COWLES FOUNDATION FOR RESEARCH IN ECONOMICS AT YALE UNIVERSITY

Box 2125, Yale Station New Haven, Connecticut

COWLES FOUNDATION DISCUSSION PAPER NO. 130

Note: Cowles Foundation Discussion Papers are preliminary materials circulated to stimulate discussion and critical comment.

Requests for single copies of a Paper will be filled by the Cowles Foundation within the limits of the supply. References in publications to Discussion Papers (other than mere acknowledgment by a writer that he has access to such unpublished material) should be cleared with the author to protect the tentative character of these papers.

On a Theorem of Scarf

Gerard Debreu

November 14, 1961

On a Theorem of Scarf

bу

Gerard Debreu

In [3], Herbert Scarf has given a remarkable solution for a classical problem of economics. In this note, I wish to suggest a simplification of his proof, and a slight weakening of his assumptions.

Let Ω denote the non-negative orthant of the commodity space R^ℓ . The economy is made up of N infinite sequences of consumers. For each $j=1,\ldots,N$, all the consumers of the j^{th} sequence have the same resources I_j in the interior of Ω , and the same preference preordering on Ω satisfying

- (1) $\left\{x \in \Omega \mid x \neq x'\right\}$ and $\left\{x \in \Omega \mid x \neq x'\right\}$ are closed for every x' in Ω ,
- (2) for every x in Ω , there is x' in Ω such x' $\geq X$,
- (3) $x^{i} \geq x$ implies $t x^{i} + (1 t) x \geq x$ for every t such that 0 < t < 1,

Research undertaken by the Cowles Commission for Research in Economics under Task NR 047-006 with the Office of Naval Research. I thank Herbert Scarf for the privilege of seeing his ideas develop that he gave me last spring. To these conversations I owe my interest in the subject of his article.

(4) $x \geq x^t$ for some x^t implies that x is interior to Ω .

An allocation is an N - tuple of infinite sequences $\left((x_1^i)\ ,\ \dots\ ,\ (x_N^i)\right)$ of points of Ω , where x_j^i is the consumption of the i^{th} consumer in the j^{th} sequence, such that

(5)
$$\lim_{n\to\infty} \left(\begin{array}{ccc} n & N & x_j^i & -n & \sum_{j=1}^{N} & I_j \\ i=1 & j=1 & & & j=1 \end{array} \right) = 0$$

A finite coalition S of consumers blocks an allocation $\left(\begin{pmatrix} x_1^i \end{pmatrix}, \dots, \begin{pmatrix} x_N^i \end{pmatrix}\right)$ if, for every consumer (i,j) in S , there is a consumption y_j^i in Ω such that $\sum_{\substack{(i,j) \in S}} y_j^i = \sum_{\substack{(i,j) \in S}} I_j^i$, and $y_j^i \gtrsim x_j^i$ for every (i,j) in S , while $y_j^i \gtrsim x_j^i$ for at least one (i,j) in S .²

The core of the economy is the set of allocations that no finite coalition blocks.

An allocation $\left((x_1^i), \ldots, (x_N^i) \right)$ and a price system p form an equilibrium of the economy if, for every (i,j), the consumption x_j^i is a greatest element of the set $\left\{ x \in \Omega \mid p \cdot x \leq p \cdot I_j \right\}$ for $\frac{1}{j}$.

It is convenient, here, to identify the resources of consumer (i,j) by I_j^i , although I_j^i is a constant with respect to i. Given the assumptions made on preferences, our definition of a blocking coalition is easily seen to be equivalent to H. Scarf's.

Theorem: Given an allocation $\left(\underbrace{(x_1^i), \dots, (x_N^i)}\right)$ in the core, there is a price system p with which it forms an equilibrium.

<u>Proof:</u> By (1), there is a continuous utility function u_j on Ω for every j ([1], p. 56). We denote u_j (x_j^i) by v_j^i . Two cases have to be distinguished:

(a) for every j,
$$\operatorname{Inf}_{i} v_{j}^{i} = \operatorname{\underline{\lim}}_{i} v_{j}^{i}$$
.

We introduce the notation

$$\begin{split} \mathbf{C}_{\mathbf{j}}^{i} &= \left\{ \mathbf{x} \in \Omega \mid \mathbf{u}_{\mathbf{j}} \left(\mathbf{x} \right) > \mathbf{v}_{\mathbf{j}}^{i} \right\} , \ \mathbf{1}_{\mathbf{j}}^{i} &= \mathbf{C}_{\mathbf{j}}^{i} - \left\{ \mathbf{I}_{\mathbf{j}} \right\} ; \\ \mathbf{C}_{\mathbf{j}} &= \left\{ \mathbf{x} \in \Omega \mid \mathbf{u}_{\mathbf{j}} \left(\mathbf{x} \right) > \operatorname{Inf}_{\mathbf{i}} \ \mathbf{v}_{\mathbf{j}}^{i} \right\} , \ \mathbf{1}_{\mathbf{j}}^{i} &= \mathbf{C}_{\mathbf{j}} - \left\{ \mathbf{I}_{\mathbf{j}} \right\} . \end{split}$$

All these sets are non-empty, by (2), and convex, by (3) and (1) ([1], p. 60). They also have non-empty interiors, for every C_j^i does. Indeed, let x be a point in C_j^i , i.e., such that $x \geq x_j^i$. By (1), x has a neighborhood in Ω all of whose elements $\sum_j x_j^i$. But, in that neighborhood, there are points interior to Ω . Any one of them is interior to C_j^i .

The basic property of the sets $\int_{\mathbf{j}}^{\mathbf{j}}$ is

(6) 0 is not interior to the convex hull of
$$\bigcup_{j=1}^{N} \prod_{j}^{N}$$
.

To establish this, we denote the interior of a set S by Int S , its convex hull by H(S) , and its closure by \overline{S} , and we first prove that

(7) Int
$$H(\bigcup_{j} T_{j}) \subset H(\bigcup_{j} Int T_{j})$$
.

Int
$$H(\bigcup_{j} T_{j}) \subset Int H(\bigcup_{j} \overline{Int} T_{j}) \subset$$

Int
$$H(\overline{\bigcup Int T_j}) \subset Int \overline{H(\bigcup Int T_j)} =$$

Assume now that (6) does not hold. According to (7), there are, for each j , a joint y_j^i in Int T_j^i , and a non-negative real number α_j , with $\sum_{j=1}^N \alpha_j = 1$, such that

$$\sum_{j} \alpha_{j} y_{j}^{t} = 0 .$$

Thus, one can find, for each j , a point y in $\prod_{j=1}^{N}$, and a non-negative rational number r, , with $\sum_{j=1}^{N}$ r = 1 , such that

$$\sum_{j} \mathbf{r}_{j} \mathbf{y}_{j} = \mathbf{0} \cdot \mathbf{0}$$

Multiplying by a common denominator of the r_{i} , we obtain

$$\sum_{j} k_{j} y_{j} = 0$$

for an N - tuple (k_j) of non-negative integers, not all zero. Since $y_j \in \mathcal{T}_j$, one has $u_j (y_j + I_j) > \operatorname{Inf}_i v_j^i$. Therefore, according to (a), we can select, in the j^{th} sequence, k_j consumers whose v_j^i are less than $u_j(y_j + I_j)$. This means that y_j belongs to the set \mathcal{T}_j^i of each one of these k_j consumers. Consequently, 0 belongs to the sum of the sets \mathcal{T}_j^i of the $k_1 + \cdots + k_N$ consumers we have selected. And the coalition of these consumers would block the given allocation.

Having established (6), we apply Minkowski's theorem to the situation it describes, and we obtain a hyperplane through 0 , with normal p , bounding for $\bigcup_{j=1}^{N} \int_{j}^{j}$, hence for every \int_{j}^{i} . We write this as $p \cdot \int_{j}^{i} \geq 0$, or $p \cdot C_{j}^{i} \geq p \cdot I_{j}$. However, C_{j}^{i} is contained in C_{j} for every (i,j). In addition, by (3), every x such that $x \geq x_{j}^{i}$ is adherent to C_{j}^{i} . Therefore

(8) for every (i,j), $x \gtrsim x_j^i$ implies $p \cdot x \ge p \cdot I_j$. In particular, $p \cdot x_j^i \ge p \cdot I_j$ for every (i,j). If any of these inequalities were strict, the inner product of p and the vector in the parenthesis of (5) would not tend to zero when $n \to \infty$. Hence

$$p \cdot x_j^i = p \cdot I_j$$
 for every (i,j).

Finally, since I_j is interior to Ω , it follows readily from (8) ([1], p. 69), that x_j^i is a greatest element of the set

$$\left\{x \in \Omega \mid p \cdot x \leq p \cdot I_{j}\right\} \quad \text{for} \quad \stackrel{\angle}{\tilde{j}}$$

(b) for some
$$j^*$$
, $Inf_i v_j^i$, $< \underline{lim}_i v_j^i$.

We will show that this case cannot occur. Notice first that, according to (5),

$$\lim_{n\to\infty} \begin{pmatrix} \sum_{j=1}^{N} x_j^n - \sum_{j=1}^{N} I_j \\ j \end{pmatrix} = 0.$$

Therefore the sequence of N - tuples (x_j^n) is bounded, and we can extract a subsequence converging to the N - tuple (x_j^0) . Clearly

(9)
$$\sum_{j=1}^{N} x_{j}^{\circ} = \sum_{j=1}^{N} I_{j}.$$

Moreover

 $u_{j}(x_{j}^{o}) \geq \inf_{i} v_{j}^{i}$ for every j, and $u_{j}, (x_{j}^{o}) > \inf_{i} v_{j}^{i}$.

The last inequality, which follows from (b), implies x_{j}^{o}, x_{j}^{i} , for some i, hence, by (4),

$$x_{j}^{o}$$
 is interior to Ω .

Let s(x,r) denote the open sphere with center x and radius r>0. We can choose r small enough for $s(x_j^0, r)$ to be contained in Ω , and for the utility of every consumption in $s(x_j^0, r)$ to be greater than $\inf_i v_j^i$. By (2) and (3), there is, for every $j \neq j^i$, a consumption x_j^* in $s(x_j^0, \frac{r}{N})$ such that

$$u_{j}(x_{j}^{*}) > u_{j}(x_{j}^{0}) \quad (j \neq j^{*})$$
.

We define x_{j}^{*} as equal to $\sum_{j=1}^{N} x_{j}^{0} - \sum_{j\neq j^{*}} x_{j}^{*}$.

Thus $|x_{j}^{*} - x_{j}^{0}| < r$. Consequently x_{j}^{*} is in Ω and

$$u_{j^{i}}(x_{j^{i}}^{*}) > Inf_{i} v_{j^{i}}^{i}$$
.

Also, by (9),

To conclude, select for each j, a consumer (i,j) such that x_j^i x_j^* . The coalition of these N consumers blocks the given allocation.

The theorem can be generalized without modification of the proof. For instance, the common consumption set X_j of the consumers of the j^{th} sequence may be any closed, convex set with a non-empty interior (instead of being Ω), provided that the asymptotic cone of $X = \sum_{j=1}^{N} X_j$ satisfies $AX \cap (-AX) = \{0\}$ (to insure that the sequence (x_j^n) , at the beginning of (b), is bounded). Assumptions (1), (2), (3), and (4) are made on the preferences $\{j\}$ on $\{j\}$ on $\{j\}$. Then, given an allocation in the core, there is a price system with which it forms a quasi-equilibrium (a definition of this concept, and a discussion of its relation to the concept of equilibrium will be found in [2]).

Cowles Foundation, Yale University and University of California, Berkeley.

References

- [1] Debreu, G., Theory of Value, New York, Wiley, 1959.
- [2] Debreu, G., "New Concepts and Techniques for Equilibrium Analysis," Cowles Foundation Discussion Paper, No. 129.
- [3] Scarf, H., "An Analysis of Markets with a Large Number of Participants," mimeographed, Institute for Mathematical Studies in the Social Sciences, Stanford University, 1961.