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THE ACCUMULATION OF RISKY CAPITAL:

A DISCRETE-TIME SEQUENTIAL UTILITY ANALYSIS

Edmund S. Phelps*

This paper investigates the nature of the optimasl lifetime consumption
strategy of & household whose wealth holding opportunities sre confined to a
single, risky asset. Consumption, nonwealth income and cepital growth are
treated here as periodic. A continuous-time formumlation of the same problem

was presented in a previous Cowles Foundation Discussion Paper [12] .

The problem described belongs malnly to the theory of personal saving.
Models of saving behavior heve thus far been entirely deterministic [%, 7, 8,

11, 13, 14].%* TIn fact the saver is always exposed to the possibility of a

*¥ An exception is an unpublished Cowles Foundation Discussion Paper
by Martin Beckmann [2] . Although that paper deals with wage rather than
capitel uncertainty, the technique employed is the same one used here and
I have henefited from readlng it.

capital loss. So it seems relevant to ask which results of that theory carry
over and which have to be quelified upon admitiing capitel risk into the theory.

The effect of varistion in the riskiness and expected return of capital upon

* The author is grateful for discussions on this subject to T. N.
Srinivasan of the Cowles Foundatlon and to S. G. Winter, Jr. of the RAND
Corporation. .
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the optimum consumpcion rate 1s also of interest. The model developed below
to meet these guestions resemn.es Ransey's [13] more than contemporary models

{7, 11] so that it is lergely Ramseyan results which are modified and extended.

The plaen of the paper is this. TIn the following sections the
individual's utility function and the stochastlic capltal growth process are
specified and discussed. Subseguently, the "structure" of the optimal con-
sumption policy, that is, the way in which consumption depends upon the
individual's sge and cspital, is established. ILittle else sppears deducible

without further restrictions upon the utility function.

Thereafter we focus our attentlion on indlviduals having certain
monomial wtlility fﬁnctions. These speclal cases serve to show possibilitles.
Among these is the possibility that the classical phenomenon of "hump saving"

[8, 13] need not oceur, quite spart from reasons of time preference, if capltal
is risky. Instead & low-capital "trap" reglon is possible in which it 1s optimal
to decumulate capital, no matter how distant the plamning horizon. These
utility functions have the intriguing property that they make consumption lineer
homogeneous in cepltal and permanent nonwealth income and linear in each of

these varisbles. Finally the directions of the risk and return effects upon

consumption are investigated.

l. The behavior of cggital.

In this model all wealth is held in the form of a single asset which
we may call capital. The asset 1s homogeneous in that the same probability

distribution governs the rate of return on each unlit of the asset. Moreover,
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each unit of the asset experiences ex post the seme rate of return.*

* Alternatively capital might have been envisioned more lilke identical
female rebblts. In any short time period, some units of the asset would
multiply while others not. This type of stochastic growth was investigated
in [12].

The individual's consumption opportunities occur at discrete, egually
spaced points in time. These points divide the lifetime of the consumer into
N periods. The state of the system at the beginning of each period,
n=1, 2, ..., N, 1is described by the variable X the amount of capital
then on hand. At this time the individual chooses to consume some amount c,
of this cepital.

The unconsumed cspltal is left to grow at a rate which is not then
known. In sddition to the capital growth, the individual receives an amount y ,
of nonweelth income at the end of the period. This income is the same each

period. Consequently the amount of capitael availeble for consumption in the

next perlod is gliven by the difference eqﬁation

(1.1) X4 = B, (xz1 - cn) + v, x, = k

where Bn - 1 is the rate of return earned on cepital in the nth pericd.

We will assume that the random variesbles Bn are independent and
drawm from the same probabllity distribution. There are m possible rates of

return, 0 < Bi » i=1,2, ..., m . The probability of the ith rate of
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return willl be denoted Py (the seme from period to period). In addition
m

we will assume that E = I piai > 1 so0 that the consumer expects caplital
1
m -
to be productive. However, f pi(Bi - B)a > 0 so the reaslized return may

differ from the expected one.

2. The utility function.

This model postulates e consumer who obeys the axlioms of von Neumann -
Morgenstern utility theory [1, 5]. His consumption strategy (or policy) can
therefore be viewed as that which maximizes the expected value of utility,

which is determined up to an increasing linesr transformation.

Second, we suppose that the lifetime utility sssoclated with any
consumption history i1s & continucusly differentiable function of the amount

consumed, at the begimning of each pericd.

The lifetime utility functlion is assumed to be of the independent

and gdditive form

N
(2.1) U = ¢ ot (e, ) , o<a< 1
1=1

The implications of this functionsl form are several., Preferences for the
consumption "chances"” or distributions of eny period are inverient to the
~ consumption levels befalling the individual in other periods (separability).
Preferences among consumption subhistories in the future are independent of

the age of the individusl (stationarity). Preference for a consumption
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strategy is independent of or unaffected by eny serial correlation in the
random consumption sequence associated with that strategy (independence).
However the necessary and sufficlent conditions for independence of utilities

when choice takes place under uncertainty have yet to be uncovered.¥

* The independence of utilities when choice takes place in an environment
of certainty has been axiomatized by Debreu [6]. The meaning of additivity with
a varlable utility discount factor and an Infinite number of periods has also
been investigated by Koopmans [9].

The same axioms which yleld the Neumann-Morgenstern utility indicators

also imply that U(cl, ceny CN) is bounded from above and below.¥* Consequently

* A proof of boundedness may be found in [1] and [5]. The proof
uses the "continuity axiom"” and a generslization of the St. Petersburg game,
the idea for which Arrow [1] credits to K. Menger.

u(cn) is also a bounded function. Let u and u denote the upper and lower

bounds of u(cn) , respectively.

Finally we postulate thet the individual Strictly prefers more
consumption to less (monotonicity) and that he is strictly averse to risk
(concavity). 'The latter means that for every pair of consumption histories

. .
(cl, veey cN) and (cl y
strictly prefer the certainty of the compromise history & + (1 - 8)c’  to

cee, cl‘;) to which he is not indifferent, he will

the mixed prospect offering him the history c¢ with probability © and the
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history c® with probebility 1 -® , 0<8<1 . It follows trivially that

u(cn) is a strictly increasing snd strictly concave function.

3. Derilvation of the functional equations.

We seek the consumption strategy (or equivalently, policy) -- denoted
by the seguence of functions [cn(x)] for x>0,2=1, 2, +.., N -- which

maximizes

N
_ -1
(3.1) Ie) = e:BC.p Inil o u(x , cps B)]

subject to the relation (l.l). Notice that the optimal con=1l ..., N,
will be a stochastic rather than predetermined function of n .

To treat this variationsl problem we tuwrn to the technigue of dymamic
programming [3] . Observing that the maximum expected value of lifetime utility
depends only upon the number of stages in the process and the initial capital,

k , we define the function
(5-2) wy(k) = max J(c)

where the maximum is taken over all admissible policies. The function defined
mey be interpreted as the utility of wealth function of the optimizing consumer

having N periods of life remeining.

Next we reduce the problem with N deecislon veriasbles to a sequence

of N problems, each involving only one policy varieble, the decision which
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must be teken at the current moment. The argument starts wilth the observation
that with the elapse of each period the individual is confronted with another
multistage decision problem which differs only in having one less stage and,
in general, a different initial capital. By the "principle of optimality" [3],
if the individual's consumption strategy is optimal for the original N stage
process then thet part of the strategy relating to the lagt N-1 stages must
also constitute e complete optimel strategy with respect to the new N-1

stege process. This principle, equation (1.1), the edditive utility function
(3.1) and the definition (3.2) combine to yleld the followlng seguence of

equations 1n the unknown utillity of weslth functions

m
343) (x) = wrx  [u(e) +a = (B, (x-c) +y) 1]
( wylx Ogch u(e 2 Py vy _1(By(x-c y

for N> 2, and

(3.4) wi(x) = mex u(ec)
O<e<x

which defines the utility of weslth in the single stsge process. Without a
subscript, the symbol ¢ shell elways denote the value of consumptlon in the
first period of the (not necesserily original) multistage process. Similarly

x shall denote ceplital at the start of whatever process ls being counsidered.
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L. Properties of the optimal consumption pcil:y.

We show first that the optimsl coasumption stravegy is umigue upon

the assumptlons made sbove. In other words, the optluum consumption c, is
s unique function of X for every n . To d» thls we have only to show that
wN(x) 1s strictly concave for all N and x>0 .

That each function in the sequence {WN(.&)} 1s strilctly concave can

be shown inductively as follows. By (3.4) and the postulate that ule) is

strictly increasing and striectly concave we obtain

(4.1) e{x) = x , x>0
snd
(k.2) wl(x) = a{x) , x>0

as the solutions to the single-stage process. Since u(x) is strictly concave,

wl(x) must else be strictly concave.

Suppose now that WN(X) 1s strictly concave. Then the function

= i e ‘N-;c_t"l- P ONSES N
GN+1(X’ ¢) =ule) +a s Py WN(ﬁi(x o) +y ) is a strictly conzave function

of x and c¢ for x,c 2> 0O.%

* Strict comcavity of f(x,y) in x and y means f{;is;x'l + (l-JL)x;2 » Ay

+ (1-x)y2) > hf(xl,yl) + (1-n) f{xg,ya) for O A <1,



Then W, ,(x) which is given by

N+1

(4.3} WN_l_l(}{) = max G l(x, e) , N> 1

is also strictly concave in x for x < 0 as the following lemms [3, pp. 21-22]

demonstrates.

For 0<A<1,

(4.4) (Ax, + (1 ~2) x)) = G + (1-M)x,, <)
w(h xg X5 O$_<§..;§+(l-l)xe (Xxl ( X5, ©

Replace c¢ by the quantity ¢ = ie, + (1 - )..)0.2 where 0 < ¢g £x eand

1
0< c2 < x2 +« 'Then
. - +{1- -
(4.5) w(lxl+(l l)xe) . <ma.x G(‘.\xl (1 l.)xa, xcl + (1 1)c2)
c., < X%
- "1l -="1
6] ﬁ c2 < x2

Since G(x,c) i1s strictly concave in x and e,

(%.6) G(Axl + (l-)u.)xg, hey + (l-)\,)ce) > ;kG(xl,cl) + (1-A) G (xe, c2)

whence
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%.7) + (1-2) x,) > Lr a(x,, 1- )
(4.7 w(kxl ( X, . émzz <x, A (xl cl) + (1-A) G (x2 c2)

0< s < X,

> A max G(xl,cl) + (1-1) max G(x
0

(, < 8] <x a4 X
l <" 2 <' 2

1

>aow(xg) + (1a2) v (xp)

On the spplication of the lemma to equation (4.3) it follows that

wﬂ+l(x) is strictly concave provided that Wﬁ(X) 1s strietly concave. Thus
the strict concavity of wi(x) and the result just obtained imply that each
function in the sequence {wN(x)] is a strictly concave function.

By the definition of GN(x, c) 1t follows that every function in
the sequence [GN(x, c}} is elso a strictly concave function of x and c .
Therefore esch "consumption function"” in the sequence [cn(xn)} sa=1,2, ..., N,
determines c, &8s a unique function of X, -

We wish to show next that consumption ls an incressing function of
capitel and age. The latter result depends upon the further assumption made

now that @ B > 1 . It is cleasr that this inequelity is also & necessary

condition for positive accumlation of capital.

It is worth polnting out again that the sequence of consumption functions

cn(xn) ,n=1,2, ..., N, which comprise the strategy for the N stage

decision process can be &iewed as the sequence of initial, Ffirst-period
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consurption functlions corresponding to a sequense of declslon processes of
one siage, two stage, ets., up to N stages in duratlon.

Equations (7) and {8) combain the sclutions for the single-stage

process. In the two stage process,

(4.8) wg(x) s max Tule) +a & p.?'i»?.L(ﬁ_.(,x -c)+y) 1.
O S ':E i; X RPN .

Consider the function Df(a) = u'{e) = X P; B, Wl‘ (Bi(x-c) +y) .

>
If x =0, Dy(0) = ut0) -~ ap u'(y) . By [L.2) it Ffoliows that DE(O) = 0
<

—_ ks e H
sccording as o p = E—LO—) R Since y >0, E—-(*Ql > 1
< w'(y) uf{y)

so that elther case is possible. Let ws conslder £irst the case in which

aE)ﬂ_o_)._

u'(y)

Then D.00) <0 =ard the maximam ln (14) occcurs at ¢ = 0 for small x.
Since wl(x) is strlctly concave and bounded, as x 1s increased a value of
x , denoted x , , 1ls eventually resched where D,(0) = 0 . This value is
5 [t

given by

(4.9) wi{0) - Py By ¥ {:Bi x4y} = 0
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For x> x,, D, 0, >0 5o that, for x> X c = c?(x) gives

2 2
the optimal consumption in the first period of a two-stage process,® where

CE(X) is the unique solutlon of

1Yy ' - =
(4.10) u'{c) -a p; By 14 (Bi(x c) + y) 0
* Note then that ¢ = c¢ (x) and ¢, = ch(xz) have entirely different
meanings . 2 = =
Hence

), 0<x <X,
(4.11) c = B

GQ(X) > X = XE
where 02('&} =0 at X=X, -

'
Since w‘;(x}‘ >0 by (4.2}, cg(x) >0 . Thus ce(x) >0 for all

x > Eg . Since wu'(e) is monotone and decreasing, u'(x) <u'(0) for x>0

so that e {x) <x , 2> %, -
z 2

We show now that wj (x) > wi(x.) . By (L.8)

oZp, Byow (B, 2+, 0<x<X,,
(4.12) wi(x) = il 2

i
(AYY
¥

o 5 By vy (Bylx -c) +y),
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There are two intervals to be considered. If x < Ea 2 DE(O) < 0 vhence,

by (4.9), u'(x) < = P; Bi wi(pix + y)} a fortiori. Since wl(x) = u'(x)-

_— 3 t
and wé(x) =L p; B; wl(Bix + y) in this range of x , wi(x) < we(x) . If
x> ;52 by (4.10) and (4.12), wi(x) = u'(c) while wi(x) = u'(x) by virtue of
(4.2). But c = CE(X) < x whence wi(x) < wi(x) also for x> 322 and

therefore for all x > 0 .

The final step in the inductive proof follows. Assume that

]
' U - 1
Wy, (x) < WN(X) end assume that Dp(0) = u (0) ~azp, B wi(¥y)<0.

For the N + ] stage process

(4.13) wN+l(x) = . 23;; <x (u(c) + o = Pin(ﬁi(x -c) + y)]

= 1! - 1 - s .4
s0 that DN+l(c) =u'(c) ~al p; B; WN(Si(x ¢) +y) 1is the criticel function.

Since WN_l(x) < wl‘q(x) and DN(O) <0 8t x=0 it follows that

DN+1(O)<O at x=0. Thus ¢ = 0 for small x .

As x 1s increased a value, _}EN-l-l , 1is reached where
' _ 1 =
(4.14)  u'(0) - a2 p, By Wy (By x+ ) 0

which determines §N+1 . Similarly §N is determined by
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(4.15) u'(0) ~azp, B owy . (B x+y)=0
and is elso positive by virtue of the assumption qN(O) <0 at x=0.
Since wﬁ_l(x) < wﬁ(x) , Eﬁ < §ﬁ+l .

For =z 2»§ﬁ+l ; ¢ 1s glven by the unigue solution, dencted °N+l(x) s

of the eguation
(4.16) u'(c) -a & Py By wﬁ(ﬁi(x -c)+y)=0

Similerly, the optimel ¢ din the first period of the N stage process is the

golution, cN(x) , of
(ko17) u'(e) - aZp, By vy, (By(x-c)+y)=0

vy 1
from all x > x - Since wﬁ_l(x) < wN(x) s cN(x) > cN+l(x) for x> Xe..

Differentiating (4.13) gives

O
EA

M
A

|

a Zp, By wilB, x + )

(4.18) wﬁ+l(x) =

@ Zpy By vleglx - e) +y),  x 2y,

while
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@ Zop. B, v (B.x+7v), 0<x<Xx
(4.19) w(x) - 1 Pi y.1MPi =X Xy
aZp; B vy (Bylx-ec)+y),  x>X

There are three intervals to be considered. In the first intervel 0 < x < ;EN ,

WN-!-I(X) = alp B WI:I (Bi x+7y) and wl'v(x) = QX p; By WI:I-IL (Bi x+7y) .

L] t ] 1 . 2
Since WN_l(x) < WN(X) 5 WN(X) < wN+l(x) in this interval.

' —

In the second interval, x, <X < xg. s WI\I-I-l(x) =aZp By wﬁ(pi X+ y)
and wﬁ(x) = u'(c) where c = CN(X) . Now cN(x) 20 for x> x. with equality
holding only at x = x. . Since u'(c) is monotone decreasing, Wﬁ(x) < u'(0)
for x > xy with equality only &t x = %, . But o ZLp, B; wl'v(fs:.L x+y)>u(0)

with equality holding only at x = EI\HJ. . Therefore wﬁ(x) < wﬁ_,_l(x) in this

interval.

- 1 JIV—
In the last interval, x >x.. , We have wn+l(x) = u'(c) where

c (%) and wl{%(x) = u'{ec) where ¢ = cN(x) . Since cN(x) > CN+:L(X)

= Sl

1 $ <
for all x , wN(x) < wN+l(x) , X2 Ky * This coneludes the proof.

— |
We have shown inductively that if o g > E—LQ-)- then initial consumption
u'(y)

is the following function of initisl cepital



0, 0<x<ix,
(4.20) c =
cN(x), x_>__:_iN

= i '
where cN(x) =0 at x=x; and cN(:{)>0 .

Furthermore,

(4.21) wi(x) < wé(x) < e < wﬁ(x) < v
cl(x) >ca(x) > eaes >cN(x) > e

x X L NN X <"'.
0‘<x, <x2< <xN

- '
Consider now the other case in which af < u_&; .
u'(y

Then D, (0) > 0 end the maximum in (4.8) occurs at ¢ = x for smaell x .

Since wu(c) is strictly concave and bounded, as x is 1lncreased a value of x

is reached for which Dz(x) = 0 ., This value, 22 , is determined by the

equation
(4.22) u'(x) -ap wj'_(y) = 0

u'{0)

' ot I
Since wl(x)-u(x) and 1<ap < T 05ﬁ2<y.
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For x > i‘ca , ¢ = ce(x) where ca(x) is the unique solution of (%.10).
Hence,

(4.23) c =

= - N . 1 x > ~ ol
where c (x) = x at x =% Since cg( ) >0, c(x) > &£, for all x> %, .

Since u'(c) 1s monotone decreasing, u'(x) < u'(fce) ,y X > :’Ee , 80 thet, by

(4.10) , ce(x) <x for x >ﬁ2 .

Further,
u'(x) , O0<x<%, ,
(4.24) wi(x) =

N
(o4

with wé(x) continuous at x o

In the interval 0<x<g%, , w.i(x) = wé(x) = u'(x}) by (4.2) and

2

i

(4.24). For x > 5?.2 R wé(x) u"(ce) by virtuve of (4.10) and (4.24) which
w]'_(x) =u'(x) . Since cz(x) <x for x> SE.E and u'(c) is monotone decreasing,

wi(x) < wé(x) in this interval.

Completion of the induction is left to the reader. The remaining
part of the proof starts by assuming that DN(O) >0 so that >’?N > 0 with
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1 . 1 Fel ~
wN'_l(x) = wN(x) for 0<x <% and WI:I-ZL(X) < wﬁ(x) > x> % . By now

familiar reasoning one can show that (1) ]“)II»'#i( U) < 0 (0) at x=0 and
that if DN+1(0) >0, {(2a) the maximum occurs at ¢ = x ror 0<x < Rl
when 0 <X, <%, endat c= cN+1(x) for x >Ry, » end (3a)
1 = t s & ! '
wN(x) = wN+l(x) in the interval 0<x< R, and WN(X) < WN-Fl(X) for
x > ?CN+1 ; if DN+1(0) < 0, we are back in the first case in which (2b)
the meximum occurs at ¢ =0, 0<x<x.,, when x,., >0 andat c= cN+l(x)

< vl t .
for x> xg., , end (30) wN(x) < wN+l(x) for all x > 0 . In either case,

(h) CN(X) > cN+l(x) as shown above.

The following results have been obtained

a. w:'L(x) < wé(x) < < wﬁ(x) <,

b. ca(x) > ca(x) > i

c. cN(x) <x forall x>y andevery N2>2

a. cI‘jI(x) >0 for every N> 2

e. For every N > 2 , either a value %, >0 is defined by the

equation c.N(x) = x in which case

ald

z >
2>H,,> };N__O

or & vsalue EN > 0 1is defined by the equation cN(x) = 0 in which case
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OSJC_N < x.-_N“i'l< IR

. i — — ?
£. If as>3’-4§-9)- then ¥, >0 . If aﬁ<l‘—(ﬂ
uf{y) u'(y)

then xl > 0 . Otherwise xl mz xl = O .

g. The optimel consumption policy mekes initiel consumption the following

function of initial cepital:

0, 0<x<x, if X >0 is defined

cN(x) , X2 % if x>0 is defined
¢c =

x, 0<x< % if £, >0 is deflned

v

cN(x) , x> R 1f %, 20 is defined
The figure below illustrates one possibility.
¢ - I(x)

e (%)

CN(X), N>2

- Pigare 1
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5. Conditions for expected sccumilation.

The preceding theorems confirm our expectetions about the qualitative
behavior of optimal ccusumption. They do not go far enough to permit inferences
about the behavior of cgpital as a function of age and initial capital. One
might ask if the model generates "hump saving" {8] , so important in the theory
of aggregate capital formation. This question reduces to: Can one find s
value of N sufficiently large that, 'or £ >y , the individusl's consumption
will cause the expected value of his subsequent cepital to exceed the value

of his present capital?

Let us define "expected income," I{x', to be the amount of consumption
gsuch that the expected value of cspital in the next period equals present

capital. Now exp X4 TY*B (xn - cn) . Expected stetionarity,

eXp X . = X, , lmplies c = % + E——:_—J—' = I{x) . Expected income is

B =
displayed as & function of capltal in Figure 1 . Our Q_uestion is then whether,

in the limit, as N eapproaches infinity, cN(x) <I(x) for all x>y .

The answer is clear cut when cgpitael is riskless. Then ﬂi =f for

all 1 and we cbtain the following recurrence relation in the limiting utility

of wealth function:

(5.1) w (x) = max {u(c) + aw (B{x - ¢} + y)}
C

The meximum 1s an interior one for x >y so that c (x} defined by



(5.2) u{e) ~apw(Blx -c)+ty) = 0

determines ¢ as a furction of x .

Differentiating totally with respect to x gives

(5.3) wix) = apw{p(x-c) i y)+ci{x) [ufec) - ap wi(plx-c) =y)]
= o p W{p(x-c) +y) , by {5.2).

Since w'(x) is monotone decreasing, (5.3) ilmplies that X4 ~ Xy if and

only ¢ p >1 . Therefore, denoting the limiting consumption function by
e(x) , cofx) <I{x) for ell x>y .

This simple result falls to extend tc risky capital. When Bi % B

for some i , (5.3) becomes

(5.4) wix) = azp; B wip(x-e)+y)

From (5.4) no general conclusions concerning the conditions for
expected capital growth can be drawn. Of course cepital cannot be expected
to grow very long unless §‘> 1. But « §'> 1 1s dinsufficient to guarsantee

expected capital growth.

Tt is clear that the criticel value which O B must exceed if

capital growth is to be expected will depend wupon the distribution of Bi

and the shape of the marginal utility function w'{x) . The only practical
procedure here is %o invesilgate the Ilmplications for capitel growth of

particulear classes of utility functions.
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6. Consequences of selected monomisl utility functions.

In this section we Investigate the Implications of certain types of
monomial utility functions for the consmption function and for the expected

path of capiteal.

We consider first the function
(6.1) u(cn)=i’i’-xe;7,ii,x>o,y>1

The function (6.1) fails to have the boundedness property assumed to this
point and thus it contradicts the "continuity axiom' mentioned in section 2 .
Whatever the merits of that axiom, the funcition has received sufficlent study

in the context of deterministic models [4, 13, 14] to deserve our attention here.
Solving successively for the sequence of unknown functions {wh(x)} s

N=11, 2, ..., ylelds

(6.2) wN(x) = (LF a4 von + dN-—l)
| - mi—-—le) y+l

e M@ T 14(e b7 e @ ) T
[x + (b"’l +2 8 L.+ ‘b"’(N“l')) y17

and



(6.3) ~(N-1)
7y 7l
o b - \ -2,
CN(X) = ( o5 ) '@:&l— [+ (1L + Db+ ...+ Y
(e v ) L4 (@ p?) 7

-

1
where b= (Z Py Bi~7) 7

If the veader applies (6.3) to °N+l(x) end uses (6.2) he will obtein an
expression for WN+1(K) having the seme form as (6.2). Note also that if

@=p;, =1 forall i, formule (6.3) calls for consuming & fraction % of

the individual's net worthﬁ x+ (N-1) v .

Provided that a b’/ <1 (for which <1, B>1, y >0 is
sufficient in the certainty case), the cxpressions in (6.2) and (6.3N
converge as N sapproaches infinity giving, in the limit, the solutions tu the

"infinite stage" process

— =1
(5.#) W(x) - I%_x_ -2 (Od b'?’)-:.'l'l 2+1 (: s B%i_ -)
(o b'7)7;l -1
and
2
(6.5) e(x) = (1 - (o b'7)7""1) 6{+ 5%)
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This limising consumption function is useful as an approximation to CN(X)

for large N .

A number of properties of the consumption functions (6.3) and (6.5)
cen be observed immediztely. First, the consumption function is linear
homogeneous in capltal and nonwealth income. Of two households, both heving
identical utility functions like (6.1}, if one household enjoys twice the

capital and nonwealth income of the other, it will also consume twice as much.

Another observation is that the consumption function is linesr in
capital end nonwealth income. It follows that cf(x) < I(x) for all x>y

if and only if o{y) <y end e'(x) < I%{x)

e(y) <y Aif and only if

1
CL S(ap)? ) 2 o
b-1

or

1
‘0~(ab)7+'1)< b -1

or ab>1 .

In the limiting case of riskless capital, b = pB. The condition
¢ B <1l was found earlier to be necessary and sufficient for the growth of
riskless capital. But b < B when capltal is risky, that is, when By ¢ B

for some 1 . This can be seen from a dizgram showing 357 as & function

of Bi . Since Bmy is a convex function of B , Z Py 51_7 >-§”7 whence
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-1
b= (Sp; ai"'y) 7 < B. Therefore @B > 1 does not guarantes that o b > 1.%

* The condition @ b™¥ <1 fmpiiss only Qb >~ which is less
than wity.

A sufficient condition is that o By 21 for sil i .**

*% This result may sppear to conflict with the results of section L that,

for every N , c'N(x) < 1 and that if the function C:N(x) intersects the

¢ =X line it 1s at a velue of o <y . The difference in resultz lies in the
failure of (6.1) to satisfy the restrictions imposed on the utility function
in section 4, in particular the boundedness of uwlc).

The condition that c'(x) < If(x) is

L B =1
1 - (a7 < B

Tt was found ecove that b < B so that @b > 1 is sufficient though unnecessary
o satlsfy this inequality also. Hence, if co{y) <y , then c'(x) < I*(x)

but not conversely. Therefore o b > 1 1s necessary and sufficilent if the
limiting conswmption fuanetion fmplied by (6.1) is to produce expected growth

of capital at all initisl values of cempital, that is, if c(x) < I{x) for all

X2y .

Recalling the assumption o b7 < , one essily obtains the following

properties of the limiting consumption function in {(6.5). First, 0 <ec'(x) <1 .
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¢{y) >0 if and only if b > 1 . The Keynegian marginal propensity to

. ) . CoGlE )
consume, defined in this model by foley ; where X =y + nonnegative

dy
constant, is equal to c(y}/y . Hem¢e it is sirictly positive if and only

if b >1 and between zern and one if and oniy if o b > 1 .

If b >1, therefore, the effect of an addition dollar of sure,
permanent income on consumption will exceed the effect of an addition

doller of initial capital by a factor b/{b « 1} , greater than one.

If capital is riskless, this factor egquals the capitalization
factor, B/(B - 1) , wused tc convert z sure, permanent income stream into
net worth or present value. This reflects the fact that, provided there is
no constraint on borrowing or that such a constraint is not binding, only
total net worth or total income matters in determining consumption under
conditions of certainty. Consumpticn in that case is independent of the
composition of net worth between current capital and future nonwealth

income.

If capital is risky, however, consumption cannot be expressed simply
as a function of total “expected income,” I(x) . Instead, the consumption
effect of a dollar increase in expected income arising from an increase in

sure, nonwealth income exceeds the corresponding effect of an increase in
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current capital which is sufficient to raise expected income by a dollar.

b
The first effect is the merginal propensity to consume, c'(x) bl

B b
Writing x = 51 (T(x) - é»), we see that the second effect is
P . B .
e'(x) B Recalling that b < pB , whence —=— < —— , it is seen

B-1 bel

that the former effect is the stronger. This suggests the hypothesis thet
households whose incomes are comperatively uncertain will be comparatively

thrifty.

The last questions of interest relaste to the effects upon consumption
of variation in the riskiness and expected return from capital. These are
thorny questions, for their answers depend frequently upon what other parameters

are held constant. The treatment here is deliberately incomplete.

In the riskless case, b = and from (6.5) it follows that an
increase in the rate of return, P - 1 , increases consumption at every initial
capital, provided y =0 . Thereforé an increase in the expected return on
capital must have the same effect if we mean by that a uniform shift in the
probability distribution of 51 which leaves all its moments. the same except

the mean, E .

When capitel is risky, b < B so that, dby (6.5) the presence of
risk can be sald in a structural or globsl sense to cause a decrease of

consumption at every capital, again if y =0 .
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A second kind of risk effect, one arising from a change in the degree
of risk somehow measured, can also be distinguished.

A probebility distribution which offers a simple measure of risk is

the uniform or rectangular distribution. This is a two-parameter distribution

2
with meen B and range 2h . The varisnce is % so that h is the
measure of risk.
_ Bth 1
By the definition of b, b7 = [ B (z) 4B .
B-h

ap”?

An increase in risk will reduce consumption at every capital if >0 .
: dh

Evaluating the integral we find
. Loy
-7 = l B l-y e B8 -
R e EB + 1) (B - n) .

Differentiating with respect to h yields

—y W _ o _ o
f{g = 2(1%77112 [(B-07(F-9) -(B+n)7(F+n)]

-7

Assuming y > 1, -%_—E— > 0 4if and only if

B - 7h < [Bon 7
E-I-yh §+h
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Values of B equal to zero are excluded, else b 1s not defined. Consequently
h < B and the righthend side of the critical inequality must be positive.

Hence the inequality will be sstisfied if vy > % . Otherwise 1t may not be

satisfied. (y = 2 happens to work whatever the value of % ) . Therefore

no general statement can be made on the marginal effect of variations in the

degree of risk.

Thus far the effects of risk and return have been examined on the
essumption that y = 0 . But the individual's consumption depends also upon
his nonwealth income and the valuation of this streem will depend upon the
riskiness and expected return on capital. Thus an increase in the expected

return on capital will reduce the subjective present value, of future

&
income in terms ceapltal and current consumable goods. This revaluation acts
to offset the effect of an incresse in return when there is no nonwealth
income t0 be revalued. As a consequence, no general conclusion can be drawn
concerning the effect of variations in the expected return. However, if the
improvement in capital productivity is accompanied by sn equal improvement

in labor productivity, so that y increases, then the earlier results for

¥y =0 will apply.*

* The effect of a change in b upon the marginal propensity to consume
-1
out of nonweelth income 1s uwaembiguous. d ¢ b - -y\7+L
T iog (@)1, >0
et
-y 7+
1£8 (ap 7)) < l—lf-;%g which is satisfied for all b > 1 ,

7>0 eand a< 1.
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To see that the Implications of the utility function (6.1) for the
effects of variations 1in risk and return are not general, one has only to

modify the utility function thus.
(6.6) u(cN)=xc7, A>0, 0<y<1

All the equations (6.2) - (6.5) continue to hold with the difference that X
and 7 , then are replaced by =-A and -~y , respectively. Hence the limiting

consumption function is

1
(6.7  e(x) =[1-(av)*7 ] (x+ )

Y 7
where D = Py ﬁi

An increase in B, other moments of the distribution unchenged, will
inerease b , hence decrease c(x) for all x even if y > 0 . The re-

caplitalization of nonwealth income cooperates with the substititon effect.

Once again the structural effect of risk 1s easy to ascertalin. Since
B’ is a concave function of B , L Py Bi7 < B’ whence b = (Epiﬁi7; <B .

Therefore, the presence of risk makes consumption greater then it would be
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in the limiting riskless case.* These conclusions are opposite those obtained

* The effect of a change in b upon the marginal propensity to consume
out of nonwealth income is elsc unembiguous in the case of (6.6).
{ £
L2y (g 7
& ipg 1 - (abd’) I( £ 0 iff
L .
7 1=y l1-by
(¢ b’) bl > which is satisfied by all values of

b>1 and 0<y<1,

for the utility function in (6.1) with the qualification that the latter are

complicated by the capitelization effect.

The effect of & merginal increase 1in risk depends egain upon 1ts effect

uypon b . Turning agein to the uniform distribution we find that the "natural"

d v’

result 75 < O {meaning that global and marginal risk effects have like

signs) depends upon the problematical condition E - 7h > E -h Y .
B+ on B+hn

We exsmine finally a utility function which frequently holds surpriées s

the logerithmic function in (6.8) . It should be pointed out

(6.8) u(cN) = ﬁﬂ .

that this function like the others studied here, lacks the boundedness property

invoked in section k.
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It appears to be impossible to solve for cN(x) explicitly in terms

of x and y except in the case y = 0 . Then we easily find
(6.9) wlx) = (L+a+ ..+ A Iy x+v (8, q N)

where v(8, @, N) depends only upon the parameters, denoted by ® , of the

probability distribution of Bi ;, @ and N and not wpon x .

‘Also

X
(6.10) %) = L+a+ ... +d

When the utility function is logerithmic, the optimm consumption rate is
independent both of the expected retwrn and riskiness of cepital. Consumption
is ldneer homogeneous in capital. As N 1is increased, the consumption function

flatiens asymptoticelly until, in the limit,

(6.11) e(x) = (1 -a)x

A limiting function exists only if a < 1.*

* For certaln utility functions the existence of a limiting solution does
not require a < 1 . Ramsey [13] argued that boundedness was sufficient but a
condition on the elasticity or rate of approach to the upper bound is also
necessary, at least in models not containing risk. Samuelson and Solow [15]
assume that the upper utillty bound is attained at a finlte consumption rate
which appeears to be overly strong.
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