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Abstract

Using statistical decision theory with reference to a linear
decision model with a quadratic welfare functlon in the endogenous varisbles,
1t is shown that (1) the loss function is different than the usual loss
functions implied in prediction models; (2) under the Bayesian assumption
that a prior distribution of the unknown perameters exists and under usual data
assumptions, the minimm-risk decision implies & certain class of "optimal"
estimetes of the perameters, which sre different from the usual estimates;
(3) the optimal estimates require some knowledge on the part of the

estimating statistician of the decision-meker's welfare function.



ESTIMATION IN THE LINEAR DECISTION MODEL*

Walter D. Fisher

1. THE PROBLEM

General Character of the Problem -

A linear economlic model may be used for two distinet purposes:
(1) predicting future vﬁlues of endogenous varisbles with given values of
exogenovs varisbles; (2) deciding on future values of certain controlled
exogerous varisbles (with given values of the remaining uncontrolled
exogenous varisbles) that will best asccomplish some objective. In some
cases the objective mey be represented by & cardinal cbjective or welfare

function of the endogenous veriables.

While the distinctlon in purpose between prédiction and decision
models is well-known, it has been the custom to use for both models the
same statistical procedures for estimating the unknown parameters. Impliecit
in this custom is the assumption that for the decislon model, the estimatorl
can snd should estimate the unknown paremeters without reference to the
welfare function of +the policy-msker. In the case of s model with no
overidentifying restrictions, the almost universal practice ls equivalent

to fitting the data to the reduced form by classical least squares. It wil’

e

e ahowm +hat the cnstomary aracedimre 3o not the correct one.

*'I‘he writer is grateful to L. J. Savage and T. N. Srinivasan for
stimilating discussion and helpful suggestions.
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The type of problem to be considered 1s the following. A policy-meker
has a welfare function involving certain endogenous varisbles. These variasbles
also appear in a reduced form -- that is, are known to be linesr functions of
certain exogenous varlsbles, some of which may be controlled by the policy-
meker (the decision varisbles, or instruments). During a data-collection
period, for which data are available on all types of varisbles, no deliberste
control over the decision varisbles has been exercised, but it is desired in
& subsequent declision period to select values of the decision varisbles so
that welfare 1s maximized. The parameters of the reduced form are assumed
to remain the seme in both periods. Since random errors are present in both
the data period and the declsion period, the best that can be done is to
maximize expected welfare. From the data, the reduced form can be estimated,
and the decision-meker can then use the estimated reduced form as a "certeainty
equivalent” -- i.e., maximize his welfare function while assuming that his

estimated reduced form is truc.l What then, 1s the estimstion procedure thet

lIt will be shown that a certainty equivalent exists for this
problem. The term "certalnty equivalent" is due to Theil. See [1],
pp. L421-hk31.

should be used for estimating the reduced form when it is known in sdvance

thet this is the use to which 1t will be put?
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This problem will be dealt with by means of statistical decisiom
theory and in places the Bayesian assumption will be made that a probabllity
distribution of the unknown parsmeters e#ists. The case to be considered 1s
that of a quadratic welfare function; & linear reduced form in the endogenous
variables that sppear in the welfare funetion, with no overidentifying
restrictions on the parameters; non-stochastic exogenous varilables; and

serially uncorrelated disturbances with & known covarlance matrix.

The reduced form may, 1f deslred, be postulated to arise from a
set of structural behavior equations. If so, since it 1sg assumed that no
overidentifying restrictions are present, estimates of the reduced form iwply
estimates of the parameters of such structural equations as may be ldentiflable.
It is convemient, however, in the decislion problem here considered, to desal
directly with the reduced form (more precisely, with that portion of the
reduced form that involves endogenous variables gppesring in the welfare

function), and not to refer further to the structural eq_uations.2

Historical note -- The term "decision model" appears %o have been

used first by Frisch [2]. The idea has been developed theoretically and
practically to its gréatest extent in the Scandinavien countries and the
Netherlands, and extensive discussion by Tinbergen [3], [4], and Theil {1]
is available. The speclific model considered in thié peper -- o qnadratic
welfare function subject to & linear reduced form -- and the estimation

problems associated with it have also been considered by Theil.ea

2For a recent and lnteresting discussion of the relevance of reduced forms,
see Klein [19].

28 111, ch. 8.5.
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Thei's analysis includes a consideratlion of the approximate affects of estimation
of the reduced form on welfare attained, but it does not include a specific answver
to the question: "What, then, is the estimation procedure that shouwld be used?”

La suggests that classical least sguares is hard to defeat.

A gtraightforward application of statistical decision theory to problems
sf yrediction and decision in economic medelis has beea recommended by Sverdrup (5],
Hurwicz 1 6], and Malinvaud (7). But most of the work that has been done on estimabion
o7 economie models has been baced on a two-stage procedure with Stzgo: 1 being
=gtimation without reference to a utility or welfare fiumetion, and Brage © velng
appiication of the estimates for prediction or poliecy without reference o dais

o prooability problems. This procedure is recommended speciflcally, Tor

M

vamyis, by Marschak [8] and Koopmans and Hood [G]. Koopmans and Hood recognize
ire poeibiiity of using statistiecsl decision theory directly, but defend the
woentage gpproach on the grounds that welfare functions are often not known in

pivag oo oasd that estlmates must frequently serve a multiplicity of future

e ¥

et rive s,
Vot o o
[ ed. «

T the knmowledge of the present wiriier, an expliicit comparisor of the
preddintion problem with the decision problem by means of the loss funotion of
aratistlesl decision theory hias not yet veen made, nor has = speclfiic

10 Lhe desision problem been derived by vie of detision theory, nor has e
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relationship of such a solution to conventionsl estimstes been shown.llr

therdrup [10] hes applied decision theory to the prediction problem
by use of the minimax criterion. So has Redner [18].

Specific formulation -- Consider the cardinal welfare function

(1.1) w = by - y'Cy ,

vhere: w 1is a scaler representing welfare,
Yy isa G x 1 vector of endogenous variables,
b is a known G x 1 vector, and

C is a knowmn G x G symmetric positive-definite matrix.

Consider also the reduced form -

(1.2) y = nb zD + nE Zp OV

where: Zp is & D x 1 vector of decision variasbles with D <G, sometimes
called a "decislon."
20 is a E x 1 vector of non-stochastic non-controllable exogenous

variables,



HD is a G xD matrix of unknown paremeters, of rank D .

HE is & G x E matrix of unknown paremeters, and

v is a Gx 1 vector of rendom disturbances with E(v)} = 0, and

B(vv') = V, aknown G x G symmetric positive definite matrix.”

5The distribution of v is conditional on Tixed (but unknown) parsameters.
The expec.acion symuvo! E without further symbols attached is teken in the
conventional statistical sense to mean expected value conditional upon fixed
values of unknown parsmeters. When the Bayes approach 1s used later in this
yaper, additional explanatory symbols will be attached to the E , showing
with respect to which variables (including random paremeters) the expectation
is taken.

The equation (1.2) may be written in aebbreviated form as

(1.3) y = Iz +v,

where II 1is the G x H matrix (HD HE) and z 1s the H x 1l column vector

) wvith H = D+ E .

2,



"T'

The assumptions D < G end rank (Hb) =D are made for simplicity,
so that no more decision varigbles are in the problem than are needed for a
unique solution. If, for some initial problem more then G decision variables

were available, or if the rank of Hb were less than D, some linear

function of certaln of the 2 could be defined so as to bring the nurber down
with no loss of welfare and a new D defined consistent with the stated

essumptions.

A1l of the definitions and results of this peper are conditlional on

given zg » 8O this will not be repeated., The case where there sre no variables

in zg (E = 0) is included as a special case.

By substituting (1.3) into (1.1) we may write

(1.4) w(zD,H) = b'(llz + v) = (Ilz + v)'C(Ilz + v) ,

in which realized welfare is regarded as a function of the decision and the

unknown parameters.

Now let P be some estimate or guess of the value of II , however
obtained, with or without data. As with II , P is a G x H matrix, and may

ve partitioned as P = (PD PE) , where P

D isa GxD matrix and PE a

G x E matrix. In this peper it will be assumed that the rank of PD is D .6



6'I'his assumption that the rank of PD is D i1s a natural one, since it

makes PD of the same rank as its counterpart IID , &nd this is the conventional

approach in estimation problems. It may be pointed out » however, that there may
be lnstances where the estlmator prefers to simplify or reduce the system by only
considering matrices PD that are of rank less than ILD s and sggregation of

varlebles for convenience would be one such case. These instances are not studied
in the present paper.

If a decision-maker modifies the reduced form (1.3) by substituting the estimate
P 1in place of II , and then constructs an assumed welfere function by substituting
(1.3) as modified into (1.1) in place of the true (1.3), this assumed welfare

functlion will teke the form

(1.5) w(zD,P) = b'(Pz + v) - (Pz + v)'C(Pz+ v) ,

belng a function of the decision and the estimated parameters.

DEFINITION 1. . For any P , a quesl-optimal decision with respect to

P, 511; ; 1is a value of Zy that maximizes the expected value of assumed
welfare E[w(zD,P)]-

In other words, % is the value of 2 obtained by using P as a
certainty equivalent for I .7 It will be shown in the next section thet

z'.E exists and is unique.



7The notlon of certainty equivalence is applied here in a slightly
different wey than in Theil's discuseion in [1], pp. 421-k31. In Theil's
discussion the matrix is assumed known (what he calls the "multiplicative
structure"), the uncertalnty at issue being in the matrix I, end in the

presence of the random v in the decision period (Theil's "additive structure").
It 1s only within this framework that Thell reaches his conclusion that "unbiased
point predictions form then a certainty equivalent in decision-meking" (p. 430).

Here in the present paper, 1t is assumed that I[D is also uncertain.

DEFINITION 2. An implied estimate, P , with respect to some decision

z > is = P with respect to which Z is a quasi-~optimal decision, l.e.,
P
for which 2Zp = Zy

It will be shown in & later section that implied estimates exist for any

decision, and, in general, are not unigue.

DEFINITION 3. A certalnty decision, Z.B » 18 the value of Zp that

maxdmizes the expected value of true welfare E[w(zD )] , 1f T were known.

The certainty decislion may also be regarded as a specisl case of a
quasi-optimal decision ln the event that the decision-maker just happened to hit

on the true value of I , and used it for his P .
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DEFINITION 4. The loss is

(1.6) L(P,T) = Mz, » I = Elw(z) , m) ] -Elw , M.

This is the loss of realized welfare entailed by meking en incorrect estimate
P of 1 and therefore meking a guasi-optimal decision that departs from the
certainty decision. To maximize expected welfare under uncertainty is tantamount

to minimizing loss.

Plan of the Pagper -- In Sectlon 2 the loss function is derived in
terms of the unknown parameters and an arbitrary decision, or its lmplied
estimates, and is.compared wlth the loss function of a prediction problem from
the same reduced form. In Section 3 a general Bayeslan solution for the decision
problem is derived, based on the notion of & probability dlstribution of the
unknown parameters. In Section 4 a special Beyes solution is obtained from the
assumptions of uniform prior distribution of ignorance and & random semple with
normally distributed disturbances. 1In Section 5 iz a summery of the results and

same comments on the restrictive asswmptions used in this paper.

2. THE LOSS FUNCTION

The general case. =-- If the estimate P 1s used, the quasli-optimal

decision, 7 , is obtained, from Definition 1 , as that value of z, that

maximizes the expected value of assumed welfare, as given by (1.5). By setting
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P= (P Py } s Dby teking the expected value of (1.5), taking derivetes of this
expected value with respect to the elements of Zp s and setting the derivates

equal to zero, the necessary conditlon is obtained

(2.1) P‘DC(Pnig + Pz -y°)

= 0
EE ’

where yo = 1/2 C-lb .

Since PD 1s of rank D and C 1= nonsingular, the inverse of the

metrix Pﬁ CPD exists. By multiplying (2.1) through by this inverse, the

quasl-optimal decision ﬁg is found to be
(2.2) 2 = (R0P )Rl (y° - Bz )

Moreover, because of the positive-deflniteness of the matrix ¢ , this decision

provides a true maximm snd 1s unique.

The certainty decision, zg , Dby the same ressoning but using I instead

of P, is found to be

)

(2.3) = (mem) ™ mey° - nay)
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The loss, as defined by (1.6), can be obtained from & Theorem of Theil.8 It is

(2.4) WILP) = (f - 29)' Il on (£ - 22) .

By substituting (2.2) and (2.3) into (2.4), there results

(2.5) LR, = (@7, et e (e o ety ),

.}
fl
o
Q
H
.
—
It

o 5
where By cly” - Py 2 )

= ' = 'co_
W@ = O, ry o= MO -mg )
Speclal cases. -- More insight Into the nature of this loss funection

(2.5) can be cbteined by considering special cases. Consider first the case
where D =G and E = O ., Then the matrices Hb and PD are nonsingular and
square, end there are no exogenocus verlables Zg in the system. Then the
quasl-optimel decision and the certainty decision are found, from (2.2) and

(2.3) to be, respectively,

(2.6) 2 = Pty
(2.7) Zy = Ilgl '

8 {1]), Theorem 3, p. 453.
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The loss is, from (2.5)
(2.72) wem = y° (1 -mpph e (@ -nEh

where I 1s the 1dentity matrix.

Let ﬁP denote the reallzed value of y resulting from the quasi-
optimel declision Eg . Then, from (1.2) and (2.6) with Zey null,

(2.8) By) = I P y° .

The loss may then be written, from (2.7a) and (2.8)

(2 M L(P,I) = E(.\?’P - y°)' c (fp - y°) - tr(CV) .

Note that from its definition following (2.1) yo may be given the following
interpretation. It is the value of y that would maximize welfare in (1.1),
and that could be reallzed under perfect estimation of II and zero distuwrbance
in the decision period, provided that G independent declslon varisbles are

[}
available (which 1s so assumed in the special case now under consideration) -

9In the more general case where D may be smaller than G , yo may
not e atsainsble because of the constralnts on y dimposed by the reduced form.

But in any case, yo is a known constant, dependent on the constants of the
welfare function.
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Therefore, in (2.9) the loss function is represented by a certain positive-
definite quadratic form in the discrepancies between the "best possible values"
of the endogenous verlebles and thelr realized values under the errcnecus

estimate P , less the constant tr{CV).

It can ve shown that (2.9) still holds in the case where D =G , but
E not necessarily zerc. In this case, however, the analogue of (2.7a) is a

more conplicated expression thet will not be presented here.

To teke the very simplest case, that of one endogenous varisible and

one decision veriasble, consider the welfare function

2
(2.10; v o= by -cey ,

and the reduced form consisting of the single equation

P
no
ot
Land

-~

y = nz+v o,

where all veriables are scalars. Then, for some estimate, p , of =«

. . (o)
(2.12) 2 = %,
where
(2.13) 77 = bj2e .
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The loss is then, from (2.7a),
(2.14) Lip,n) = cyoe(l - :t/p)2 .

Prediction. -- Now consider the loss function for s prediction problem

with the same reduced form thet has been used for the decision problem.lo

loAlthough forecasting economists usually ebstein from using notions of
loss or welfare functions, they frequently express the conviction that their
forecasis are to be used somehow for "policy purposes.”

Sey that the objective of a forecasting economist is simply to forecast the values
of the endogenous varlebles y with small error, using given values of the other
variables z . The forecaster, unlike the decision-maker heretofore considered,
is assumed to have no control over any of the variables z ; he treats them

all as the decision-maker treated the Zp ~-- &8 uncontrolled exogenous varisbles.

This objective can be formulated in a rather general way by postulating

that the forecaster desires to minimize the loss function
(2.15) Lpred(P,H) = E[§ -E(y)]' clF -E(N)) =B(F -y)' ¢(F - ¥y) - tr(cV),

vhere y 1s given by the reduced form (1.3); § is a forecast of y ,

conditional on all of the z's , using an estimated reduced form
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(2.16) § = Pz,

and where C is the same C appearing in the welfare funetion (1.1).

This loss function, alsc suggested by 'l’heil,ll has the following
properties.

(1) It treats positive and negative errors in any endogenous varisble
as having equal welight;

(2) Tt allows for the possibility of giving different welghts to the
errors in different endogenous varlables and to the interactions between such
errors; for convenlence in making comparlson with the declslon model, these
welghts are taken a&s the elements of the matrix C sgppesring in the welfare
function of the decision model; thus meking (2.15) analagous to (2.9).

(3) It includes as a’special case the minimizing of the sum of mesn

squared errors of the "astimate" fi from its "pareameter," E(yi) .

Set C=1I in (2.15).

(4) If ¥ 4is specified as unbimsed, i1t can be shown that the minimizing
of (£.15) is equivelent to minimizing the varlance of each element of ¥
simultaneously, whatever be ¢ . BSee Appendix B .

(5) It includes as a speclal case the minimizing of the mean squared

error of a linear function of the elements of §¥ . Meke C a matrix of rank one.

The superficlal resemblance between thls loss function for the prediction
problem, as given by {2.15) and the loss function for the decision problem in

the special case as given by (2.9) may be deceiving. Their fundamental difference

L see [1], Appendix 8a.
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1s crucial, and results from the possibility of manipulating z, in the

decision problem. Consequently, different mesnings attach to y°© , yP

2

and ¥ . To see this difference, substitute y and § , as given by
(1.3) and (2.16) respectively, into (2.15). Then the loss for the prediction

problem becomes
e ! - ! -
(2.17) Lpred(P,lI) z'(P -T)'c(Pp -1) =z,

whereas the loss for the decision problem is given by (2.5) or by (2.7a)

in the special case. The expressions are not the same.

The difference shows up clearly in the simple case of the single-
equation model with one decision vearieble. In the decision problem the loss

is given by (2.14), which msy also be written
o~ 2
(2.18) L{p,n) = czPe(p -a)°

by using (2.12). In the prediction problem the corresponding loss function

is, from (2.17)
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(psmt) = ez(p - x)°

(2.19) Lpred

In spite of the superficial resemblance of these last two equations, #F in
(2.18) is & varisble, a function of p from (2.12), while z 1in (2.19) is a
known constant. When this difference is teken into account, the estimation

problems are different.

Existence of implied estimates. -- The question is now raised whether,

for any arbitrary decision, there exist implied estimates in the sense of
Definition 2 «- that 1s, whether for eny Zy & P can be found for which

2 is a quesi-optimel decision with respect to that P . The question may

be posed in another way. The decision process msy be imegined to be either a
one-stage process, in which the decision-maker does not even meke use of estimates,
but makes his decisions directly, in some unexplained manner; or it may be a
two-stage process, in which another men, an estimator, gets an estimate, P ,

in some unexplained manner, and then the decision-meker uses this P as a
certainty-equivalent in meking a decision that maximizes assumed welfare. We ask:
for any decislon whatever, obtalned by the one-stage process, is there a
corresponding two-stage process with an appropriate P which will yield this

same decision?

Thet the answer to this gquestion is In the affirmative for the model
considered in this peaper can be seen quickly. If the arbitrery decision Zp
is to be a quasi-optimel decision with respect to some P , it is necessary
end sufficilent that there exist & P such that (2.1) holds when the arbitrary

decision Zp is substituted for E§ ; that is, such that
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=]
! - =
(2.20) PDC(PDZD + PEZE ¥y ) 0.

Thinking of the elements of PD and PE as variebles, this is a set of D

equations in DH variables, quadratic in the elements of PD and linear in

the elements of PE . For solutions to exist it is sufficient that the
parenthesis be made null -- that is, that

(o}

where =z and yo are arbltrary non-null vectors of order H and G respectively.
P may always be selected to eaccomplish this, and, except in speclal cases, the
alternatives are infinite in number. It mey be concluded that implied estimetes

exist for any decision, and (2.20) states the conditions they must satisfy.

Two speclal cases may be noted. First, 1f there are no uncontrolled
exogenous verisbles in the system, the term Pz, in (2.20) may be ignored,

so that (2.21) becomes
(2.22) Pz o=y

Second, if D= G , PD is a nonsinguler squere matrix. Then (2.20) may be
multiplied through by (P]SC)"l , which gives (2.21) as a necessary, as well as
sufficlent condition on P . In this case the H elements in each row of P

(the estimated coefficients of an equation of the reduced form) must lie on a
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certain hyperplane in H-space. Other cases will be examined in later sections

of the paper, where =z, 1s taken as a certain kind of "optimel" decision.

Implied estimates that are not unique alsc exist for the prediction
problem, since a prediction problem msy be regarded as a decision problem with
a certain kind of loss function. Let the forecast § be the decision. Then
an implied estimate with respect to § is any P that satisfies (2.16), vhere

z is a given non-null vector.

Heving shown that & unique quasi-optimal decision exists for any

estimate P , and slso that any decision Zp corresponds to some P , with

respect to which 1t is quasl-optimal, we have shown in essence that a many-to-one
correspondence exlsts between the entire set of possible P's end the entire set

of possible zD's , and that we mey spesk of & set of pairs (P, zD) that

exhaust these sets.

DEFINITION 5. An estimate-decision pair i1s a pair (P,zD) , where P
is an implied estimate with respect to the decision 2y and %D is a
quasi-optimal decision with respect to the estimate P .

It follows that for the elements of such a peir, it is immaterial whether

the loss function be written as L(P,II) or as M(zD,H) for any II .
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3. A BAYES SOLUTION

The Bayesian approach -- The case is now considered where the

investigator wishes to indicate his uncertainty of the true II by postulating

8 Jjoint probabllity distribution representing his degree of belief in alternative
possible values of the elements of II . In this section no attempt is made to
derive or explain the origin of this probability distribvution. The investigator's
bellefs may be more or less well founded, and may or may not be based on the
observation of data. Hence the distribution msy be called a personal probability
distribution in the sense of Savage [11]. In a followlng section a speclal case
is considered where the personal probability is & posterlor probabiiity, and is
factored In classicel fashion into a prior probabllity and a Iikelihood function

based on sample dats.

It is recognlzed that the notion of regarding unknown parsmsters as
random variables 1s questioned by many statisticlans, and that mary have been
taught to avold thls notion. The reasons for using the notion here in connection
with declsion theory, a use which may be called a Bayeslan approach, are the

followling ones.

(1) The concept of personal probability is a useful and natural one
in decision theory in generel, and in the present problem in particuler, when
loss or utlility functions are assumed. Mlnimizing expected loss with respect
to a personsl probebility distribution seems often a more reascnsble course of
action then, for exemple, minimlizing maximum concelvable loss, or other proposed
statistical criteria. 8So it seems here to the present wrlter in the present

problem.
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(2) The concept is operational, as has been pointed out by Savage.

That is, it is possible by experimentation to obtain information on a person’s

degree of belief in an event.

(3} The use of special personal probability distributions {such as
uniform prior density of ignorance) to derive optimal declisions seems no more
subjective or arbitrery then the use of special "nice" statistical properties,

such as unbilasedness or minimm variance.

(4) The Bayesian spproach has a distinguished history, deriving from
Bayes and Laplece, and a renaissance is being urged by some contemporary

statisticians with strong argum.entsol2 Indications are that its current

Poee Savage [11], [12] for the arguments and references.

eclipse in the majority of statistical thinking will be cnly temporary, and

that it will have an increasing influence in the future.

The general case. -- For convenience, the personal probabpliity

distribution is assumed to be representable as = density. Consider the GH

elements of I as random variables.

DEFINITION 6. The personal probebility demsity of 1, f(I) , is

the joint multi-veriate density of the GH elements of I , representing the
investigator's degree of belief in alternative possible values of I for which

exist the G x E metrix of expected values



- 23 -
(3.1) I o= (T )

and the GH x GH covarisnce matrix VII ;s both of which are assumed known.

DEFINITION 7. The Bayes risklga of an estimate-decision pair (P, zD)

128 Wald defines the risk as the expected value of the Beyes risk over
all possible semples. It can be shown, however, that his risk is minimized by
some optimal decision if and only if the Beyes risk is minimized for each sample
separately.

1s the expected value of the loss with respect to the personsal probability

distribution f£(II)

(3.2)  R(P) ® 8(z) = EJL(P,M)] = E[M(z;,7)] =dmfu M(zp), ) £(T)dIT

where  fdl denotes the GH-fold multiple integral with respect to each element

of II .

DEFINITION 8. An optimal decision, zﬁ ; 18 & decision that minimizes

the Bayes risk S(zD) .

By locking at the definition of loss as given by (1.6) and noting that

Ef[Ew(z;,H)] is a constant, 1t can be seen that an optimal decision also maximizes
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expected realized welfare Ef[Ew(Eg,H)].lB

13In these expressions the expectation sign E without a subscript
denotes expected value with respect to the distribution of the disturbance, v ,

while Ef denotes expected value with respect to the personal propability

distrivution £(I1) .

DEFINITION ©. An optimel implied estimate, P* , is an estimate,

P of II , that is an implied estlmate with respect to an optimal decisicn,

z¥ .
D

It can be shown that, given the personel probability distribution,
the set of optimal implied estimates just defined is precisely the same set
of estimates P +that minimize the Bayes risk when expressed as

R(P) in (5.2).1lL

L Proof: For any estimate-decision pair (P, zD) and for any 1T ,

L(P,II) = M(ZD,H), by definition of (P, zD) . Hence for any (P, zD) and

for any £(II) , R(P) = S(zD) , Dby teking expected value of the last condition
with respect to f£(II) . Hence, in particular, R(P*) = S(zﬁ ) . But since

2% , by Definition 8, 1s the z, that gives minimm S, R(P*) must be

the minimum R. Hence the set of P¥ , the implied estimates of zﬁ by
Definition 9, is precisely the set of P's that minimizes R(P) . I am
indebted to W. C. Balnard of the Cowles Foundation for showing me this simple

proof.
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From what has gone before, it is also seen that P* may be regarded as a
certainty equivalent that gives the ontimal decision zﬁ , and that we maey speak
of the pair (P*,Z*D) as a particular case of an estimate-decision pair as
defined above in Definition 5.

DEFTINITION 10. A Bayes solution to the decision problem is the optimal

decision z* , or en optimal implied estimate P* , or the pair (P*,Z*D) .

From (2 3) and (2.ﬁ)16

16 L(P,NI) is equivelent to M(ZD,H) from (1.6). It is permissible to

replece 2 i (2.4) by 7

Qp and r; are defined following (2.5).

since it has been shown that any 2y, is equal

o

to sone

SiE

63 May Do g m - v ony
whenee, from (3.2)

_ I CAat = T
(3.4) 8(zp) = 2 Q2 - 2op Ty + T Qp Ty,

wherc a bar over a quantity denotes the expected value of the quantity with

regpect to L .
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Since Qﬁ iz a convex combination of positive-definite matrices QH s
1t is also positive definite. Hence a true minimum of S(ZD) exists and is

unigque. By differentiating S(zD} with respect to z. and setting partial

D

derivatives equal to zero, the optimel decision is given by

* _ L — —_ U—
(3.5) Zn = Qp rp = (0L HD)“l (/2 T' b -ITCT zy)

This expression involves the means, variances, and covariances of the personal
provability distribution of I . For example, the typical element of the

matrix Hﬂ c HE is
& ¢ G _
(5.6) ] v “pi Tpy Tax | T ;z Z ‘o1 |["ng Tix ¥ COV("hJ

where Chi i1s an element of C , cov stands for covariance, and where J zruns

from 1 to D and kX runs from 1 to E .

Then, from (2.1) and (3.5}, optimel implled estimates must satisfy

*1

¥ -1
(3.7) (P~ CPp) T (

1, *] ¥ pmr— -k = '
5 By v - Py oPpzg= (C )™ (1/2 Mg - Ty © T 2 )

Involved in this expression are the constents of the welfare function.
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Speclal cases. -~ The unintelligibility of the last equation may be

partially reduced by considering some special cases. In the case where HD is

* *
square, and hence P 1nvertible, by equating the right side of (3.7) to 2

via (3.5), {3.7) reduces to

3 ¥ . "l
(3.8) Ppzy * Ppozp = 1/2C77 b .
The optimal implied estimates here lie on a set of hyperplenes., In the case
of a single equation with one decision variable (D=1, G=1, E=0) , the optimal

decision and its implied estimate are the respective scalars:

(3.9} 2=

and

(3.10) P o= 7o+
T

where var{nx} is the scaler variance of the personal provability distribution
of x . In this particular case the implied estimate is unique and independent

of the welfare function.

Another interesting simple case is that of a reduced form of two
equations, each involving the same single decision variable (D=1, G=2, E=0) ,

the reduced form helng
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(3.11) Y, = m.z + v

and the welfare function bLeing

o 2
2 —— - - =
(3.12) R L S R AR P+ CF PRI PV S

Here the opiimal decision is the scalar

o) ‘3
¥* —_ —_ £ 5l —
(3.13) z = =2 - = =
e M ¥ [ + 4 T
ale | my +fe)p My my + ooty oo ppvar(n )+ Lo, cov mymy e over(ag) ]

and the optimal implied estimates must satisfy the condition

% ¥
b + b
e - s
(%.14) *a * # *D2 = ’
(0 1Py + €01 01Dy + C o)

where 2% is piven U 35.13). In this case the lmpiicd estirates ore nob wnigue
£ y \o-LD »

but lie on en ¢ilinse, the pesition and shepe of which are dependent on the consborts

o the wellore Punelion, o end ¢, which hove 4o not vordsh, In 2w . 0
ebio locus Is greched Moo the eone D' = (1L, C=1I, x, =121 . g5, =0
T x L
\ . A PR | Dy e T S T
Vm’(ﬂ]) = 1 3 and Vﬂ.\l(ﬂr} =, LA oD BN T CLICLG
. i
3 )
- [ . _— e L e Cyp Y
(n.15) Py + Dy - Pl/ o _{)2/;2 = O,

which has its center at the point (1/bz*, 1/Lz*) and radius N2/hz* . All points
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(— Lnflated (I[l , I[2)

FIGURE 1

* *
Locus of Optimsl Implied Estimates (pl, PE) for
a Two-Equation, One-Decision Model.
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on the circle are valid implied estimates, except the origin because of the

requirement that the vector (pl PE) be of rank one.

Comparison with prediction problem -- The prediction problem may also

be handled by the Bayesian approach, as is well known. When a point estimate
(or guess), P , is mede of the values of the reduced form parameters, a forecast,
or decision, ¥ , results. The loss function (2.15) or its equivalent (2.17)
mey then be used to obtain the Bayes risk, either in the form R(P) or S(§) .

Putting (2.17) into (3.2) we have

(3.16) Rpr (P) = E, [Lpred(P’ m] = Ef[z‘(P ~mre(p-m)z 1.

By expanding this expression and minimizing it wilth respect to P , the optimsal

implied estimates are found to be those that satisfy the rela‘bion17

lTWe are here teaking sdventege of the conclusion proved in Footnote 14
that the optimsl estimetes obtained by the minimization of R(P) are the same
as those that are obtained by finding the optimel decision and then finding the
1mplied estimates with respect to theat decision.

(3.17) P*predz = Iz .

It 1s noter'srthy that this result is independent of the constants of the welfare
function -- contrary to the result in the declsion problem as given by (3.7),

in which these constantes appesr.
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In the special case D=1, G=l, E=0 , the risk of the estimate P
becomes

(3.18) (p) = ez”L(p - 1) + var(z) ],

Rpred

and the optimal implied estimate attains the unique value

*

Ppred =% .

(3.19)

It 1s Interesting to compare this case again with the corresponding
case of the declslon problem. Since the loss functions have already been shown
to be different, the risk functions willl be different alsc. TFor the decision

problem it is -~ from {2.1h) --

(3.20) R(p) = oy®® IR 5)22 Foverlel
P

giving the optimal implied estimate that was shown in (3.10)

var(sx)
%

These two risk functions Bpred(P) and R{p) with their minimal points are

graphed In Figure 2, setting =2 , var{z) =1, and the multiplying constants

equal to 1 . It can be seen from thls figure that, crudely speaking, when the
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loss is based on the "relative error” or "percentage error” between p and = ,
with the variable under control, p , as a base of the percentage -- as it is
in the decision problem,—there is a premium on selecting a somewhst higher op
(to get a large "base" and small relative error) than in the prediction problem,

where the loss 1s based on "absolute error."

In the prediction problem with two equations and one independent
veriabvle (G=2, D=1, E=0) , the optimal implied estimates of the vector

(ﬂl ﬂ9> is -~ from (3.17) -~ found to be the unigue value

(3.21) (b P

pred = (“l ﬂ2)

whizh is independent of the welfare function. Looking bpack at the circlie in
Figure 1, this estimate is represented as a point within the circle -- the point
{1,2) . Thus, no member of the set of optimal implied estimates in the decision

problem is the same as the (unique) estimate of the prediction problem.
L. A SPECIAL BAYES SOLUTION

Posterior distribution after observations. -- So far in this paper

nothing has been sald aboubt observatlons, and next to nothing sbout conventional
statistical estimates. This lwoury has been mede possible by the device of

assuming a personal probabillty distribution of the unknown parameters.

But it is of interest to compare the Bayes solutions found in Section 3

ghove with the conventional estimates. To do this it will be necessary to meke
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R
- -1 2
Bpreal®) = (P - 1) + var(i) Lyrea(®) = (@ - 1)

6

¥

!
r:!
) ¢
-2 0 2=|ﬁ }-I- ) ‘l() jo]
R _ . o
R(p) = (p - M) + var(l) L(p) =(P.._'_L)

Py 2 P
© P

1 -

i

E

I
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D

- 0 2 L lO'LJ
2 -7 . var{ll)
5 I+ i
FIGURE 2

Two Bayes Risk Functions
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some additional assumptions about the personal probability distribution and about

the obeerved data.

Consider that a prior probability distribution exists, representing the

lavestigator's degree of belief in alternative values of II before observing any
data. This will be regarded as a personal probability, ass sbove. Then he

observes data, assuming he knows something ebout the probability distribution

of' alternative data conditional on the value of II . This conditional distribution

is called the data distribution. Then the state of his beliefs after data

cbservation may be called the posterlor distribution. Since the posterior

distribution is the later stage of his hellefs (probably reviging the prior
distrivution), it is the personal provabiiity distribution that is relevant for
making the declsion; so the posterior distribution of this gection willl be
regarded as the personal probebility distribvution of the last sectibn. More
precise deflnltions of these terms are given in Appendix A , and more detalls

mey be found, for example, in Kén&allng

18 [14], pp. 175-178.

IT before the observation of data the investigator has no strong beliefs
that certain values of II are more probable then other values, if he feels he
will "let the data decide for him" what II i1s, the situation approaches that
described In classilcal literature as "equel distribution of ignorance,” or es

"Bayes ' postulate,” where it 1s decided to 2ssign equal prior probsbilities to
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all possible values of II . Seldom can the claim be made that the probabilities

are precisely equal. For this reascn, and also because we are dealing with

19

densities, we shall take a limiting approach: assume the existence of a

19A uniform density over an infinite range does not exist, despite
certain classical formulations that would so indicate (see [15], p.97). This
technleal flaw has been pointed out frequently in the literatuwe. But the
fad=mental notion of prior ignorance is a valid one. As Savage has pointed
out [12], the essential requirement is that it be possible to make an experiment
with data that is sharp enough in relation to prior beliefs to modify them if
need be. While here we shall assume, so to speak, an infinite regress of prior
bellefs from some arbitrary distributlon toward uniform ignorance, which gives
us & limiting special case of the prior distribution, similar results to ours
could be obtained by starting with some arbvltrary but not too pathological
prior distribution, and collecting increasing amounts of relevant duta. See
Savege's discussion of his "principle of precise measurement" in [12], pp. 13-1k.

sequence cf prior probablility distributions that approsch uniform density as

8 limit, and examine the limiting Bsyes solutions of the sequence.

ASSUMPTION 1 . There exlsts a sequence of prior probability densities

’

|
L

where gy is any bounded density over the GH-dimensicnal perasmeter space,

g I +H_HO

© h

B

where HO is & value of I where 8 takes on its least upper bound, and
where h =1, 2,

This sequence might be referred to as "dilation around HO R
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Each succeeding density distribution, crudely speeking, maintains a
shape simllar to preceding distributions, but is compressed more along the
gl axis and stretched more throughout the parameter space in all directions

away from HO .20

20 I am indebted to L. J. Savage for suggesting this particular seguence
to me, which is more genersl than a sequence I had previously postulated.

The following assumptions, which imply a normal data distribution, are
made for mathemstical convenience and to facilitate the comparison vetween Bayes

and conventional estimates.

ASSUMPTION 2. The distribution of the random disturbances v in the

reduced form (1.3) has the normal multivariate density n(0, V).
ASSUMPTION 3». A set of T observations

X = (Yyz) = 7] 24

is available, where Zy 1s a nonstochastic vector and ¥y is a random vector

satisfying the reduced form {1.3). The random observations yt are independent,

and all made under the same II , and at a time when no control was exercised
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over the decision veriables z. . The matrix 2 is of rank H.

e

IEMMA 1. TUnder Assumtinns 1, 2, and 3, &s h approaches infinity,

the means II of the posterior distribution of Il sepproach the least sguares

estimatesel of II , P, and the coveriance matrix, VH ; of the nosterior

2lBy "least squares estimetes" are meant the classicgl or “simplie"
least squares estimates -- namely the elements of the matrix P that minimizes

an 2
5 -
f=] (yti yti)
slrmiltaneously for 1 =1 ... g ; where Yig and, fti are respectively the
~ l\' -

elements of Y and Y ; and where Y =PZ°',

distribution of II approaches that of the least squares estimates, Vg , thus:
lim b=y iy lim ~
(4.1) e L= P pwe m = Vo
The proof of this lemma is given in Appendix A (Lemma AZ2) .
The solutlion and conventional estimates. -- With the notion of a sequence

of prior distributions (and hence of posterior distributions) we wnay associate the

notion of a limiting Bayes solution, which 15 the 1imit that the sequence of Baye:
solutions approaches.

DEFINITION 11. Let [ghfﬂ)} denote a sequence of prior dilstributions.

Let (Pﬁ s z;h) denote a Bayes solution obtained when the personal provability

distribution is considered to be the posterior distribution assoclated with gh(n) .
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A limiting Bayes solution > is an estimate-decision palr (P*, zg) such that

1
(4.2) h:f: z% = 2%

22 cf. Wald's "Bayes solution in the wide sense,” [13], pp. 16-17.

DEFINITION 12. A prior-lgnorence Bayes solutlon is a limiting Bayes

solution under the particular sequence of prior distributions postulated in
Assymption 1.

The following Lemma provides a means of relating pricr-lgnorance Baves

solutions to least squares estimates.

2%
IEMMA 2. In any formula for a Bayes solution in Sectlon 3 of this paper,

23 Recell that "Bayes solution" includes both optimel decisions and
optimal implied estimates.

if the following substitutions are made:
(a) the meens T of the personel probability distribui:‘-f.cmalL are replaced

by the least squares estimates P ; and

24
For example, in (3.6) it is shown how the expression
I and VH

The formulas may contein these moments Impiicitly, rather than explicitly.
HﬁcﬂE igvolves elements of
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(b) the elements of the covariance matrix V.. of the personal

I
probavility distributionen are replaced by corresponding

elements of the covariance matrix V§ of the least squares

estimates P ;

2h Toid.

then the formula becomes one for a prior-ignorance Bayes solution under

Assumptions 1, 2, and 3

PRCOF, In view of Definition 11, it is sufficlient to consider optimal
decislions. All of those presented in Section 3 are unique, aad the formilas contain
morents of the personal probability distribution no higher than the se~oud order,
i1.e., II end VH . Let these moments (which are now to be regarded as posterior

moments) when associated with the prior distribution gh(ﬂ) , be dencted by

o

ﬁ£ and Vﬂh . Then, from Lemma 1, as h#w , these mements approach P and

VE , respectively. Then it can be seen that in every formuls for an optimal

lim

decisicn zﬁ , the limit T Zgh exists, 1s unique, and is glven by the

substitute formula described.

Let us lock at the prediction problem first, where the results are
well-known. From Jormuals (5.17) it cen be seen that the least squares estimstes
are preciseliy prior-ignorance optimal implied estimates. This is evlident also

from the facts that the least squares estimates are also Maximmm ILikelihood
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Estimates, that the posterlor distribution tends to the likelihood functior,
which is symmetric, and that the means of the posterior distribution minimize
the risk as given by (3.16). It also is true that the least squares estimates

are also Best Linear Unbisased Estimates (see Appendix B).

In the decision problem, classical least squares estimates do not
constitute optimal implied estimates under prior ignorance. This can be sesn Dy
meking the substitutions of Lemma 2 into formula (3.7) and also i%s speclal cases.
The dlscrepancies are the same a&s those between the optimal implied estimates of
the decision problem and those of the prediction problem, which have been

dilscussed above.

Consider the simple one-equation, one-decision case of formula (3..9),
Under Assumptions 1, 2, and 3, 7 becomes the least squares estimafe £ . Tren

(3.10) may be written

. 5 ./ 1
(l{_.B) P* =P 1+ m = P 1 + -7
L=

where +t 1s the conventional "t-ratio," +the rate of a regression coefficlent

25

to its standard error. The optimal implied estimate is here seen to be an

25 It is still & t-ratio although we are assuming the stsadard error
known ~- a speclal case of the more usual situstion where an unblased sstimate
of the standerd error is in the denominator.

"inflated" least squeres estimete -- the least squares estimsite muitlpiled by a

positive factor involving the reclprocal of the t-ratio.
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Consider the case of the two-equation, one-decision model of formula

(3.11) and its special case graphed in Figure 1. The point (Ei, Eé) becomes
the pair of least squares estimates (ﬁl, ﬁe) , which 1s located at point (1, 2)

on the graph, while the prior-ignorance optimal implied estimates are represented

by eny point on the circle (except the origin). Again, the optimal implied estimates
may be obtained by "inflating” each least squares estimate by a positive factor.

On the greph, the inflated estimates are found at the point where the circle is
intersected by a ray from the origin passing through the point (Ei, ;é} .

Algebraically, they are
(L.4) (o p%) = 2 (8 5,

where A 1s the scalar inflator found by substituting (4.4) into (3.14); by setting

(4.5) (Ei Eé) = (ﬁl ﬁé)
and
ver m, cov(ﬂl, ﬂe)
(4.6) = Vﬁ

cov(nl,ﬁe) ver n,

in (3.13), end equating (3.13) to (3.1%). The result is that the scalar inflator is

| + tr C Va .1
P'C P t

(1.7) A=
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2
where t is g sultebly welghted guadratic mean of the individual t-ratios,
the welghts being functions of the variances, covariances, and elements of the
C matrix. In Figure 1 the separate +t-ratios are 1 and 2, C 1s the

identity matrix, end the inflator is 1.k.

It is found that when only one decision varisble appesars in the model
(D = 1), the prior-ignorance optimel implied estimates can be expressed by
scalar inflators of the least squares estimates, even when some exogenous variables
gppear in Zp But in the general case scalar inflators do not necessarily exist,
although optimal implied estimates exist that are more complicsated linear functions

of the least squares estimates.

Practical differences. -- The differences between the two kinds of

estimates have been stressed. The question mey well be asked, however: how
important are these differences? If an investigator wished to obtain prior=
lgnorance estimates that would lead to optimal decisions, would he go seriously

astray by using conventional least sgueres estimates?

The preceding discussion of inflated leest squares estimstes throws
some light on this question, but does not answer it decisively for large models.
The answer depends on the sccuracy of the least squares estimates. The more
accurate they are (the higher the t-ratios), the less difference there is between
least squares estimates and optimal implied estimates. The one-equation, one-
decision model furnishes a crude example. The relationship between the t-ratio
of the single regression coefficient and the infletor needed to convert the least
squares estimate into the optimal implied estimate is shown in the following

table.
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t-ratio inflator
1 2
2 1.25
3 1.11
h 1.06
5 1.04

This relationship is suggestive, even for larger models. With very low t-ratios,
lacking statistical significance, the question of the megnitude of the difference
between the two types of estlmate 1s probably irrelevent, as the investigator
will not have confidence in his least squares estimates anyway. For very high
t-ratios, the mognitude of the difference will be very smell, end least squares
estimates could be used with confidence. It is when the +t-ratios are on the
borderline of significance -- say around 2 or so -- that the question of the

discrepancy has relevance and the size of the discrepancy may be appreciable.

5. CONCLUSION

Summayy of results. -- A decision model is postulated, which includes
g2 linear reduced form with some of the non-stochastic variables under control of
. decision-maker, and a welfare function that is quedratic in the endogenous
variables. TFor this model the loss function of statistical decision theory has
been derived -- a functlon showing the cost in terms of lost wellare of making
erroneous estimates P , &and consequent erroneous decisions, when the true
paremeters are Il . Thlis loss function is found to be different from another
loss function suggested for the prediction problem with the same reduced form,

& function representing the cost of meking errors in forecasting the endogenous
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variables when all of the non-stochastic varisbles are given and not under control.

The difference between the two loss functions derives from the fact that
in the decision model some variables are under control, while in the prediction
model all are uncontrolled. The difference in loss functions means that the
optimal statistical estimates of the reduced form parameters in the two models

would be expected to be different.

Optimal estimates and decisions are defined, using Bayesiesn concepts,

as those that minimize expected loss. In the decision model, an optimal estimate
is the implied estimate that, 1f used as a certainty equivalent by the decision-~

maker, would lead him to make an optimel decision. It is found that in the decision
model the optimal estimates are different than in the prediction model. 1In the
decision model, except in the simplest speciel case, the optimal estimates

involve the constents of the welfere function; in the prediction model they do not.
In the decision model, therefore, the statistician doing the estimating of the
Perameters needs to know at least some of the constants of the welfere function,

in order to provide the decision-meker with optimal estimates.

When a limiting epproach to Bayec ' postulate of equal prior probabilities
of the unknowns i1s made, along with usual data assumptions including normelity
of disturbances, the limiting optimal estimates in the prediction model are
equivalent to the classical least squares estimates; in the decision model they
are not; but they mey be regarded as inflated, or adjusted least squares
estimates, thelr closeness to the least squares estimates depending directly

on the accuracy of the estimates.



- 45 -

Appraisal. =-- The question naturally arises as to whether the results
summarized above -- or similar results -~ will prevail when the restrictive
assumptions made are relaxed or generalized. These essumptions include those
regarding personal probability, the structure of the reduced form, and the form
of the welfare function. While this question canqct be answered definitely at
present, Indications are that the main point of this psper -- the showing of a
fundamental difference in principle between the decision model and the prediction

model -- wlll not be changed.

The use made here of the Bayesien concept of a personal probability
distributlon representing the investigator's degree of belief in slternative
values of unknown parameters, and -- specifically -- the postulate of a sequence
of prior distributions approaching uniform density -- has made it possible to
derive specific optimal estimates in-Sections 3 and 4. While these results are
believed to be useful, and while the Bayesisn apparatus has helped the author
to gain insight into the main problem, the differences between decision and
prediction models do not derive from this apparatus. Rather, they derive from
the difference in loss functlons -- that is to say, from the structure of the
problems themselves -- the nature of the objectives of decision-maker and fore-
caster and their degree of control over varisbles in the economic model. A
change in the prior distribution, for exsmple, would somewhat alter the specific
results, but there would still be a difference between optimal estimates in the

decilsion model from those in the prediction model.

The same considerations indlcate that generalizing the assumptions

regarding the reduced form -- linearity, no over-identifying restrictions on
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Parameters, normellty snd serlsl independence of disturbences, known covariance
matrix of disturbances -- would still leave differences between appropriate
estimates in decision model and prediction model, although the estimates them-
selves would be expected to be different. It would be highly desirable to work

out results for more general cases.

It should be noted that the specification of additionasl restrlctions
on the unknown parameters will affect the prior disitribution. The presence
of the usual over-identifying restrictions on them (from a model of structural
equations) will place them in a domein of lower dimensionality. The placing
of inequality constrainis on ihem (usvally quite realistic) will be inconsistent
with the infinitely dilating sequence of prior distributions postulated in
Section k. If a bounded domein of the unknown parameters is in order, a

rectangular prior distribution might be specified.

The relaxing of the agssumption of lknown covariance matrix of disturbances
will place this covariance matrix in the category of unknown parameters. While
this change introduces some touchy questions wilth respect to the prior distrivution
of a variance, some preliminary work by the author on this aspect indicates
that reasonable prior distributions exist, and that an estimated covariance

matrix from the sample can be used.

The form of the welfare function will elso affect the speciflec results,
but it 1s hard to see how a different welfare function -- polynomial or
logarithmic, for exemple -- would change the essential points that the optimal
estimates for the decision and prediction models differ, and thet some knowledge

of the welfere Tunction 1s needed by the estimating stetisticlan. A broader
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question would be whether it is realistic or useful to postulate a welfare
function &t all. This is an 0ld question. Whille recognizing the worth of
raising the question, and the difficultlies of formulating welfsre functions
for large social groups, the author can only here state his belief that the

concept has fundamental relevance.

As stated previously, the results of this psper do not necesserily
point to lerge discrepancies from customary statistical procedures, nor from
statistical criteria for "good" estimates. In many situations the conventional
procedures will be fairly consistent with optimal decisions. Yet, conceptual

differences exist, and occesionally prectical differences will oceur.
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APPENDIX A, A Bayesian Interpretation of Multivariate least Sguares

The purpose of this Appendix isrto show that the classical least
squares estimates, ; > of NI in the reduced form of the text and their co-
varlance metrix are also the limits approached by the means and covariance matrix
of the posterlor distribution of Bayesian theory when the prior distribution
approaches a uniform density and when the disturbances are normal. The demon-
stration is made in two steps: (1) A general Bayesian set-up is described in
which the moments of the posterior distribution approach those of the likelihood
distribution; (2) the least squares estimates are shown to fit into the general

set-up. The use made here of limlting processes in a multiveriate situation is

believed to constltute some generalizatlon of previous results.

Bayesian set-up. -- The unknown parsmeter, © , is a random point or

vector defined over Euclidean n-space, Rn « The prior distribution is a

probability density, £(®. defined over Rn whose first and second moments
exist. The data, x , is a random point or vector defined over Euclideen

N-space, RN - The data distribution is & conditional probability density,
p(x|®) , over R

N whose first and second moments exist. The likelihood

distribution Osometimes called just likelihood) is the probabllity density

function, px(®) , Obtained from the data distribution p(x|®) by regerding

® as a random varisble, x as fixed, and multiplying by a suitable consitant

=]

S0 thatﬂnf (8)d® = 1 . The posterior distribution is the conditional

probabllity density, gx( ®) , of the parameter © , given the observation

of a particular set of data, X, this distribution heaving mean
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® , anxl vector, and covariance matrix V@ ; anxn matrix.

BAYES THEOREM. (cf, for exemple, Kendall [1h], p. 176). The posterior
distribution 1s proportional to the product of the prior distribution and the

likelihood:

(Al) gx(@) - g(@) PX( e)

-/ &) p (@) a8

ASSUMPTION Al. There exists a sequence of prior probabllity distri-
butions

(g,(0)) = (™5 le, + vl (8 - )7

over Rn ; Where h=1, 2, ..., sand where gl(e) is any bounded density
whose first and second moments exist, and where @O is & value of © where g
takes on 1ts least upper bound.

IEMMA Al. TUnder Assumption Al, as h+wo , all moments of the

posterior distribution gx(@) approach as g limit the corresponding moments of
the likelihood pX(B;

I’ROOF.E6 Let the positive integer m denote the order of the highest

26.For the method of proving this lemms I am indebted to L. J. Savage,

who is, however, not responsible for what I have done to his original suggestions.



- 50 -
moment of g_ (& ) that it i1s desired to compute. Let g(8) denote the vector

whose elements are those functions of © +that, when integra.ted.,27 give all of

2T All of the scalar integrals in this paper are multiple integrals.

the moments of px(e) around zero of orders 1 through m Inclusive, i.e.,:

(42) o(®) = (8] »,) (€20, 1) (6767 670 ) . . )

where the quantities in parentheses are subvectors with i, j, k, ...= 1 ... n;

ry = 1, r2+52 = 2, r3 + 55 f t3 = 5, eaey T t8 + tm +toeee=m .

Then the vector whose elements are the moments of px(Q) sround zerc corresponding

to all desired moments of gx(e) 1828

Jo = [a® ae.

28 In order to avold repetition of symbols the followlng abbreviations

will be asdopted from this point on in this Appendix: ¢(8) = q ; Py (8 =p ;

. o«
g(8) = g ; for any scalar or vector function of & , £(e)_J f(e)e = [r,
where the integral sign over a metrix means the metrix whose elements sre scalar

Integrals of each element of the matrix.
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With respect to the prior distribution &, > the moments of the posterior
distribution Ben that correspond to fq may, from Bayes Theorem, be

represented by

For any vectors u and v , let |u - v| denote the Euclidean
distance between the two points. Then to prove the Lemma it is necessary and

sufficient to prove that

(43) Illi_,f I }1’;% - a

Let ¢ Dbe an arbitrerily small number. Then, for any @ there exists

en h large enough so that

0 g le, + h™(e-,)]
(Ah) 3 G SN O <

o

This is so because of the continuity of the density. By multiplying (Ak) by

q and by p , in turn, and integrating, it is found that (Ak) implies

Y
5

(A5) < (1+e) fa ;

bf{
@

o]

=)
s
IA
-
+
o

(46)

3
0®



- 52 -

Subtracting fq from (A5) and 1 from (A6) and teking distances from O ,  (AkW)

is found to imply

Ja
(a7) ey sl < el Sl

Jre,
(48) FACN) o2l

In general, a vector, v , and a scalar, s , may be chosen so that

s
49) e R (LTI
g,(e,)
(410) Jrey,

W)-l = S .

o)

By the properties of distance, moreover, it may be verified that (A9) and

(A10) imply

(a21) g | < Uslelsh gl
Jre, - 1+ s|

By comparing the distance from O of the left sides of (A9) and (Al0) with
(A7) end (A8B) respectively, it is seen that there exists an h large enough

so that |v| and |s| mey both be made smaller than an arbitrerily small
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positive number |e| . So the limit of the left side of (All) as h+ is zero,

which establishes (A3), which proves the lemma.

Least squares estimetes. -- The reduced form (1.3) of the text

y = Iz + v

18 now considered where the dilsturbance vector v has the normel multivariate
distribution n(0,v), end where T independent observetions on y are availsble,
in eccordance with Assumptions 2 and 3 of the text. The joint likelihood

function of the unknown parameters II under these conditions is well known.29

2Isee , for exsmple, Anderson [16], formule (22), p. 183.

Although it is not customary to regard the unknown parsmeters as random variables,
nor the likelihood function as a probebllity distribution, by multiplying by &
suiteble normalizing constant, the likelihood function cen in fact be put in the
form of a normal multiveriate density function of the elements of II . The means
of this density function are the clessical least squares estimates ;, as
computed from the observations at hand, and the covarlance metrix of the elements
of I is the GH x GH matrix

(A12) P [cov(Vj_:V,j)(Z'Z)-l] = ve (z2)™7

where V 1is the covarl nce matrix of the disturbance vector v , with typical

element cov(vi,vj) , Z is the T x H datamatrixon z , and R denotes the
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30

Kronecker product, or direct product, operation. Of course, as is well known;

30 Ipia.

P is & meximum-liikelihood estimate of I .

A correspondence may now he made between this and the preceding section
of this Appendix. Let n=GH , N=GT ; let & denote the GH x 1 vector formed
by placing all the elements of T 1in a single column; let x denote the GT x 1
vector formed by placing the vectors Yy end to end in a single column. The
likelihood density of the previous section . px(e) is therefore the normal multl-
veriate density n(g, vﬁ’ Just described in the preceding paragraph. The posterior
means © and covarliance matrix V. of the preceding sectiqn become ﬁ£ and

]

Vﬁh . Assumption Al beccmes Assumption 1 of the text. Lemma Al may therefore be
applied to the moments around O© of the posterior distribution gxh(ﬂ). Hence

we have the following result.

IEMMA A2. Under Assumptions 1, 2, and 3 of the text,

(Al:’)) l:l;iilﬁh=§ E)

lim N
(A1Y) ho Vm = VP

-

where P is the matrix of classical least squares estimates and V§ is given by

(A12).
The proof of this lemma is immediate when it is remembered that the means

and the elements of the covariance matrix are obtainable by simple subtraction from

the first and second monments around zero. This lemms is Lemma 1 of the text.
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AFPENDIX B. A Note on Best Linear Unbiased Estimates in the Prediction Problem

The purpose of this note is to point ocut that under the data assumptions
mede in this paper, which are the usual ones, ineluding serisl independence of
data, each of two different definitions of "best linear unbiased estimate" of the
predictand, E(y) , in the prediction problem, lead to simple least-squares

estimation of the individusl equetions one by one.

Generalized least squares. -~ Let P be a fixed unkmown k x 1 vector,

X 8 fixed end known n x k metrix of rank k , y & random n x 1 vector
with E(y) = X8 and with known coverience matrix £ . Let « be the unknown
parameter vector & = {8 to be estimpted, where V¥ 1is a fixed end known r x k
matrix, and let yo be one observation that is aveilable on y . Assume that
it is desired to find an estimste, & , of « that is (1) lineser in 3° ;

(2) unbiased; and that satisfies either condition (3a) or (3b).

(3a) For any symmetric positive-definite metrix Q the quadratic
form E(a - @)' Q(a - o} is minimized, subject to

conditions (1) and (2).

(3b) The mean squared errors E(ai - ai)2 are minimized simulteneously
for i=1...r , subject to conditions (1) and (2).

By a slight generalization of the result given by Theil ([1], Appendix 8A),
the desired estimate, using condition (3a) is found to be given by the generalized

least squares Tormula

(B1) g = vxe ) e .
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This formula can be derived by following Theil's derivation exactly, replacing
his condition AX = I by the condition AX = ¢ , implied by the unblased

condition E(a) = ¢ , end meking other minor notation chenges.

Formula {Bl) hes been derived under condition (3b) by Chipmen and
Rao ([17] Theorem 2.1, p. 11). Since in both Theil's and Chipman end Rao's
derivations the formila (Bl) is shown to be both necessary asnd sufficient for
the desired estimate & , 1t follows that conditions (3a) end (3b) are logically

equivalent to each other.

Prediction From reduced form. -- Consider now the prediction problem
suggested in £his paper of predicting E(y) , where y 1is glven by the reduced
form (1.3) and where z is a given vector of exogenous varisbles in the prediction
period. BSay that the data aevallable, from & previous period, conform to
Assumption 3 of the text (Section 4), and that it is desired that the prediction,

§ , minimize the loss function (2.15) while at the seme time being linear in

the random data Y and unbiased.

This problem may be placed into correspondence with the generalized
least squares problem by letting G=r , GE=k, GI'=n, E(y) =a,
¥ = a , and rewriting certain matrices as vectors. It happes that because of

the special nature of the assumption of independent observations, the covariance

matrix V cancels, and the followlng result is obtained:
~ -1
(B2) § =y%(z'2) "z ,

where Y and Z are the data matrices recconstituted as defined in Assumption 3.

This is the simple least squares result.
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In accordance with the result cited from Chipmen and Rac, the formuls
(B2) also holds if, instead of minimiiing the loss funetion (2.15), it had
been required to minimize the mean squered error (or variance) of each ?i
separately, subject to linearity and unbiesedness. The two alternative definitions

of "bestness" are logleally equivalent.
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