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Comparisons of Information Structures

1. troduction: e ict between Dollars and ts as Measures of
Information

The following simple example, due to Marschak, serves to introduce the
questions to be discussed. Consider a speculator who must choose between two
actions:

1) to buy today and sell tomorrow one unit of & commodity,

2) to sell today and buy tomorrow one unit of the same commodity.
Everything the speculator knows about the change of price from today to tomorrow
will be regarded as summed up in his personal probability distribution over the
set of price changes. For simplicity let us suppose that he regards all price
changes in the interval [-1, 1] as equally likely. Without forecasting help,
clearly, the best he can do will result in an expected profit not greater than

zero. In order to consider some of the alternative types* of price forecasts

* The legitimacy of restricting attention here to those apparently very
special kinds of forecasts will be discussed below.

which may be bought by the speculator, let us denote by x the true price
change and by n(x) = y the message resulting from forecast 7 . In these
terms, consider the following alternative forecasts:

[ Map" -1 <x

Forecast 1, : nz(x) = ' if
:"down" 0<x<1

\.

A
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}/"up" -1 <x< -l/§
Forecast Ny q3(x) = f "small change" if -1/3 < x < 1/3

deown" 1/3<x< 1

f"up a lot" 1< x < -1/2

| "up & 1little" -1/2<x< 0
Forecast n, : nu(x) = § if

| "down a little" 0<x< 1/2

'\,\"down a lot" 1/2<x< 1

(Notice that these forecasts are, by definition, always correct.) How mucﬁ is
each of these forecasts worth to the speculator? The results of Mo clearly
enable him to act in as perfect a fashion as would a perfect forecast

{n({x) = x) ; his expected gross profit is 1, so it can be said that the
value of N tp the speculator is 1 . Forecast n5 is of less value; when
either of the signals "up" or "down" occurs he can take a perfect action, but

when "smell change" is the signal he is uncertain whether to buy or sell.
Gross profit in this case--and hence the value of Forecast 3 --is o/3 .
Forecast ny, has value equal to that of Mo » but ne more, because no use can
be made of the added detail in the prediction. In general, then, as Marschak
has pointed out, the forecasts which subdivide the x interval intc an even
number of equal intervals have value 1 ; those which subdivide into an odd

number of equal intervals have value less than 1 , no matter how fine the

subdivision.
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exhaustive events with probabilities p(E) = {b(El), cens p(En)l- Shannon (1]
. J

For any finite set E = {El, ceny En of mutually exclusive ang<

has proposed a measure
(1) g{p(E)] = ‘?(Ei)hg p(E;)

of the corresponding state of uncertainty.®* The quantity (1) can be regarded

* For any 1 for which p(Ei) =0, p(Ei)log p(E,) 1is defined to be
equal to zero. +

as the "entropy" of the situation, or alternatively as the amount of"informe-
tion" gained when one of E; 1is revealed as the true value. Applying
Shamnon's measure to the forecasting systems availlable to the speculator in

the fashion

H(Ti}) = H(l/5: 1/3; 1/5) = log 3, etc.,

we find that H(nz) < H(ﬂ3) < H(nu) < ..., an ordering of "informatisn
systems" clearly in conflict with the value ordering. That the two measures
do not agree is not surprising, of course, for Shannon's gives as much credit
for information that the speculator cannot use (e.g., xe€[0, 1/2] , as distinct
from xe(1/2, 1]) as for information that he can use.

At this point the Shannon information theorist would object with the
claim that the H measure can be adapted to situations vhere some events are

of interest and others not. Consider two finite systems of mutually
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exclusive and exhaustive events E = gEi} and F = {FJ} with associated
Joint probabilities p(EF) = {ﬁ(EiFJ)} . The most important property of the
H measure is that
(2) H{p(EF)] = Hip(F)] + EH[p(FIE,)]

i
Property (2), in fact, together with continuity and a meximm at
P = (%, sesy %J determine the function H wuniquely (up to & multiplicative

constant).* In words, (2) states that knowledge of the outcome of E reduces

* A proof is given in Khinchin [2], p. 9-13.

the uncertainty--or entropy--of the compound system EF by the amount of
uncertainty of the E system. Since whatever uncertainty remains is entirely
in the F system, it can be said that knowledge of E has produced an amount
of information about F equal to
(3) R(p(EF)) = H{p(F)] - EH[p(F|E,)]

i

or equivalently (with obvious notation)

(3') R(EF)

HElp(FIE)] - CHIp(FIE)]
FE EF

or

(3") R(EF) = H(E) + H(F) - H(EF)
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R , called by engineers--for reasons not relevant here--the "rate of trans-
mission," can be shown to be always nonnegative. Expression (3") justifies our
use of symmetric notation. If E and F are independent, then R(EF) =0 ;
if they are identical R(EF) = H(F) = H(E) --both characteristics in accord
with intuitive demands we would meke on an information measure.

Before applying the measure R 1in the example of the speculstor we must
decide what variables play the roles of E and F in (3). For a given fore-
cast N, » the set Yn= {yl, ceey yh} of possible outcomes clearly corresponds
to E 1in (3)--that is, \Yn is the éystem whose "relevant" informetion content
we wish to measure, "relevance" being determined by our choice of the F-set.

At least two choices seem appropriste enough to warrant investigation:

(i) the set of possible directions of price change;

- 5

i.e., X = ‘;'*, = f'

e

(i1) the whole set of possible price changes;
i.e., X = {ﬁ:xs[-l, l]}.
Let us examine the first one. Using (3") for R(X,Yn) , we observe that
H(X) = log 2 , H(Y,) = log n , and wvhen n is even
H(X,Y,) = H(Y ) = log n
and when n is odd

- 2
H(X,Yn) = Eﬁl log n + o log 2n

log o + % log 2 .
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For the "relevant" information content of N, therefore we have

fiog 2 when n 18 even

R(X, Y& } = <

\Eﬁl log 2 when n is odd

an ordering of the n, vhich agrees perfectly with the "value" ordering
established earlier. That all is not well, however, beccmes apparent as soon

as other forecasting systems are examined. Consider the system n defined by:

/vy if -b/5<x<-2f5
v, if -2/5<x<0
(&) n(x) = Vs if © < x<2/5
y, if 2/5 <x<u4f5
if 45 <!x|<1,

It is obvious that R(X,q) = R(X,Y.) > R(X,Y5) . The value of 7 to the

2
speculator is easily calculeted: Wwhen y5 is cobserved he is indifferent between
buying or selling and his conditional expected profit is zero; when Yy Yo yﬁ,
yh are observed the respective appropriate actions are clear and the conditional
expected profits are 3/5, 1/5, 1/5, 3/5 . Expected profit--equal in this
example to the value of n --is therefore 8/25. But the value of Ny is

4/9 > 8/25 . Hence either the R-measure is not in full agreement with the value

measure, or our procedure for determining "relevance" was ijmproper.
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Calculation of R for case (ii), where all price changes are distinguisheqd,
calls for definitions of R and H for infinite sets. Instead of extending
these definitions we shall simply define X %o be the set of mutually exclusive
and exhaustive half-open intervals of length ¢ between -1 and 1 . R(X,Yn)
is then approximately equal to log n , which is the H-measure we started with.
Case (ii) is seen therefore to lead again to an ordering of the 1 in conflict
with the value ordering.

The source of confliet in Case (}i) has been described: information not
relevant to the choice between actions is weighted equally with information that
is relevant to this choice. In Case (i), only information relevant in this sense
is counted, but no allowance is made for the difference in profits at stake when
the price change is high in absolute value and when it is low.

Following Marschak we have demonstrated, by means of an example, the
difficulties of resolving the conflict between the ordering of information
systems based on value and the ordering established, in various ways, by the
Shannon information measure. At this point we shall dismiss the speculator

and, from & more general point of view, discuss the aims of ordering information

systems and the various methods that have been proposed for doing so.

1] n
2. The Basic Comparison and the Relation Sﬁ .

Our formulation of an abstract decision problem--and most of the notation
as well--will follow that of [3]. Briefly, =xeX denotes the state of nature
exhaustively described, =(x) a probability distribution over X which we sup-

pose finite. The decision maker chooses an action aeA (also finite) and,
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depending on the true state x , receives a utility payoff w(a,x) . The
information about x available to the decision maker prior to making his
choice is the distribution x and a "signal" or .observation yeY determined
by & function 7m on X called the "information structure"; thus n(x) =y .

A "decision function” a fram Y to A describes the response to each signal.

For given 1 the decision maker will choose that « which maximizes

(5) g(a,n,w,x) = Eola(n(x)),x] .

Define

(6) a(n:m:ﬂ) = ﬂ(a:ﬂ:wnr) = Max Q(a,n,w,n) .
Q

For given ® and nx , the value of 71 t0 the decision maker may be defined
(see [3], p. 14) as
ET) Vi(n,w,x) = 5In,a5ﬁ) - sz fw(a,x)
This is the quantity that must be compared with whatever costs are connected with
the use of the structure n . In this paper we shall not be concerned with these
costs.

Suppose N is the set of information structures any one--but only. one--of which
is available for use by the decision maker. Iet P be the set of all possible
probability distributions =« on X , and let U be the set of all possible

independent payoff functions w on A X X. For any point (w,n) € 0 x p» , (T)
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establishes a complete ordering of the neN . Let us denote this ordering by
"2(m ’)”, and call it the "Basic Comparison.” Now consider a subset
.

Mc U x P and the ordering “2M" defined by

(8) 3! 2y %" if and only if V(n',w,n) = V(3" ,w,x) for all (w,n)eM .

The relation "2M" will be of interest especially when (i)} M 1is empirdcally

interesting and (ii) ”2M" can be calculated without brute-force repetitive

recourse to (7). It is clear that in general we camnot expect “2M" to yield
a complete ordering over N except when M is very small (e.g., M = {(w,n)})
or wvhen N is small.

In the following sections we describe several methods that have been pro-
posed for comparing the neN ; we add one method which, so far as we know, is
new. In our view the different methods are not competitors, despite occasional
claims to the contrary (e.g., [7], .97, but rather each is equivalent to the
relation "2M" for some M or class of M's . To be sure, some M's are more
interesting than others, but this is a different matter. It must also be
emphasized that no invidious comparison of different proposals is intended; not

all of the proponents were addressing themselves to the problem that concerns

us here.
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3. The Shannon Comparison I*
Let A =2% (i.e., the set of subsets of X ), so that choice of an act
aeA is equivalent to selecting a subset of X . For given x define a

payoff function by
(9) w(a,x) = log n(x | a) .

For simplicity let us denote the subset of X which is the inverse image of

& signal yeY for a certain information structure 7 by y ; that is
-1
(

n (y) =y . It is easy to show that
(10) Max (lw(a,x) | xey] = 2lw(y,x) | xey] = -H[n(x|y))
ach

80 that afy) =y and

(11) Ela(@(n(x)),x)] = - ¢Hlx(x|y)] .
yx

One can see this by considering the problem

(12) Max & n{x|y) log z,
2, Xey

subject to z 20 and z 2, =1,
X

a2 sufficient condition for the solution of which is that x(x|y)/z_ = const.

Z
X

for all xey ; with z, = n(x|y) , we have (10).

* This terminology, as well as the application, is ours.
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By (10) and (11) we see that the value of an information structure equals
the "rate of transmission,” that is,

(13) V(n,w,n) = Hx(x)] - £H [x{x}y)] = R(n,n) .
yx

Thus the Shannon Comparison I amounts to a relation "2M“ which completely
orders N , where M consists of the single point (w,n) with satisfying
(9). Since there are many such M's (one for each x) there are many such
"2M" 's. We denote this class of M's by ?”1 . One might argue that the
Shannon Comparison I tells us nothing new, since every M it can deal with
can also be dealt with by the Basic Comparison. But this is always true if we
are willing to do enough computing. The main shortcoming of the Shannon's

Comparison I is that ite application is limited to very special payoff

functions.

k. The Shannon Comparison TI*
Once more, let n be given, and A = Ex . let o(x) =s be some given
partition of X ; we shall write x(s) for 2 =n{x) . Define the payoff
o(x)=s
functicn by

(14) w(a,x) = log nfo(x)|a] = w(a,s) .

* Again, the terminology and application are ours.
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Consider the problem

15 Max  Tn(x|y)log z_, . = Max 5T o
(1) Zo?:) b'4 le o8 o(x) 2: s x:c(zgily j o8 “s

subj to  z, 20 and 2, 2, = 1.
s

A sufficient condition for the solution is now that n(s|y)/z_ = const.

z
s
for all s , so z_ ==(sly) is a solution. Consequently a(y) =y as

before. Instead of (10), however, we now have
(16) Mex Elaa,x)|xey] = -H[x(s|y)]
a€h

and in place of (11)
(17) Clal@n(x)),x)] = - € H [x(sly)] .
y s

Value of structure 1 can still be written in the "rate of transmission"
form,
(18) V{n,w,x) = H[x(s)] - & H [K(SI.V)] = RU(T];JT)
y s

but the definition of "relevance" here 1s different from that of (13) in the
same way that the definition differed in Cases (i) and (ii) in the example of
the speculator.

For the Shanncon Comparison II therefore "2M" again completely orders
N . For each g5 and each o there is an M for which Comparison II is

appropriate, namely the set consisting of the single point {w,x) with @

defined by (14%). Call this set of M's 7&2 . Notice that for the identity
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function o(x) = x » Comparison II is equivalent to Comparison I; 1II

therefore is more general. Another way of putting this is: %hlciﬂhb .

5. The Marschak-Radner Comparison*

* The version presented here is a slight generalization of that in [3}];
errors in the present exposition should not be attributed to Marschak and
Radner.

In the comparisons described so far M has been very small--one point,
in fact. Marschek and Radner {3] have proposed a comparison based on very
large M's . Let there be specified any set X'< X . Iet P' P be any

set possessing the following two properties
(19) If neP' and x¢X' then n(x) =0
(20) For any X,,X, € X' there is a neP' with u(xl)ﬂ(xﬁ) >0 .

Then "»," for M = U x P' 1s a Marschak-Radner comparison. They assert
M

that 1f M is of this type, that is to say, if M ¢ 2% , then
(21) n2y "' if end only if n is as fine a partition of X' as 1¢' .

The "if" part of (21) is obvious; the "only if" part can be argued as follows.
Suppose 1 1is not as fine a partition of X' as ' . Then, denoting
respective inverse images of 1 and n' by y and 2z , there exists &

Y71 X' not wholly contained in any z,)X . Hence there exist points X,
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and x, in y/7X' such that n'(xl) + n'(xz) . By (20) there is a sep'

with :r(xl)n:(xe) >0 . Define w(a,x) by the entries in the following

table:
Xy X, . .
8, ﬁ(xe) -ﬂ(xl)
0
(22) &2 -T[(XE) ﬁ(xl)
. 0 0

Then, ﬁ(n,m,ﬁ) =0 < Qﬁ(xl)n(xe) = 3(q',uhu) contradicting 1 EMH!
Thus for Méﬁ% , {(21) provides an easy means of comparison.
The class ?y5 of M's which define Marschak-Radner comparisons is

quite large; among others it includes M

11

UxP, i.e., the set of all

(w,n) pairs, and it includes the set M =U x n for any =n€P . Notice

however that not all sets U x P' are in 7@1+; there does not always

exist an X' related to P' by (19) and (20). As an example, consider

_ . . . )
X = {xl,xz,x3f and P' = .{ﬂl,ﬂej with
x'(xl) >0 ﬁ"(xl) =0
u‘(xe) >0 n"(xg) >0
t - Ml .
T (x3) 0 ) (tj) >0
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In general it is true that if M.C M;C U x P then n 2y 7' implies
1
1 QMQn' . Let M, =UxP, beaMarschak-Radner M and let M, = (w,%) ,
with xn ¢ Py and o & "Shannon payoff function" of type (9)or (1k). It

follows that

1 ] T
(23) 1 zmln implies Ru(n,x) > Rc(n ,n) for =x € P, and

arbitrary o .

Since the M e’n3 are very large, it is to be expected that the re-

sulting "5&" relations order N very incompletely; this is another way of

saying that "SM" for M €7, is a very strong condition. We have already

3

seen in Section 1 an cccasion where the Marschak-Radner criterion fails to

yield s comparison, namely between M, and el
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6. The "Clesr Action" Comparison

In this section we attempt to devise a comparison somewhat weaker than
that of Marschak and Radner by restricting the set of payoff functions to
which the comparison applies. Suppose there is given an arbitrary function
T on X ; as before, we will denote the subset ~{xex : ow{x) = t}/byéo;sider
the set UTc: U of payoff functions w for which

(24) If T(xl) = T(XE) then maximizer w(a,xl) = maximizer w(a,x

) -
a a 2

Thus & decision maker whose payoff function is UT is not interested in
knowing the value of x , he only cares about + . And once t is known
the proper action to take is clear. In the speculator example the payoff
function was & member of U, for 1(x) = sign of x .

As in the last section, we now pick an X' and make use of (19) and
(20) to define a P' . Next we set M = U, xP . %7h is the class of

M's so constructed. Paralleling the Marschak-Radner development then, we

agsert that for any M € %m

(25) 1 2M n' if and only if for eny y € Y either y /7 X'C x X'
for some z € 2 or y 1 X'< £t/ X' for some t e T.
{(Again y and z are inverse images respectively
of the functions n and n' ; Y and 2 have the same

number of elements; A and T have the same number of

elements. )
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Proof: Let o denote a decision function based on information y , and

£ on z . Pick an arbitrary (w,n) € M . Construct a function o* as
follows. If y/1 X' 2z 7X' for some 2z , set a*(y) = B(z) . For those
y 71 X' not contained ina z/X', y/ X't/ X' for some t ; set
a*(y) = Maximizer w(a,x) for any x for which <(x) =t . It follows that
o[f(z),x] < elo*(y),x] S wl@(y),x] for all x e X' . Hence 7 2 1"

As before, the converse is somewhat less obvious. Suppose that some
¥y X' 1is contained neither ina t/7 X' nora z /X' . Then there exist
points X)r X5E y/M X' such that n'(xl) 4 n'(xa) . 'Two possibilities arise.
If T(Xl) ] 1(x,) , then define w(a,x) by (22), and the argument following
(22) applies. If r(xl) = 1(x2) , definition of w by (22) would put o
outside U‘r . But since y i X' is not conteined in any t N X' , there

exists a point x,€ y N X' such that T(xl) = r(xe) 8 1(x5) . Since

5
n'(xl) i n'(xe) , either n'(xi) 4 n'(xl) or ﬂ'(x5) + n'(xe) . In either
event (20) assures the existence of a n ¢ P' which makes an argument
analogous to (22) again applicable.

Thus in (25) we have a computable means of carrying out the comparison
"ZM” for M e‘}nu .

It will be recalled in Section 4 that the identity function o(x) = x
yielded a subset of‘?we which was exactly ?zi » thus showing the Shannon
Comparison II to be a generalization of the Comparison I. Similarly here,
when t1(x) =x (25) and (21) are equivalent. This is easily seen: if
y/X' iz not ina z/;X' , then it is inan t X' . But if (x) =x,

then every set t consists of a single point, so y =s . Since the z's

cover X, y<& z . Hence n 1s as fine a partition of X' as n' .
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Paralleling (23) we have, obviously,

(26) N>y 0 for M=U xP' ey,

implies
RT(n,u) > RT(n',ﬂ) for = € P' .
Notice also that the "Clear Action" comparison ranks all the 1, of
Section 1.

¥
7. The Bohnenblust-Shapley-Sherman Comparison

Once again, let there be given a partition o of X , and let U' be
the set of payoff functions wu with the property that o(x') = o(x")
implies wu{a,x') = u{a,x") for all a e A S ror s given probability
distribution x define P' %o be the set of probability distributions «n'

related to n in the following way:

(27) If o(x') = o(x") and =n(x') > 0 then

TE’(X") ~ n_(xu)

' {x')  n(x' 5

if n(x'")=0 then x'(x')=0 .

Reported in Blackwell [4], pp. 93-96, and Savage [8], pp. 148~153.

#% Thig restriction of u yields what Bavage has tentatively called a
"partition problem." He argues that "Modern statistics has no name for
this type of problem, because it recognizes no other type." [8}, pp. 120-121,
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Wi s is the collection of sets M =U' x P' with U' and P' so
defined.

Since the conditional probability of x given 8 1is the same for any
n € P' , we can define p{y|s) to be the conditional probsbility that
n{x) =y gilven that o(x) =s . Let n be the number of elements in S .

Define the likelihood ratio for y as

(28) Q(y) = fl:fl 1.3_(}-..).?—!‘. 3 e p(ylsn) \ .
{ n S el
Z p(vls;) Z p(ylsy) /
i=1 1 j=1

Let Q be the set of n-tuples q = (g;,..., q,) with Zqiz 1 and q, 20 .
Each s, row ylelds a distribution mi(q) , say, over Q . That is to say,
mi(q) is the probability that likelihood ratio :q occurs when the true s

is Bi .

For given M = U' x P' , Bohnenblust, Shapley, and Sherman show that the

n distributions m., ..., m, completely characterize the information

l!
structure 1 . If, instead of observing y distributed according to the
p(ylsi) , the decision maker observes gq distributed according to the m
an equivalent problem results: whatever (x,0)eM obtains, the new problem

results in the same expected payoff as the old. Furthermore, since

m n
i = qi , it is clear that 2. mi completely characterizes the m, .
n
1
Z m,
1
ln
Define m_ = ﬁ'z m, ; m is called the "standard measure" for m . Suppose
1
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we are given a distribution m0 over & ; the question arises whether mo
is or is not a "standard measure" for some information structure yn . Con-

struct the m, as follows: mi(q) = nqimo(q) . Then Y% mi(q) =1 if

q
z qm (q) = % . Therefore m_  1s a standerd measure for some 7 if the
gean of m_is :E 1 ..., 1
0 . n’n’ 7 nt

If two structures n,7' have the same standard measure m, then

1 =b:n‘ «*¥ Thus the equivalence class of 1's 1s equivalent to the class of

* This relationship Savage czlls "virtual equivalence."
11 1
distributions m over Q with mean { —y—; se5:=:.
an n

As a computational tool the authors prove the following theorem: Ilet

m be the standard measure for n and m' for n' ; then

(29) N 2y n' if and only if for every continuous convex function
g on Q

Zelg)m () 2Z gla) m"(q) .
q q

Without commenting on the usefulness of (29) we shall pass on the

Blackwell comparison which covers the same (x,®)-territory.
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8. fThe Blackwell Comparison¥*

* Blackwell [4] and [5], and Blackwell and Girshick [6], Chapter 12.

Restricting attention to an M €7W5 , we can use p(y|s) and p(zls)
respectively to describe information structures 7 and 7n' . Blackwell
calls n "sufficient" for 7' relative to the partition o if there exist

numbers b such that
NE:

(30) p(z|s) =

b
A yz

and b 2> 0
yz

Iotice that this concept of sufficiency is not the same as the customary
Neymann-Fisher one; 1n need not be a contraction of 7' as the latter
definition would require.

The usefulness of Blackwell's concept of sufficiency is summed up in

the following theorem*®, due in its present form to S. Sherman and Charles

* A coneise proof is given in Blackwell [5], p. 267. Blackwell himself
has shown that the theorem holds in much more general (i.e., infinite) con-
texts than those dealt with in this paper.

Stein and also to Martin Beckmann, who achieved the same result independently

by essentially the same method of proof:

(31) For M e?q5 s 7 2Mn' if and only if 7 is sufficient for nq'
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In interpreting this theorem, the reader is urged to consult the next section
where certain matters concerning the definition of 5 are discussed.
A graphical representation of sufficiency will be found useful. Sup-

pose n 1is sufficient for 7' . Using the byz of (30), define

1]

c = for i=l, --,1’1.
Yz

It follows that

byz » where x € P' and n(si) =

AlAa
L

&
e

(32) It(SIZ) = )z;, ﬂ(sly)cyz
E C = 1
y y2
e _=20.
¥z

The results of Bohnenblust, Shapley, and Sherman concerning a standard
measure ensure that the selection of n entails no loss of generality. For
each y , n(s|y) is a point in n-space. The statement of (32) is that for
each =z , the point n(s|z) must lie within the convex hull of the set of

n(s|y) points, if n is sufficient for 5’ .* The large triangle in

* Sometimes it is more convenient to start from the cyz instead of from
the byz as we have done. If things were perfectly symmetric, no comment

would be needed, but they are not. A statement equivalent to " is suf-
ficient for n' " 1is: there exist vz satisfying (32) and

n(y) =2 cyzn(z) for the "standard" =« . We assume this last condition
z

satisfied in our discussion of the graphical representation; a careful check
might show it is violated somewhere in Figure 1.
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Figure 1 represents that part of the I n(s|[ ) = 1 surface in the positive
orthant for the case n = 3 . Each ofsthe polygons within this triangle
represents & different 1 . Obviously 19 2y 1t , " 2y n' , but neither

1 2y 1" nor 1q" 21 - From the greph it is clear that an (k-1)-signal
system can never be sufficient for an k-signal system (k < n) whose x(s| )

vectors are linearly independent.

Figure 1



..eh_

Since each M 6?55 contains a {mn,w) with @ a Shannon payoff function
of type (14), it is true that

(33) N2’ for Mer

e P,

5 implies Rg(n,n) > Rc(n',n) for every
When the partition o is the identity partition o(x) = x , then
M=UxP efﬁs . In this case (31) becomes equivalent to the Marschak-Radner
requirement (21 ). The argument is as follows. Pick an arbitrary x . Since

p(ylx} =p(zix) =0 for y+n(x) and z £19'(x) , » = 1 by {30), and

n(x),n' (x)
byz = for disjoint y and z . Now take any other point x' such that
a(x') =a(x) . By (30) p(n'(x)|x)=p(x)[x') =1, so x' € q'(x) .
Therefore every y 1is contained in some 2z ; hence n 1is an extension of

n' as the Marschak-Radner conditlon requires.

Notice however that es '/ns has been defined it is not true that
y,5¢: 735 . It i8 an interesting question whether, without essentially
damaging {%0) and (31), 7%5 can be enlarged by admitting to membership sets
U" x P" where U" 1is the set of all "stepwise" payoff functions over a
proper subset X' of X and where P' < P' is only large enough to ensure

that for every pair s,s' there is a « € P' with x(s)n(s') > 0. If this

extension ecan be carried out successfully the enlarged /4;_ would contain

5
7}73 .
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9. The Rlackwell k-Comparison
Up to now we have been assuming implicitly that the set A of actions

available to the decision maker is "large." If, to take a trivial case,

A consists of a single element, then all 7 in N are of equal value

for any (n,w) pair. Intuition suggests that as A increases in size the

mimber of structures n' inferior to a given structure 17 decreases. To

see this, consider the two structures n' and n"' depicted in Figure 1.

When A is very large, the Blackwell "sufficiency" comparison tells us that

(for the M on which Figure is based) neither ' > 1"' nor q"'

M
Although the 7' polygon almost contains the entire "' triangle, the

1
-

Sherman-Stein-Beckmann theorem* asserts that there is & ¢ € U' which

* The proof of the theorem does require an assumption that A is large,
although in Blackwell's presentation the entrance of this assumption is not
explicit.

sufficiently exploits the tiny advantage of n"' over 7' to make n"'
the superior structure for that o . One would expect the number of such
payoff functions to be small according as the piece of the n"' +triangle
outside the n' polygon is small. The assured existence of a @ able to
capture arbitrarily swmall obtrusions of this kind implies the existence of
very fine gradations of payoff functions within U' . The size of A is an

important (but of course not sole) determinant of this degree of fineness.

In Figure 1 it ie not difficult to believe that if only two actions are
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available g’ 2y "' because U does not contain a payoff function quite
able to exploit the tiny triangle.

Although we have no argument to support the representation of Figure 2,
the reader may find it suggestive. For o given M 55%5 and a given structure
n , we may ask for vhat n' is 1 EM 7' and how does this set of inferior

structures change with changes in A ? It mey be possible to state the

~N—

Figure 2

answer geometrically in something like the following terms. Iet the triangle
in Figure 2 be the n polygon as defined earlier. If A 1is large, say 12
elements, the n' polygon must lie entirely within the central triangle of
Figure e. If A has 8 elements, then 7' <11l be inferior if its polygon
lies entirely within the first ring beyond the triangle. If A has 6 elements
the n' polysgon need only be contained in the second ring from the center; ete.
The question of whether these rings (if such they be) have some simple mathe-
matical characterization is of course crucial for application.

Define the class ‘hfé(k) as follows. If M e‘b%, let M'€< M contain
those payoff functions whose definition requires an A of not more than k

elements., Let (k) contain eny M' so comstructed. Clearly () =99,
6 6 (5
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and for any M eﬁﬂs(k+1) there is an M' ¢ ﬂns(k) with M'c M. It is
not true of course that 7n6(k)c:€m%(k+l).

For M e % 6(k) Blackwell has examined the relation "SM" s which he

* [5], pp. 269-27

calls a "ke-comparison." We shall relate only one easily stated result from

among the several he has achieved. Some of his results, it should be said,

are of more immediate practical importance than this one.

(34) For any M e‘m,j and corresponding M! e"’ﬁ?s(k) (i.e., M'e M):

1 ZM' n' if and omnly if

1 2y 3" implies 1 >u n* for any k-signal structure n*.

In very rough graphical terms: if in Figure 3 1 ZM' n', then any

»*
triengle n  with non-vacuous region A mst also have a non-vacuous

regisn B (recall the footnote on p. £¢).

N*

Figure 3
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10. The Lindley Comparison

With respect to a given M € 7y 5 Lindley [7] suggests that 1 be

called "as informative"” as n' if
(35) Ra(n,n) > Rc(n‘,n) for 81l = € P'.

In our terms, (35) could be restated as follows. ILet the set M'< M

be the collection of (w,x) pairs such that = € P' and w is the Shannon
payoff function of type (14) corresponding to x . (Thus M' has one
(w,n) pair for each x € P'.) Iet ?T?T be the class of such sets M!,
one for each M ¢ 7T]5. Then clearly, n >, n' for Me ﬁ?]s implies

=
n>,n for Me ?717 which is the same as saying that 7 is as inform-

_M
ative, in Lindley's sense, as n1' .

Definition of such a class ib?? serves little purpose however: no
computationally useful theorem accompanies the relation "Eai‘. And in view
of the very special nature of the payofi functions to which ?7?7 relates,
one wonders what purpose Lindley could have had in mind.

The puzzle is not diminished by his discussion of his comparison relative
to Blackwell's. He observes that since his comparison is strictly weaker
it leads to & more nearly complete ordering of the set N of ail information
structures. "The smellness of the [part of N not superior nor inferior
to a given 1 ] is a satisfactory feature of the comparison..., for ideally
all [structures] would be comparable."* But then, of course, the Basic

Comparison is better still -- in fact perfect.

* [71, pp. 997-998. In Lindley's defense it must be said that he proposes
his comparison for use in a non-decision-problem context if in fact -- end
he admits he 1s not sure -- there is such a thing. Our critical remarks
seem Justified in any case.
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11. C(Conclusion: A Warning and a Suggestion

The main purpose of this paper has been to suggest for use in discussing
the different comparisons a vocabulary that makes somewhat clearer the
spplicability of each. BSince little has been said about the reasons for
wanting such comparisons it may be well to point to three -- one obviocus,
one perhaps debatable, and a third which is clearly specious and not a
valid reason at all.

The first reason is simply computational. A declsion maker with given
w and n wishes to determine the wvalue to him of each of seversl different
information structures. There is no question of how to do this in principle,
but the mechanics of the Basic Comparison are quite often difficult to carry
out. We need methods of comparison which fasten on the easily recognizable
gross characteristics of information structures. The comparisons discussed
do just this. They will be found useful even if no further progress is made
.along these lines -- an unlikely prospect, as will be argued below.

The second reason for such comparisons 1s suggested by economic appli-
cations. Suppose a decision maker or organization must maske a long-term
commitment to one of several available information structures, the chosen
structure to be used repeatedly for a variety of problems. The commitment
might take the form of a purchase of durable machinery such as a telescope,
or a telephone or radioc system. Or It might be institutional: a subscription
to a news service, or the promulgation of a certain set of rules for commmi-
cation. A straightforwsrd decision-theory approach to the problem would be
to view the choice of the information structure and the corresponding choice

of actions for every one of the variety of problems as part of one grand



problem. The practical difficulty of following this counsel suggests as
an alternative that that information structure be chosen which is good
against any other for each one of the "little" decision problems to be
faced. If this latter set of problems happens to fall in an M for which
we have an easy "Eai' comparison, the choice among information structures
may be greatly facilitated. Only by experience will we learn the value of
thig particular application of the theory.

The third "reason,” which is no reason at all, is inserted here only
as a warning of how the theory must not, at least in general, be used.
One might suppose, naively, that if % is superior to n' for all {w,n)
pairs in & certaln M, then y is superior to ' for the decision maker
who is uncertain which (w,n) problem faces him but who knows that (w,n) € M.
It is easy to show however that such an application of the theory presupposes
that nothing is changed by restriction of the whole theory to convex M's ,

which is false. To see this, consider the two "Clear Action" payoff functions:

and
xl x2 x3 x,_L
8y -9 -9 g 9
) 32 9 9 '9 ‘9
“ 8 0] 8 0
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and the two Information structures:
sty (xg) =0 (x) 30y Gx5) = my ()
ot My(x)) = my(x5) 4 (%) = my(x,).

Iet n be the same for « and w, . Then clearly g, > 7, for (ah)x)
and (ab,n) but 19, > 7, for (% @ + %-ub, ).

Finally we wish to suggest two directions in which the theory might
be extended.

First, unfinished investigations suggest that there is almost certain
to be a single generalization of which the "Clear Action" comparison and
the Blackwell Comparison are both special cases. The value of such a
generalization would be, of course, that it would contain more than the
sum of these two parts.

Second, there remain easily recognizable gross characteristics of
information structures which are relevant to value comparisons but which,
as yet, are not exploited formally by any of the "fi; relations we have
described.

In Figure b4 the outside triangle again represents, as in Figure 1, the
positive piece of the § p(s| } = 1 plane. Two information structures are

depicted.

Figure 4
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Consider the payoff function

1 2 3
al 1 1 -1
a2 1 -1 1
-1 1
a5 1

and let ﬁ(xi) >0 for each 1 .

Clearly, in this situation, 1n 1s superior to 7' no matter how close

' 1is to the outside triangle. Certalnly this superiority holds true for
a large class of payoff Tunctions similar to the one defined. Yet we are
not helped to this easy conclusion by any of the formal comparisons known

o us.
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