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Stationary Ordinel Utility and Tmpatience

Tjalling C. Koopmans*

1. Introduction. Ever since the appearance of Bohm Bawerk's "Positive

Theorie des Kapitales," the idea of a preference for advancing the timing of
future satisfaction has been widely used in economic phepry._ However, the
question how to define this ides precisely has been given ingufficient aften-
tion. If the idea of preference for early timing is to be applied also in a
world of changing prices, money expenditure on consumption is not & suitable
measure of "satisfaction level;" and money expenditure divided by a consumers'
goods priée index is at best aﬁ approximate measure, useful for econometric
work but not providing the sharp distinctions that theory requires. It seems
better to try to define preference for advanced timing entirely in terms of &
utility function. Moreover, if the idea of preference for early timing is to
be expressed independently of assumptions that have made the constructlon of

cardinal utility possible** (such.aschoice between. uncertaln prospects, or

*% TFor a recent discussion, see Debreu, Topological Methods in Cardinal
Utility Theory, CFDP. No. T76. :

stochastic choice, or independencé of commodity groups in the preference
structure) it will be necessary to express it in terms of an ordinal utility
function, that is, a funcition that retains its meaning under s monotonic (in-
cfeésing) transformation. It would seem that this can be done only if one
peostulates a ceftain persistency over time in the structure of preference.

| This study started out as an attempt to fofmulate postulates permitting

has Introduced
a sharp definition of impatience, the short term Irving Fster/for preference

* I am indebted to Gerard Debreu and Herbert Scarf for extremely valuable
suggestions on the subject and methods of this paper.



for. advanced timihg of satisfaction. To avoid complications connected with

the advancing age_and finite life span of the individual consumer, these pos-
tulates were set up for a {continuous) utility function of a consumption

program extending over an infinite future period. The surprising result was
that only a slight strengthening of the continuity postulate (incorporated in
Postulate 1 below) permits one to conclude from the existence of & utility
function satisfying the postulatesf;o/fhe presence of impatience in a central
area of the commodity space. In other words, conditions hardly stironger than
those that appear needed to define Impatience are sufficient to prove that

there is a central zone of impatience. Ilutuitively, the reason is that if

there is in all circumstances a preference for postponing satisfaction -- or
even neutrality toward timing -- then there is not enough room in the set of
real numbers to accommodate and lsbel numerically all the different satisfaction.
levels that may occur in relation to consumption programs for an infinite future.

This paper then is a study of the implications of continuous and stationary
(see Postulate 3) ordering of infinite progfams. Flexibility of interpretation
remains as to whether this ordering may serve as a first approximation to the
preferences of an individusl consumer, or may perhaps be an "impersonal" result
of the aggregation of somewhat similar individual preferences (interpreting
"consumption” as "consumption per head" in the case of a growing population),
or finally may guide choices in a centrally planned economy. In each of these
interpretations further modifications and refinements may be called for.

Two levels of discussion are separated in what follows. The contents and
findings of each section are first stated in general terms. Then where needed
the more technical stipulations, proofs and discussions are given in a starred
section bearing the same number. The starred sections can be passed up by

readers interested primarily in the results.
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2, The Commodity Space. Notation. A program for an infinite future will

be denoted

ft

(1) 1% (xl, Xps Xz ery Xy vee) = (xl, 2x) = etec,
Each symbol xt, t=1, 2, ..., represents a vector (bundle)

(2) x = (xti’xt2’ TP S

of the nonnegative amounts of n listed commodities to be consumed in the period t.

Subvectors of (1) consisting of seversl consecutive vectors (2) will be denoted

(3) ¥pr = (Kpr Xggqsr oves Xpod
where omission of the right subseript +' of txt' indicates that t' = o .
The subscript t of x_ is called the timing of the consumption vector x

ct

t 3

the subscript s of X = (x, x «+s) the time of choice between X and

its alternatives Sx', sx", ees « A constant progrem is denoted

(4)

conx = (x, X, X, ou-) LY

2%, Fach consumption vector x_ 1s to be selected from a closed and con-

t
nected subset X of the nonnegative orthent in n-dimensional space, which may be

the entire orthant, and which we take to be the same for all t+ . Hence

X = (Xt’ X p1? +++) belongs to the cartesian product lX of an infinite sequence

of identical sets X . Expressions such as "for some X, ," "for all X ;" ete.,

will in what follows always mean "for some xtex,“ "for all _x€.X," etc., and

t7Y

X are to be thought of as defined on X or .X ,

al]l functions of x or 1

t t
respectively.
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3, Existence of & Contilnuous Utility Function. Before stating the basic postulate

agserting this existence, the meaning of continulty needs to be clarified. Con-
tinuity of a function f£(y) of a vector y means that, for every ¥y one can make
the sbsolute difference |[f(y') - f(y)| as small as desired by making the distance
d(y;y) between y' and y sufficlently small, regardless of the direction of
approéch of y' to y . For vectors y = (yl, ooy yn) with a finite number n

of components there is & wide choice of definitions of the distance function d(y',y),

all of which establish the same contlinuity concept, and euc¢lidean distance

5) ay's ¥) = Iy - \fz(~>2
(5) (v ¥) =y -yl s Z O 7 v

is as good as any other, But in an infinite-dimensional space the continuity

concept is sensitive to the choice of the distance function used. In what follows

we shall employ as a "distance" between two programs lx', 1%
(6? d(lx', lx) = agp |x% - xt| ,

vhich is the maximum distance in the sense of (5) between any two corresponding
whenever such & maximum exists.

one-period consumption vectors x! , X, ,/ This definition treats all future periods

t
alike, and if anything has a bias toward neutrality with regard to the. timing of

satisf‘action .

Postulate 1. There exists a utility functién . Ul( X) with the continuity

property that, if U 1s any one of the values assumed by that function, aaé=
U ok Y WM Vv U
—4?‘171?5?fﬁﬁ1athe there exigts a positive distance 5 such that the wiility

l(lx ) of every progrem ,

gram lx with utility U ( x) = U satiefies U' < U, ( x') <ur

x' having & distance d(lx', lx) <& from some pro-

Comparison wlith the above definition of continuity of a function f(y) will

show that we are here making a slightly stronger reqnirement. For any U' and
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U'' ‘bracketing the given U, we want the same maximum distance 5 between lx'

and X to guarantee that U' < Ul(lx') < U'' regardless of which is the member

lx of the class of all programs with utility equal to U , to which the program

lx' has & distance < & .

/
Xz s %o

H(J(X 1;x?-f)=Ui—-

M e e e —————— g

U(:{U X, }= U

F:L?}&F{L 1

In diagram 1, showing & simplified case where lx has only two scalar components

= and X, , we require that there be a band consisting of all points no further
than B awey from some polnt of the indifference curve Ul(xl, x2) = U, wvhich is
to fall entirely within the zone TU' : Ul(xi R xé) < Utt, Essentially, then we

are requiring that the utillty function not be infinitely more sensitive to changes

in the quantities of one program than it is to any such chenges in another

equivalent program.



4, Period-wige Aggregation. Having rejected expenditure on consumption as

& measure for the satlisfaction levels reached in particuler periods, we must find

another means of labeling such levels. This can be done if we are willing to

postulate, essentislly, that the particular bundle of commodities to be consumed
first sequences of

in the/beriod has no effect on the preference between alternative/bundles in the

and envetsely. One

remaining future, / cannot claim &8 high degree of realism for such a postulate,

because there is no clear reason why complementarity of goods could not extend

over more than one time-period. It may be surmised, however, that weaker forms

of this postulate would still allow similar results t¢ be reached. The purpose

of the pregsent form is to set the simplest possible stage bre study of the effect

of timing alone on preference.

Postulate 2(2a and Eb). For all X,, X{, 5% X',
t T L 1
2&? Ul(xl, 2x) > Ul(xl, Ex) implies Ul(xl, X ) :-Ul(xl, ') s
T T T ¥
2b) Ui(xl, 2x):: Ui(xl, X ) implies Ul(xl, 2x) i'Ui(xL’ X ) .

We shall show that, as & consequence of Postulate 2, the utility function

can be written in the form
(7 Uy (%) = 9wy ()5 (20

where V (u 3 U ) ie a continuous and increasing function of 1ts two variables

u , and where both u (x ) and U ( x) have the stronger continuity property

1 U2
attributed to Ul(lx) in Postulate 1. We slall call ,'ul(xj?,ﬁnm_ef,diate utility ar one-period

1¢ili§x@ﬂ?ﬁMe t=ﬂ%interpreting it as a numerical indicator of the satisfaction level

assoclated with the consumption vector x, in period 1. Ué(ax) will be called

1
prospective utility (as from time t = 2), with a similar interpretation with regard
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to the remaining future. While this suggests calling Ul(lx) prospective utility

as from time 1, we shall for contrast call it aggregate utility (aggregated, that

is, over all future time periods). Finally, the function Vl(ul, Ué), to be called
the aggregator, indicates how any given pair of utility levels, immediate (ul)

and prospective (U2) stacks up against any other pair in making choices for the

entire future.

as well as pX and 2%
4% Since _x and _x' /can be interchanged in Postulate 2a, and since

1l 1
">" means "> and not <" and " = " means " > and < ] Postulate 2a implies that,
for all xl, xi, ) Ex',
1 L] | 1
(8 >) Ul(xl, 2x) > Ul(xl, 2x) implies Ul(xl, X ) > Ul(xl’ % )
- - t 1 = 1 '
(8 =) Ul(xl, 2x) Ul(xl,2x) implies Ul(xl, % ) Ul(xl, X y .
If we assign to 2x a particuler value 2x0 and define
o

we read from (8 =) thet

= ' = ] ] 1 .
ul(xl) ul(xl) implies Ul(xl, 2x0 Ul(xl, X ) for all X

Writing again 2x for 2x' this means that

Ul(xl, ex) = Fl(ul(xl), gx) .
Applying & similar argument to Postulate 2b and defining
(10) U.(.x) =U (x‘° x)
‘ 22" T T1vy 2

we obtain for Ui(lx) the form (7). It follows from the definitions (9) and

(10) that ul(xl) and UE(Ex) have the same continuity property as Ui(lx) .



-8 -

From (8 >) and (9) we see that Vl(ul, U2) is increasing in U, s and, by similar
reasoning from Postulate 2b, in U2 .

The proof of the continuity of Vl(ul, UE) is slightly complicated by the
possibllity of zones of indifference, which necessitates separate consideration of

the four quadrants of & neighborhood of a given point (ug, Ug) . Assume first

that
0 0 b
u; =y xl) <M = lub {ul(xl)|xle%}
P -u (0 < = lub ) U_(x)|, xe X
2 22 MU2 = 221271
1 1
Then there exist points xl and o% such that
1 0 1 0
ul(xl) > ul(xl) , U2(2x ) > U2(2x )}

and, because X 1s connected, continuous curves xl(x) ’ 2x@ﬁu) such that

0 1
X xl(l) X s xl()\.)ex for 0<A<1,

n
i

x, (0)

1
2x(0) X s 2x(l) X s 2x(.!\.)elx for Og.A_g 1,

i}
]

and finally points xi s X' on these curves such that

[11]

0 |
= t AxI) =
%) = xl(x‘) » 0 lub-{}]ul(%l(ki) <uy % < 1, hence ul(xl) u

X' = 2X(_A.'), 0§J\_'

. lub{J\.er(ex(./\.D < Ug} <1, hence U,(x') = Ug .

Now
0 0 — ] 1 — 1 1 - 1
GRS v, (u (1), U (x) = U, pxt) = U (gxt)
and, given € > 0 , there exists 5 > O such that

m:x x, - xt] <8 implies U, (;x) - Ul(lx')| <e .
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Finally, there exist A'', /u'' such that A' < A'' <1, A'<A'' <1, and

ul1
1

vl

' 11 0
ul(xl(h i) >u; lxl(l)— xl(k')| <8 for M <A<,

Tt
U5

Ll

u, (x(Arn)) > W, m:xlxt(_/\.)- x (A} g5 for At < A< A,

Since ul(xl(x)> R U2(2x(J\J> are continuous in A , /\., respectively, every
value u, such that ug < uy < ui‘ is attained by ul(xl(l)) for some A such

that A' <A < A'', and a similar statement applies to Ue(;x(f\l> . Hence
0 r s 0.0
u; Sy S < UL' imply [vl(ul,ua)-» Vl(ul,U2)|

= oGy (M), () - v, )]

A
m

L]

the essential point being, of course, that ug < ui', Ug < Ué' . If, on the other
0

hand, u; = M or Uo = Mﬁ , ‘the particular guadrant does not need to be con-
1y 2 5

sldered. Similar reasoning applies to the other three quadrants.

5. Stationarity. DPostulate 2b says that the preference ordering within a

class of programs lx with a common first-period consumption vector X) does not

depend on what that vector X is. We now go a step further and require that that
preference ordering be the same as the ordering of corresponding programs obtained
by advancing the timing of each future consumption vector by one period (and, of
course, forgetting about the common first-period wector originally stipulated)}.
This expresses the idea that the : passage of time does not have an effect on

preferences.

T
X',

Postulate 3, For some X and all _x,
— 1 — 2 if 2

o ' ' T 1
Ul(xl, _2x) > Ul(xl, X ) if and anly/ Ul(ex) > Ul(ex ) .
In the light of (7) and the fact that Vl(ul, U2) increases with U, , this is

equivalent to

U, (%) 2 Uy(x' Mendonlyif Uy (,x) 2 U (%)
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By reasoning similar to that in section k¥ it follows that

U, (%) = FE(Ul(ex))

-1
SHw,)

denotesthe inverse function of U2 = Fa(Ul) s it follows that the transformation

(which is in part only & change of notation)

where FE(Ul) is & continuous increasing function of Ul . If U =F

U(x) = U (%) = BRQ,0) u(x) = v (x) ,
V(u, V) w v (u, R (1) ,

preserves the ordering originally represented by Ul(lx) , and brings (7) into

the simple form
(11) (%) = v(atx,) , V(%)

This relation will be the point of departure for all further reasoning. It
says that the ordering of pairs of utility levels - immediate, u(xl) , and
prospective, U(EX) - defined by the aggregator V(u, U) is such as.to produce
an ordering of programs for all future, identicel but for a shift in time with
the ordering of programs from the second period on. Time subscripts have been

omitted from the function symbols u, U, V beceuse _x can again be substituted

2
for ,x in (11), giving U(Bx) = V(ﬁ(xe), U(Bxl), and so on. The function V{u, U)
is again continﬁous and increasing in 1ts arguments wu, U . 8ince both u(xl) |
and U(ex) are continuous, the arguments u, U of V(u, U) can take any vaiue

in an intérval Iu’ IU’ respectively, and the values attained by V(u, U) fill
the interval IU + Since we are dealing with ordinsl utility, there is still

freedom to apply separate increasing transformations to u(xl) énd to U(ex) s

*
which can be used to make both Iu and IU coincide with the unit interval

* TUnless Iu or IU or both degenerate to a single point. This will be ruled out in
Postulate 4 below,
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extending from O to 1. The aggregator V(u, U) can then be represented, though
incompletely, by ite niveau lines in the unit square, which are decreasing to the

right, as shown in Figure 2.

U

1

(oA T,

Fiaurt 2

The representation is incomplete in that one still has to associate with each
niveau line a numerical value of the function, which is to be referred to the
vertical scale. It is also somewhat arbitrary in that separate increasing
transformations of u and U that preserve the end points 0,1 are still per-
mitted. The information conveyed by V{(u, U) is therefore as yet scmewhat hidden
in those interrelations between the niveau lines, the verticals, the horizontals,

and the numerical niveaus themselves, which are invariant under such transformations.

6. Extreme programs. In order to sidestep & mathematlical complication,

we shall consider only the case in which there exist a best progran li and a
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worst program 15 .

Postulate 4. There exist 1% li such that U(lﬁ) < U(li) and,

U(lﬁ) < U(lx) < U(lx) for all ,x

(where we have now written U(lx) for Ul(lx)).

As & result of the transformation already applied, we must then have
(12) U(lg) = 0, U(lx) =1.
Furthermore, if li = (il, ig, eee) , we must also have
u(it) = u(il) =u, say, for all t ,

because, if we had u(ﬁt,) < u(it) for some t , t' , the program li' defined

by

xé, =X s % = X for all t # t'

would be a better one, in view of (11) and the monotonicity of V(u, U) . For

the seme reason, u = u(il) must be the maximum attaineble immediste utility.

From this and similar reasoning for the worst program I§ we have

(13) = “(51) < u(x) < u(il) =1 for all x .

It follows that in the present case the intervals Iu = IU contain both end

points 0, 1. Finally, if x is & best (15 a worst) program, it follows from

1
(11) and the monotonicity of V(u, U) that Ei {or 25) is likewise & best (worst)

program, Hence, by inserting ;¥ eand X successively into (11) and using (12)

and (13),

(14) V(OJ 0) =0, V(ls l) =1.
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7. Corresponding levels of immediate and prospective utility. In this

section, we shell study the question whether, if one of the two utilities, immediate
(u) or prospective {U) is given, cne can find a value for the other one that

equates prospective and aggregate utility,
(15) V(u, U) = U .

A pair {(u, U) thet satisfies this conditios will be called a pair of corresponding

(immediate aﬁd prospective) utility levels. One interpretation of this corre-
spondence is that the immediate utility level u Just compensates for the post-
ponement of a program with aggregate utility U by one period. Another still
simpler interpretation will be given later.

The existence of & prospective utility U corresponding to a given immediate
utility u is readily established. Iet u be a point of Iu . Then there exists
& one-period consumption vector x such that u(x) = u . The aggregate utility
U(conx) of the constant progrem in which x 1is reﬁeated indefinitely then

satisfies, by (11),

(26) U( o) = V(alx), Ul X))

because a shift in time does not modify the program. Hence U = U(conx) meets
the condition (15) .
We shall now prove that for each u there i1s only one corresponding U ,

which represents a continucus increasing function
(17) U=Wu , with W{0) =0 , Wil =1,

of u , to be called the correspondenne function. It follows from this that,

conversely, to each U there is one and only one corresponding u . Figure 3

illustrates the connection between V{u, U} and W(u) .
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7% We proceed by a sequence of lemmas. With a view to possible later study
»*
of the case where no best or worst program exists, Postulate 4 1s not assumed in

this section 7* (unless otherwise stated). Reference to the reasoning of section 6

shows that in any case Iu = IU » regardless of whether one or both of the endpoints

0, 1 of IU are included in IU o
Iemme la. Iet wuel , Uel, satisfy (13) with u <1 . Then there exists

no U"eIU such that U'' > 7T and

V(u, U'} - U° >0 for all 0' sach that U< U' < U

* However, we do assume that Iu and IU are proper intervals, even 1f open or
half-open.
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Proof: Suppose there were such a U''. There exist a vector x and a pro-

gram lx such that

u(x) = u , U(lx) =U .
Since u <1 , the reasoning of section 4% shows that we can indeed choose x in

such a way that every neighborhood of x in X contains points x' with

u(x') >u . Consider the programs

(1) T components
X =, x, .., x, .x)
(18) e
' lx'(T) = (XX eea, X', lx)

Because of (15),
U(lx(T)) = U(lx(T'l)) 2= 4. = U(lx) =U forall «t.

Choosing U''?, UI-!I such that U< U''"' < UIV < U'', we can therefore because

of Postulate 1 choose & > 0 such that, for all 7,
max|x! - x(")l < % implies U( x') <U'',
+ t t = l =

Choosing next x' such that |x' - x| <% and u' = u(x') >u,

we have in particular
(19) U(lx'(T)) <Uu''' forell 7.

Since u' > u the function V(u', U') - V(u, U') 1is positive. A4s it is

also continuous for U< U' < U'', we have

¢' = min (V(u', U') = V(u, UY)}) >0,
U<y
aMCl
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eEMn%UU”-UH}>O.

Using, with regard to any program _x , the notations

i
=R = @), ulxy), ) = (w, uy, o)
(20)
V(32 0) 2 V(aps Vg eees Vi, U) L0l)

we then have, as long as e < U'' - U, and if con®' = (u', u', ...},

U(lx'(T)) = vr(conu'; )= v1-1<;onu'; v(u, U)) 2

t 4 - te -
Vw—l(;onu > V(u, U) +é> - v-r--l(conu 3 U +e)

1A%

te 1 te
VT-ECOnu 3 V(w', U+ e))z VT-—E(conu 3 V(u, U+ e) + 6) z

[}

te 1 -
VT—E(conu 3 U+ 2¢) > e 2 V(; > U+ (v-1)¢ >U + Te.

1

But then we can choose 1T such that U + 1e < U''" but

U(lx'(")) >U+ e > vV,

a contradiction with (19) which proves Iemma 1 . The reasoning is illustrated in
Figure 4, where the locus {j(u', U, | vlur, ur) = Ui} is drawn in & manner

proved impossible in Iemma 1.



'

Symmetrically, we have

Iemma 1b. Iet uel , Uel, satisfy (15) with u >0 . Then there exists no

U
UeIU such that U'' < U and

V(u, U') - U' <0 for all U' such Ut <U<u.

We can now prove, if Tﬁ denotes the closure of Iu 3

Lemma 2. Iet uel , UeL, setisfy (15) with 0 < uw < 1. Then
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(21) v{u', U') - U' < 0 for all u'effu » U'el, with uw'<u, U' 20U,
except {u', U') = (u, U) .
(22) v(u', U') - U' >0 for all u'efu » U'ely with w'>u, U' U,

except (u', U') = (u, U) .

Proof (see Figure 5): We first prove (21) with u' = u by considering its negation.

This says that there exists U"EIU with U'' > U such that V(u, U'') - U'' > 0.

But this implies by Iemme la that there exists U''' with U< U''' < U'' such that

V{u, U'"') - U''' < 0, and by the continuity of V(u, U') - U' with respect to
g U! t
IV/ such that V(u, UTV) - Voo

v

U' +that there exists a UIV with U''' <U
and V(u, U') =U' <0 for U'" <uU' < vV, Inserting U for U and U''!
for U'' in Iemms 1b we find these statements in contradiction with Lemma 1b. This
proves (21) with u' =u , The remaining cases with u' <u, U > U follow
from the increasing property of V(u', U') with respect to u' . The proof of

(22) is symmetric to that of (21).

(A
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Since we know already that there exists for each ue:Iu at least one corre-
sponding U , it follows from ILemma 2 that if 0 < u < 1 there exists precisely

one, to be denoted W(u), and that W(u) increases with u . Moreover, if for
0<u<1l we had

Wlu) < 1lim w(u') = wlu + 0)

u'—= u+0

the continuity of V(u, U) would entail the existence of two prospective utility
levels, W(u) and W(u + 0), corresponding to the immediate utility level u ,
contrary to Iemms 2. Hence W(u) is continuous for 0 < u < 1, and since
O < W(u) €1 can be extended by

Ww(o) = 1im W(u) , W(l) = lim W(u)
u—- 0 u—> 1

to be continuous and increasing for 0O § u 5 1.

Now if OeIU and hence OeI , we must have W(0) = 0 , because W(0) >0
would create a contradiction between (14) and Lemma la (with O substituted for
U,and U for U''), since V(0, U') - U' < 0 for any U' such that
0 <U' <W(0) is precluded by Lemms 2 and the contimuity of V(u, U') . A similar

reasoning for the case leI ~ completes the proof of (17).

8. Equivalent constant program. Now that the correspondence of utility levels

v, U has been shown to be unigue and reversible, another interpretation is available.
Glven an aggregate utility level U , find the corresponding immediate utility u ,
and a one-period consumption vector x for which it is attained, wu(x) =u .

Then we can reinterprgt (16) to mean that the program conx obtained by indefinite
repetition of the vector x again has the given aggregate utility U(conx) =17 .

The correspondence (17) therefore gives us a means to associate with any program &

constant program of the same aggregate utility.
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8% If Postulate L is not assumed, the possibility exists of a program lx
with successive one-period utility levels u(xt)' increasing (or decreasing) with
t 1n such & way that no equivalent constant program, and no compensation for a

postponement of lx by one period,exist .

9. Equating corresponding utility levels. The correspondence function W(u)
can be used to change the scale of one of the two utility types, for instance of
u , in such a way as to equate corresponding utility levels. The appropriate in-

creasing transformation is defined by

wx(x) = W(u(x) UH(,x) = U(y0)
(23) '
| V*(uk,Ux%) = V(W-l(u*) sU*)

where u = W_l(u*) is the inverse of u* = W(u) . If now u* and U¥ represent

corresponding utility levels on the new sceles, we have
0 = V*(u*, U¥) - U* = V(W ~(u%), U) - U ,
and hence, by the definition of W(u),
Uk = U = WW (X)) = ux .

Hence the new correspondence functioh U* = W¥(u¥*) is simply the identity U* = u¥*,
represented in the new form of Figure 3 by the diagonal connecting (0,0) with

(1, 1). Although this change of scale is not essential for &ny of the remsoning
that follows, we shall meke it in order to simplify formulse and diegrams. Dropping

asterisks again, the correspondence relation (15) now takes the form

(2k) viu, U) = U .
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10. Repeating programs. A program in which a given sequence le of

one-period vectors X1 Xys sesy :’c'r is repeated indefinitely will be called a

repeating program , to be denoted

rep T - (le’ 1*r vee) e

The sequence le will be called the theme of the repeating program, 1 its
span, provided no 7' < 7 exlsts permitting the same form. We shall use the

notations
rePuT = (luT, luT, cc.)
U, = u(lxr) = (u(xl), ceey u(xT)) 2 (W, oo, uT)

for the corresponding sequences of one-period utility levels, and call 1%

the utility theme corresponding to le « The function

(25) V(w5 U) = V(ag, V(uy) .o, Vi(u, U) .0l)

then indicates how the utility level U of any program is modified if that pro-
gram is postponed by <+t periods and a theme with corresponding utility theme

luT is inserted to precede it.

Given a utility theme _u_= u(le) , We can now ask whether there is a

17
utility level U which is not affected by such a postponement,

(26) v(luT,- U) =U.

Obviously, the utility level

(27) U =U( )

b4
rep T

meets this requirement, because the program rerT itself it not modified by such



- 22 -

postponement. By an analysis entirely analogous to that already given for the case

T = 1, one can show that this utlility level is unique and hence is a functionie
(28) U= w(yu)

of the utility theme; and that this function is continuous and Increasing with

respect to each of the variables Uys enes u, . Finally, as before in the case
T=1,

< < <
(29) U= Av(iu; U =4w(u) if U!=lw(u).

> RS 1 > 17

10¥ The uniqueness of the solution of (26), and the first set of inequalities
in (29), are proved by having an arbitrary one of the variables Ups ooy uT play
the role performed by u in section 7¥%. To prove continuity and monotonicity of
W(luT), that role is assigned successively to each of these variables. The second
set of inequalities in (29) then follows from (26), (28) and the fact that
V(luT; U) increases with ﬁ .

To 6btain one further interesting result we revert to the notation (20).

By repeated application of (29) we have, for n = 1, 2, ...,

Ut' < U = w(luT) < U' implies
(30)
: . Tt . = < . |
Vnt(repuw’ urt) < Vnr(repuT’ u) =vu Vn-r(repu'r’ v,
tt 9 1 3 1t1 s >
where vnT(repur’ U*'') is increasing with n if U < U , decreasing if

Ur'* > U . It follows that

(31) 1m v (

e .Utll)
n— ®

u 3
rep T

exists for all U"'GIU . But for eny such U''' insertion of (31) for U in

(26) satisfies that condition, which we know to be satisfied by U only. Hence,

*  The function w(lUT) is a generalized correspondence function, interpretable
either as the aggregate utility of any program, the postponement of which by 1 {cont.)
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by (28) )

* . [ = - t
(32) . iig 3 vnr(repuf’ Ut*') = vw(repur) W(lur) for all U €L .

11. Alternating programs and impatience. A repeating program with a span

T = 2 will be called an alternating program. Its one-period utility sequence
alternates between two different levels, u' and wu'', say, which we shall always

choose such that
(35) u! > ut

If we write w' = (u', u'') , w'' = (u'', u') for the two possible utility

themes, the two possible alternating programs have the respective utility sequences

(5&1) w!

rep (u'y u'', u', u'', ... )

(34)
(341!) wi!

rep

(u'', u', ut', u', ... )

The implications of the preceding analysis for this type of progrem are

illustrated in Figure 6. The aggregate utility level U' corresponding to (34'),
(35) Ut s weer) = v, VG, viar, ))> ,

satisfies the condition

(36) e (u') = v{u', v(u'', U')) -uU'=0.

Hence U' can be read off, as indicated in Figure 6, from & guadrilateral con-
slsting of two horizontels and two niveau lines (drawn solid), with two vertices

on the diagonal of the unit square, the other two vertices on the verticals at

(cont) periods can just be compensated by insertion of a sequence . _Xx _ with

u(le) = U, or as the aggregate utility of the repeating program
rep(lxr) , where again u(le) = Y.



f:(?ruJﬂ;, é;

u=u' and u=u'', respectively. Enlarging on (36), we also have from (29)

(37) 0

Vi A

< <
o' (U) = v{u', v{u'', U)) - U =}U‘ -~ U if U{:}U' .

> >

Hence, for any program with an aggregate utility U # U' , postponement by two
periods with insertion of the utility theme (u', u'') in the first two periods
thereby vacated, will bring the aggregate utility closer to U', without over-
shooting, and indefinite repetition of this operation will make the aggregate

utility approach U' as & limit see dotted lines for a case with U < U') .
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Symmetrically to {37), we have

U'' - U if U

13

v oA

(38) 0, = ' (u)=VlwP)) - U
i J v

with similar interpretations, and where U'' is related to 'U', u''* and u' by

Ul‘l 3

_V A
VA

(59) uTI<U‘II =v(u!|, U') < ut =V(U.', U“)('I.lr' R

as indicated in Figure 6, and proved in detail below..
We are now ready to state a definition of impatience, and to draw inferences
about the presence of impatience in certain parts of the utility space.
Definition 1. A program lx with the first two one-period utility levels

u(xl) =u' and u(xe) = u'' (where u' > u''), and a subsequent prospective utility

level U(BX) = U , will be said to meet the impatience condition if
N,
(40) o(V) = V(u', V(u'r, 1)) - v@", v(u', U)) >0 .

Essentially, this says that, if the one-period utility of the first-periocd con-

sumption vector x, exceeds that of the second-period vector x, , an interchange

i 2

of the two vectors leads to a decrease in aggregate utility.

We note that
(L1) o(u) = o' (U) - 2''(U) .

Reference to (37) and (38), or to Figure 7 in which the implications of (37) and
(38) are exhibited, shows that, since ¢'(U) >0 for U'' <U<U' and

¢''(U) <0 for U'' <U<U', we have

(k2) a(U) >0 for U' SU<U .
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This proves the presence of impatience in & central zone of the space of the utility

triples (u', u'', U) , as illustrated in Figure 8., It is to be noted that the

N Ve U

Vie Vot U I‘M’\ A U

VeV Uph 4= > .

T W

result (42) is obtained as long as the two marked points do not fall on the
same side of the horizontal at U . This is the case precisely if U'' <U<U' .
Two other zones can be added to this one, on the basis of the monotonicity

of V(u, U) with respect to U . If we define U , U by

(43) v(u', T-_I) =u'', V(u“.v ﬁ) =u' ,
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1f solutions of these equations exist, and by U=0, and/dr U=1 otherwise,

Figure 9 suggests that
(44) ®(U) >0 for U SU<u'' and for u' <UL U .

A detailed proof is given below.

J

, L -
A (S PN . N N S e --V(u,')V(MZ U))

2 Ve Ve U

0O u¥ ! 1

FL?MP, 3
There are indications that in the lntermediate zones, u'' < U< U'' and
U' <u<u', impatience is the genersl rule, neutrality toward timing a con-
celveble exception. The behavior of &(U) in these zones will not be analyzed

further in thle paper, in the hope that an argument simpler than that which has

furnished these indications may still be found.
For the sake of generality of expression, we shall state the present results in a
form that does not presuppose the, convenient but inessential, transformation

introduced in section 8 to equate corresponding utility levels.
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Theorem 1. If Postulates 1, 2, 3 and 4 are satisfied, a program 1% with

first- and second-period utilities u' = u(xl) and u'' = u(xa) such that

u' >u'' and with prospective utility as-from-the-third-period U = U(jx) meets

the condition (40) of impatience in each of the following three zones:

(a) If U equals or exceeds the utility of & constant program indefinitely

repeating the vector X1 o

be possible) that the utility of the program (xe, 3x) exceeds that of

provided U 1is not so high (if that should

the constant program (xl, X5 X cee)s

(b) IE U equals the utility of elther of the alternating programs

(xl, Xpy Xys Xpy e )
(xz, X1y Kyy Xps eee )

or falls between these two utility levels,

(¢) If U equals or falls below the utility of the constant program

(xg, X55 X5 .++)} , provided U is not so low (if thet should be

possible) that the utility of the program (xl, 5x) falls below that

of the constant program (xe, Xys ¥y wes ) .

This is in a way & surprosing result. The phencmencn &f impatience was
introduced by Boehm Bawerk as a psychological characteriatice of human economic
preference indeéisions concerning {presumebly) a finite time horizon. Iﬁ;now
appears that impatience is also, at least in one central and two outlying zones
of the space of programs, & necessary logical consequence of more elementary
properties of a preference ordering of programs with an infinite time horizon:
continuity (uniform on each equivalence class), period-wise aggregation, inde-
pendence of calendar time (stationarity), and the existence of extreme programs.

11* In order to prove the relations (39) and (44) on which Theorem 1 depends,

without reference to a diagram, we 1lift from the already proved statements (37)
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and {38) the defining relations
(45'') and (451) viur, v, ur)) = U, v(a', v(u'', u) = U,

of U'' and U', respectively. From (45') we read that V(E}', V(ﬁ‘, V(u'', U'li) =
= V(u'', U'), showing that V(u'', U') satisfies the defining relation (45'') of
U't. This, and an argument symmetric to it, establish the equalities in (39) .

Now assume first that U'' < U' . In that case, because V(u, U) dincreases with U ,
0=v(u', U'"') - U <v(u', U') -u',

whence U' < u' by lemma 2, since V(u', u') - u' = 0 . By similar reasoning,
U'' >u'', establishing the inequalities in (39) for the present case. But the
same reasoning applied to the assumption U'' > U' would entail u'' >y'' > U' > u',

which ig contradicted by the datum that u' > u'' . This completes the proof of (39).

To prove (44) we note that, given u’, u'' with u' >u'‘' ,

U=q'

if Ju' <U<UY then v(u',U)

[
A A

/= < R
u, V(u",V(u',U)){< V(u",U)i<ju‘ ,
< =

U=U

using in succession (24), ILemma 2, the monotonicity of V(u,U) with respect to
U, (43). But then also
>
V(ul, v(ult’ U)) > V(u", U) ,

using again (24) and Iemma 2, A comparison of these results establishes (LL) .
The forms here given to the proofs of (39) and (i4) have been chosen so that
they may carry over by mere reinterpretation to a more generel case to he considered

in a leter paper.
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12. Period-wise Independence. It might seem only a small additional step

1f to Postulate 2 we add the further

Postulate 2' (2'a and 2'b). For all X5 Xy 3x, xi, xé,Bx',

t T T 1 t 1

(2ta) U(xl, %55 3x) > U(xl, %} Bx) implies U(xl, Xy X ) 2 U(xi, X}, 3x|) ,
1 1 1 - 1 1 t

(2'd) U(xl, X5 5x) > U(xl, Xy 3% ) implies U(xl, X, 5x) > U(xi, X33 5% ) .

In fact, it follows from a result of Debreu [1959], that this would have quite
drastic implications. Postulatesl-tand 2' together satisfy the premises of a

*
theorem which, translated in cur notation and terminology, says that one can

* l.,c., section 3

find & monotonic transformation of U(lx) such that

(L46) U(lx) = ul(xl) + ue(xg) + U3(5x)

Teken in combination with the stationarity Postulate 3, this would leave only the
possibility that
o tel
(¥7) u(.x) = = u(x,) , 0<a<l.
1 .y t
that is, aggregate utility is a disconnected sum of all future one-period utilities,
with a constant discount factor a« . This form has been used extensively in the

*»
literature. Since the form {47) is destroyed by any other transformations than

%% See, for instance, Ramsay [1928], Samuelson and Solow [1956], sStrotz [1957].
The first two publications find a way to make a = 1.

increasing linear ones, one can look on Postulate 2°' (as Debreu does) as a basis



- 31 -

(in coﬁdunction with the other postulates) for defining a cardinal utility function
(7). While this in itself is not objectionable, the constant discount rete seems
too rigid to describe important aspects of choice over time. If for the sake of
argument we assume that our function v(u, U) is differentiable, it is easily

cecen that the discount factor

ov(u, U)
s18] /)
U=11

is Iinvariant for differentiable monotonic transformations, but can take different
values for different common values of U = u . The main purpose of the system of
postulates of this paper therefore is to clarify behavior assumptions that will
prrmit the relative weight given to the future as egainst the present to vary
with the level of all-over satisfaction attained - a consideration which ean

already be found in the work of Irving Fisher [193%].

13. Correction to Section 6. It is nccessary to split Postulate & into

“vo separate Postulates 4 and 5, as follows:

Postulate 4 (Sensitivity). There exist first-period consumption vectors

Xy xi and & program X from-the-sccond-period-cn, such that

2

T
U(xl, Ex) > U(xl, x)

2

Postulate 5 (Extreme Programs). There exist X li such that

U(l_:sg) < u(,x) < U(li) for all X .

1 1

Tn» difference with the old Postulate 4 is that sensitivity is now postulated
specifically with respect to the first-period consumption vector, rather than
v2rely with respect to the progrem as a whole. Without that, the interval Iu
may shrink to a single point, as shown by an example suggested by Herbert Scarf:
-X

U(lx) = lim sup (1 ~ e t)
T =3 0 T>T

s ¥, scalar and >0 .

t
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