect:

S (el + E L I(-s)) = 0



- 34 -

If the same value of 8 should happen to equate both % end %CZ

£0 zero this value would be quasi-cptimal, for it would make the derivative

zero independently of %—:— +« In fect, such & solution occurs.

Firet s

*
gg- =-Q +(1-5) %—a 0

implies

B . §_ [ S
1-5 B8 * lFa
Hence, %";ao if s=qa.

_ oy _
But if s =a then =, = B 8o that %c; = O simultaneously.

Q

Therefore & = @ is quasi-optimal. This policy equates investment to quasirents.
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6. Concluding remarks.

Undoubtedly the reader can think of many desirsble generalizations and

modifications of the model.

The Cobb-Dougles function was sdopted out of convenience rather then any

evidence of its validity. DPossibly it can be replaced by a more general functiom.

A more serious restriction may be the essumption that existling machines
cannot be renovated. A renovation function epplying to old machines is needed
alongside the production function which applies to new machines. The investor
then has to allocate abstract new capital between new end old machines. And he
must consider the extent to which renovations can extend the lifetime of old

machines.

This is a "pure obsolescence" model in which the choice of physical
durability of capital goods is elided. If less durable machines cost less
(contrary to the assumption here) then it might pay to buy machines that "expire”

before becomlng completely obsolete. (Exponentisl decay is easy to introduce.)

Finally it may be important to introduce a second, mechine bullding sector.
Then an increase of the rate of saving will shift resources to this sector,
changing the structure of the economy. This can be expected to introduce many

complications and possibly to change some results.



- 36 -

Appendix A
g l-e 02
et £(z) = =+ « MAssume a>b>0.
b -z

Eveluating f(z) at z =0 by 1'Hopital's rule shows that f£(0) = 1 .

Cleerly f(z) »{ 88 z+w . Tmus £(=)>1.

Differentiating,
e-(aﬁb)z

b

(A.l) f'(Z) = b e®® - 8e®” + (a-b)

The algebralc sign of £*(z) is the sign of the bracketed terms. ILet &(z)
denote the value of these terms. Note that &(0) = O . Therefore if we can

show that @'(z) > 0 for all z then &(z) > 0, whence f'(z)>0.
Differentiating,

(A.2) o' (z) = a b (% - &°%)

Thisg is positive if a>b .
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A@endix B

The total lsbor requirement of the economy is
* —_
(B.1) KN(t) = { N(v,v) dv
veV(t,w(t)
This together with (2.9) of the text yield

1
(3.2) N(t) = P 6"(s)

1
where ¢} (t) = —E(E)-— 1-8 I(V)I:E dv
vev t,w(t)) (Z}W(V‘)

Therefore, (2.9) can be written

(B.3) Nv,v) = NT(P-)- (v -13—(1)———
‘ G (t) (Z)W(V)

which, together with the production function (1.8) implies

-#Bgv) I%
e (2)w(v)

Qo

P’%m

(B.14) Av,v) = B) T(v)® —Ll-z(v

which simplifies to

-
(3.4) I e rarerl IR SR O A OO
, , (cv(z)w(v) ) ‘
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Integrating to obtaln aggregate output, we find

(B.5) Q(t) = E (&) &) PN (4)

A 2
where H*(t) = / ELV) 5 1-8 il:(\z')l"B dv
vev (6,98} | o(2(¥))

* 5
It ie apparent that G (t) and H (t) are capital-like varisbles.

Unfortunately they differ in the exponent over (c v(g)w(v) ) « Therefore they
cannot be merged, for all time paths of I(v)} , unless ct(g)w(t) is constant

* * ’
over time. Then G (t) =K (t) end output can be written as a function of

- 7* . .
"effective capital," J (%) :

Q(t) = TP N6

1 o
where J*(t) = { 1—:-(-3-1 18 I(v)l"B dv
vev(t,w(t)

This is essentislly the production function obteined by Solow in his

extension of the neoclassical model to the case of investment-embodied technical

*
Progress.

* "Investment and Technical Progress”, in Mathematical Methods in the
Social Scienges, (Stanford, 1959).

It is interesting to notice that we can simply sum investments to obtain

"oapital only if @+ B = 1. If 'i% = 2 (increasing returns) then

investments must be squared before being sumed.
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Appendix C
Differentiating
b _—
(c.1) (%) = ] X(v,v) av
1=z
one obtains, for.all v ,
(c.2) N(v,v) = ];(v) + N(v-z, v-z)
Therefore
(Ce3) N(v,v) = I..(v) + f.:(v-z) + ]?J(V'-QZ) + vees ¥+ 1..{v—nz+z) + N{v-nz,v-nz)

Sinece N(v,v) <L(v) by (C.1) and since I(v) venishes as v + - » by virtue
of its exponéntial growth, ﬁ(v-nz, venz)} goes to zero &8 n goes to infinity.

Therefore, as n sapproaches infinity we obtain

(Cadt) N(v,v) i(v) 1+e7% 472, ., }

whence , writing I{v)

]

y L(v) ,

(c.5) Wv,v) = (v)| L

Lee

i

-u?f z



Appendix D
(a=b) oz 1
= -\&-b )z a ,&_ . --
Let g(z) = f(z)e % Ko

where £(z) is defined in Appendix A and & > b > 0 is assumed.
By 1'Hopitel's rule, g{0) =1.
The limit, g(») , equals the product of the limits of £(z) and

e-(a-‘o)z , which is zero.

Differentiating,
(a+b)z R L
(D.1) g'(z) = E—SE—-E ae bz - be—az + (b-a)
(e™-1)

The proof that g'(z) < 0 pearallels the one for f£'(z) in Appendix & .



