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Capacity Expansion and Probabllistic Growth

*
Alan S. Manne

1. Iatroduction

This study stems from an optimizing model originally suggested by
Hollis Chenery for predicting investment behavior [6]. Like Chenery's
paper, this one is concerned with the interplay between economies of scale
and an anticipated persistent growth in demand for capacity. The generaliza-
tions discussed here are of two types: (&) the use of probabilities in
place of a constant rate of growth in demand; and (b) a study of the
economies and the penalties involved in accumtlating backlogs of unsstisfied
demand. The possibllity of accumulating such backlogs raises considerable
doubt with respect to Chenery's "excess capacity hypothesis."

Surprisingly enough, generalization (b) leads to greater difficulties
in analysis than (a). The use of probabilities to describe the growth
process does little.- if anything - to complicate matters. A probabilistic
version of Chenery's model turns out to be eclosely related to the classical
problem of gambler's ruin, and a powerful tool can be borrowed from that
area -~ the Iaplace transform for the duration of the game. Thanks to this
transform, the zero-backlog probabilistic model hecomes no more difficult
to study than the corresponding deterministic one. A direct implication
is that a probabilistic growth course mskes it necessary to incur higher

expected costs, and also makes it desirable to install plant capacity of a

* The author 1s indebted for suggesticns made by Martin Beckmann, Gerard
Debreu, Tjalling Koopmans, Jacob Marschak, Richard Rosett, and Herbert Scarf
of the Cowles Foundation; by Gerd Reuter of the University of Manchester;
by Ashley Wright of Standard 0il Co. (New Jersey); and by Robert Donovan,
Donald MacArthur, and Gifford Symonds - all of Esso Standard 0il Co.



somewhat larger size than would be optimal 1f demand were growing at a
steady rate equal to the expected value of the probabilistic increments.
Uncertainty, in this sense, has a stimulating effect upon the magnitude
of individual investments.

Going beyond Chenery's madel to include the possibility of backlogs,
it turns out that there is s curicus ambiguity in the effects of an in~
creage in the variance of demand. Once the possibility of backlogs is
admitted, an increase in variance can even lead to a decrease in the

optimal level of costs.

2. The deterministic model - no backlogs in demsnd

In order to provide a reference polnt for discussion of the more
difficult cases, Chenery's deterministic model itself will first be
reviewed., Following this will come the modifications involving (a)
probebilistic growth and (b) the possibility of accumulating backlogs
in demand. Chenery's model grew out of his studies of the natural gas
transmission industry - a sector characterized by rapid growth and by
substantial ecorcmies of scale in pipeline construction and operatiomn.
Much the same situation seems to prevail in the case of oil plpelines
[9], the telephone industry {8], highway construction, electric power
generation, petroleum refining, and chemicals processing [T].

Figure 1 charts the course of demand and of capacity over time
under the following simplifying assumptions: (1) that demand grows
linearly over time; (2) that the equipment has an infinite economic

life; and (3) that whenever demand catches up with the existing
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capacity, x units of new capacity are installed. (The demand at to is

* Chenery [6] and Cookenboo [9] both point out that the concept of installed
capacity is a slippery one - even vwhen dealing with such a homogeneocus facility
&s a gas or an oil plpeline. Once a line of glven diameter has been laid,

new pumping equipment can be added - enough to railse the ultimate installed
capablilities to a level of perhaps two or three times the initial amount.
From the viewpoint of our model, it seems best to regard the decision varisble
x as & measure of the ultimate rather than the immediate amount of pumping
capacity installed. In defense of this shortecut, it should be noted that

on an optimum-diameter line for constant throughput, all pumping station
equipment - according to Cookenboo's figures - generally comprises no more
than 10 per cent of the total initiel pipeline costs. [9, pp. 65, 82, 106.]

denoted by D0 .} Unlike Chenery, we shall assume that the planning horizon
is infinite, rather than being truncated after an arbitrary finite number
of years. Excess capacity, when plotted on Flgure 2, then displays a
sawtooth pattern typical of the closely related Wilson-type inventory model.
f1, pp. 252~255] 1If, for convenience, the physical unit of capacity and
of demand 1s set equal to one year's growth in demand, this sawtooth cycle
repeats itself every x years.

The installation costs that result from a single capacity increment
of size x are assumed to be given by a cost relationship in the form of

*H
a power function:

*¥ This cost function corresponds to Chenery's equation (3), p. 6 [6].

A square-root law (a = 1/2) would be implied by the geometrical relation-
ship between the cross-section area and the circumference of a circular
body such as a pipe; & two~thirds law by the relationship between the
volume and the surface area of a sphere.

(2.1) kx (k>0; 0<ac<l)

If, for example, a = 1/2, this cost function says that a pipeline
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capable of handling 16 years' worth of growth in demand is only twice as

expensive as one that can sccomodate four years' worth. The existence of
such substantial economies of scale implies the desirability of building

new capacity considerably in advance of demand. But how much in advance?
Here the discounting of future costs becomes crucial.

Without discounting, it would be perfectly sensible to spend a dollar
now in order to save a dollar's worth of costs either next year or ten
years from now, or 100 years hence. There is no limit to the size of line
vhich it pays to build. Wlth discounting, on the other hand, this paradox

* -
can be sidestepped. Throughout, we shall adopt the expression e Tt as

* @gifford Symonds has suggested an additional reason for the discounting
of future costs - the expectation of continulng progress in plpeline
technology. If the general price level remains constant, it is reasonable
to suppose that in, say, 10 years' time the cost of building a line with
a capacity of x wunits will be significantly cheaper than the cost of
such a line today. The proviso about constancy of the general price level
is important. If one is a belliever in the inevitability of creeping in-
flation, the one factor would tend to cancel out the other.

the present value of a dollar due 1 years in the future. {(r > 0.) The
quantity r will be referred to as the "discount rate.”

As a time origin for subsequent calculations, it will be convenient
to take any such point as to or to + X or to + 2x on Figure 2 ~ &a
time at which the previously exlsting excess capacity has Just been wiped
out. Such a point will be known hereafter as a "point of regeneration.”
Note that when we have reached to + X , the future looks identical with

the way it appeared x units of time previously. Then if we say that



C(x) is a function of x that represents the sum of all discounted
future costs looking forward from a point of regeneration, we may wrlte

down the following recursive equation:
(2.2) C(x) = kex® + e 7 (x)

The first term on the right-hand side indicates the installation
costs incurred directly at the beginning of the current cycle. (See
equation (2.1).) The second term measures the sum of all installation
cogts incurred in subsequent cycles, and dlscounts these from the next
point of regeneration back to the present one - a difference of x years.
From (2.2), it follows directly that:

a

c(x) _ _x
(2.5) k l-e

-rx

Differentiating log C(x) with respect to X , and setting the

result equal to zero:

dlog C(x) _ a _ re Y 0

o == =

E
l_l
¥

~

or (2.4) a= —%—-
: e -1

where £ denotes the optimal size of installation.
The reader cen verify for himself that (2.L4) is not only a necessary
condition, but also a sufficient one to ensure a unique minimum-cost solu-

tion. With this equation, the optimal capacity increment x may be
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determined for any combinatlon of the two parameters & and r - a cross-
plot being provided in Figure 3. From this figure, if one were interested
in the economies~of-scale effect, he would cbserve, say, that when a = 2/5
andé r = .15, the optimal value g is approximately 5 years' worth of demand
growth. With the discount rate r wunchanged, but with the economies-of-
scale factor at a level of 1/2, £ rises to around 8 years.

This deterministic model lends itself resdily to sensitivity~testing.
To find out how the optimal level g is affected by changes in r , one
need only observe that (2.4) is written as a function of the product rX ,

and that therefore, for a constant value of & :

or (2.5) %2_ < 0

o)

The derivative %% is clearly negative for positive values of 2
and ¢f xr. The higher the discount rate (L.e., the higher the cost of
capital), the smaller will become the optimal size of each installation.
Both to an economist and to an operations researcher, it is likely
thaet the general shape of the cost function Qéﬁl will be of even greater
interest than the optimal value £ itself. Figure 4 contains a plot for
a fairly typical set of parameter values: a = .50 and r = .15 . (Inci-
dentally, these numerical values of & and r will be the ones employed
in all subsequent illusitrations.) The optimal point indicated by this
figure leads to a cost of 4.0l6 at x = 8.4k, The figure also glves an

indication of how little these costs change within a fairly wide range of

values assigned to the decision variable x .
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An x-value as high as 11.0 or as low as 6.0 will increase costs by less
than 2%. From the viewpoint of the operations researcher and the business
forecaster, this insensitivity is fortunate indéed. Even a substantial
error in forecasting will not lead to an egregiously bad choice for the
capacity increment.

What 1s fortunate from the viewpolnt of the business executive may be
disastrous, however, from the viewpoint of an economist trying to forecast
investment choices on the basis of an optimizing model. Even if the economist
happens to hit upon the identical values for a and xr that are in the
mind of the executive, the latter will suffer no great penalty for deviating

from the optimal path predicted by the economist for his behavior.

3. The probabilistic model - no backlogs

With this background, we are in a position to discuss a case of pro-
babilistic growth and minimization of expected costs - still ruling out
the possibility of deliberate backloge in demand. This model represents,
of course, just one of many possibilities for describing a growth process
in probabilistic terms. The particular structure is one that has been
postulated not only for analytical convenience, but also because of its
close relationship to the normal distribution.

The model employed here is the Bachelier-Wiener diffusion process in
continuous time. Except for notation, our exposition is virtually identical

[10,pp.323-271.
with Feller's. / Feller begins by considering the case in which a dis-
continuous random change in demand occurs every At units of time, and
then examines the limiting form of this process. With probability p ,

the discrete change constitutes an increase of AD units, and with
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probability g = (1 - p) , a decrease of AD units. In Markov process

terms:
(3.1) D(t) = D(t - &) + (%)

where D(t) represents the demsnd at time t , and where ¢(t) is a
random variable taking on the values of +AD and =-AD , with respective
probabilities p and ¢ . {I't is assumed that each of the &(t) incre-
ments is distributed identicelly and independently.) With a change in
demand occurring every At units of time, this meahs that over a fixed
period of, say, 1t years in length, approximately t/&t changes will
have occurred. Quoting Feller directly now:

Only multiples of AD and At represent meaningful co-
ordinates, but in the limit AD = 0, At = 0 ; every displace-
ment and all times become pcssible.

We must not expect sensible resuits if AD and At approach
zero in an arbitrary menner ... Physically speaking, we must keep
the D« and t- scales in an appropriate ratic or the process
will degenerate in the limit, the variances tending to zero or in-
finity. To find the proper ratioc note that the total displacement
during time t is the sum of about t/&t mutually independent
random varlables each having the mean (p - g)AD and veriance
4pa(AD)2. The mean and variance of the total displacement in time
% are therefore about t(p - q)AD/At eand lpqt{AD)2/At , respec-
tively. To obtain reasonable results we must let AD and At
gpproach zero in such a way that they remain flnite for all % .
The finiteness of the variance requires that (AD)}2/At should re-
main bounded; the finiteness of the mean implies that (p - q)
must be of the order of magnitude of AD . This suggests putting

2
AD) 2 1 1 pAD
(3.2) L*__. =g , p== y Q== - ==
FAYA p24 202 2 202

.e+ We use the norming (%.2) to pass to the limit AD - 0,
At = 0 . The total displacement at time t=nAt is determined
by n Bernouilli trials, and therefore the limlting form of
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VD n (the probability that after trials, the demand will
2

n
have grown by a total of exactly ;' units) is gilven by the

normal distribution, v(D;t). For a fixed AD the displace-

ment is the sum of finitely many independent varisbles, and

1ts mean is t(p - qJAD/At = ut ; its variance lpgt{AD)</At

= ot . [10, pp. 324-5.]

To sum up: The parameters p ; g , &D ; and At enable us to study
a discrete stochastic process in which the total growth D over a fixed
period of t years is a random variable D(t). Furthermore, in the
limit, for the case of continuous time and a continuous growth path, this
process describes the demand increment as a random varlable which is
normally distributed with mean ut and with & variance of 02t .

Now in order to make use of this process for the capacity optimi-
zation problem, it is going to be necessary to work with a certain
probability density function wu{t;x)dt : the probability with which t
time units elapse before the point at which demand first exceeds the
initial level by x units. In other words, u(t;x)dt represents the
probability with which t units of time elapse bewaen one installation
of cepacity and the next one. 1In gambler's ruin terminology, this is
the probability with which exactly t/At "trials" are needed in order
for a gambler to go broke - a gambler whose initial caepital is Xx ,
and who is playing against an adversary with infinite wealth. At each
stage of such a game, the gambler would lose one unit with a probability
of p , and gain one unit with a probability of q=1-p . [10, pp. 311-

21.] The following relationship may therefore be written:

(3.3) u(t +at; x) =pult; x - &x) +qult; x +4x) (x>0; 0<t <o)
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Equation (3.3) says that whatever be the probability of ruin in
exactly (t + At)/At  steps for a gambler with an initial capital of x ,
this quantity must equal the weighted sum of the ruin time probabilities
in just t/At steps for a gambler with & capital of (x - Ax) and (x +Ax) -
the respective weights being the transition probebilities p and q -

Expanding according to Taylor's theorem up to terms of second order:

dult;x) dult;x) (Ax)e 52u(t;x)

Equating the random variable D(t) to the capacity increment x ,

substituting from (3.2), and taking the limit:

2 .2
(33) Sulux) | oultid | & Suitin)

5%

The Iaplace transform of u{t;x) will be indicated by u(r;x), and

in economic terms is defined as the discounted value of the probabilities

u(t;x)d‘b:*
(3.6)  Tir;x) = [ alt;xle ™ Tat
=0

Taking the Iaplace transform of each side of {3.5), and recalling
the boundary condition that u{0;x) = 0 , we obtain a second-order linear

differential equation with respect to X :

- 2 2
. s

wi{r;x
2 dxe

¥ For a rather different economic application of the Iaplace transform,
see Blyth [5].
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The characteristic eguation has two real roots:

U ﬂV//w“_ércg
7\«1=—§ L + l+2
i - TR
(3.8) ;a2
A, = U 1- Vs EE
2 - 2
2 Moo

g L.

The general sclutieon for the laplace transform-is consequently of the form:
A X AX
(3.9)  G(rsx) = Alr)e T + B(x)e °
where A(r) and B(r) are constants whose values depend upon r and
also upon ﬁhe boundsry conditions for u{r;x). These boundary conditions
are twofold: first, that u{r;x} lie between zero and unity, and second,
that u(r;0) =1 . Since A, >0, and since A, <O , the bounds upon
u{r;x) can be ensured only by setting the constant A{r) equal to zero.
And té have u{r;0) = 1 , the constant B{r) must be uﬁity. With these

simplifications, the ILaplace transform (3.6) becomes:

_ kex
(3.10) uir;x) = e

Note that M

, iz & function of p, o, end r alone, and that it

is independent of the guantity X .

At last we are ready to employ the Laplace transform u{r;x) 1in the
capacity expansion problem. Since uit;x)dt represents the probability
with which exactly % years have elapsed between two successive pcointe

of regeneration - points between which the total demand grows by an amount
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% - the probabilistic analogue of (2.2) may be written:

(3.11) C(x) = kx" + ? u(tsx)e ™™ c(x)at
Q .

Just as in the earlier deterministlc case, the first term on the
right-hand side equals the present cost of installing a facility of
capacity x . The second terw indicates the probability with which the
next point of regeneration will occur in % units of time, discounts
the corresponding cost back to the present, and integrates over all t .
As in the earlier case, the function C(x) gives the expected present
value of all costs incurred over the indefinite future - as measured from
a point of regeneration. From (3.11) and from the definition (3.6):

Cix
_(—l "UEI": )

And by (3.10}, this becomes:

c a2
(5-12) }Ex) = = T

According to (3.12), the probabilistic model postulated here 1s mno
more dlfficult to analyze than the deterministic one. At no point does
it become necessary to make an explicit evaluation of the probability
density function ult;x)dt. ALl that has to be done is to regard the
quantity he as the negative of an adjusted discount rate, and to insert

*
this in place of r in equation (2.4) or else in Figure 3. From this

*
When 2 = 0, we have the case of complete certainty - a steady annual

increase in demand consisting of p units. Both the numerator and de-
nominator of the expression for he vanish when “ = 0. Tt is easy,

however, to show that as 02 approaches zero, the expression for xe
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approaches the value of -r/p. .

2r02 2

2
"

A= L.V

sle

Differentiating the numerator of this expression with respect to

02, we obtain -r/u when & = 0. Differentisting the denominator, the
result is +1. The ratioc of these two derivatives is =-r/p , the limiting
value of A, = & result that completely accords with our intuition for
the case ofazero variance.

also, it may be seen that the greater the variance of the growth in demsnd,
the grester will be: (1) the optimal level of expected discounted costs
¢(x), and (2) the optimal size of the capacity increments g . A proof
may'be workéd out as follows:

Our object is to meke comparisons between cases in which the expected

annual change in demsnd, p , 1s held constant at unity, but in which the
dx,

*
variance of these changes is altered. First we show that ——% > 0. If
do
¥ that dlz
To prove the - >0 , observe that when u = 1;

do

o1 A\ /i 2

ke = 02 1 -yl 4+ 2rc

(1

d d

sgn l+r02- \/l+2r02?

Define f(ca) as follows:

f(cg) = {:l + rd° - V1+ 2ro%}

2
When of = 0, f(ce) = 0., Purthermore, for o >0,

> V- Viied
8gn ——% s&n 02 Q;E' 1-V1+ 21-02 - [:l -V 1+ erc%]j}
o o

i}

daf 1

——2 = I - ---—-'-"-‘-‘-'-"_—2 > 0 -

do V1+2rd

Hence, except for the special case of 02 = O, we have shown that
#(cP) > 0, and that 2

d02

>0 .
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this be granted, then assertion (1) is proved directly - the greater the
variance, the greater will be the level of expected discounted costs ~

regardless of the value of x . (Note that A, is a negative quantity,

2

and that an increase in variance makes ka less negative.)

In order to prove assertion {2), we return to the sensitivity
analysis at the end of the preceding section. According to (2.5), the
optimal size of installation increases as the discount rate r is
lowered. In our probebilistic model, we have already shown that xg
may be viewed as nothing but an "adjusted" discount rate. Hence asser-
tion (2): the greater the variance, the lower will be the absolute
value of %, » and the higher will be the optimal value R . This com-
pletes the proof.

To illustrate these resulis, Table 1 provides a few calculations for
several aslternative values of 02 « In each of the calculations pre-
sented in this table, the expected rate of annual growth in demand is,
of course, identical - namely unity. Note that as the varlance increases,
so does the optimal size of installation, and the minimum value of ex-
pected discounted costs.

Other things equal, our model indicates that the riskler the growth
in demand, the larger ought to be the amount invested in each installa-
tion. To some, this result will seem to fly in the face of common sense.
However, to those familiar with models of inventory stockage under con-

ditions of probabllistic demand [e.gey, 1, PP 256-259], this should

come as no paradox. In both this capacity model and in many cases of
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inventory control, the greater the risk of rumming out of capacity or out
of inventory in a specified period of time, the greater the amount which

it pays to invest in order to avert this contingency.

Table 1

Variance of Demand Versus Optimal Capacity Increments
(a=.50,r=.,15)

1-VY1+ arc:2 -.1500 ~. 1502 -.1208 -.0880

fa— —

optimal capacity increment
=% 8.4 9.0 10,4 k.3

minimum expected discounted

costs =

C}(jﬂ‘) L% b.046 %.185 4,508 5,282
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k. The deterministic model - backlogs considered

It is now time to examine the zero backlog assumption in a more critical
way, and to explore the implications that result from discarding it. The
zero backlog assumption seemed especislly appropriate for the industry
described by Chenery -~ natural gss transmission. In the case of this
industry, it was reasonable to suppose that since the demand for the de-
livered product comes largely from individual homeowners, such individuals -
if unable to obtain natural gas fuel at the time their home is initially
constructed - would thereafter constitute a rather dubious sales prospect,.
For an individual homeowner, the initial outlay required for converslon
from liquid fuels to natural gas could easily outweigh any benefits that
he might concelivably derive from the switch.

This irreversibility phenomenon means that if a natural gas trans-
mission line 1s operating at Tull capacity and if that capacity is kept
unchanged, then demand for the delivered product will also remsin constant.
Chensry was probably quite right to have assumed that there cannot be
negative excess capacity,le., et the gas industry%s residential customers cannot
be backlogged. Any attempt to do so would only result in a switch in
allegiance to an alternative fuel.

Even vwhen customers cannot readily shift over to a competing pro-
duet - e.g., the case of telephones, water, and electric power for
residential purposes - it may still be sensible for the business enter-
prise teo plan its lnvestment outlays under the assumption of zero back-
logs in demand. Certainly from the public relations standpoint, a utility

company would be well advised to keep 1lts capacity ahead of residential
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demand - even though its customers cannot easgily rig their own tele~
phone lines, dig their own wells, or generate their own power. In

all these cases, the assumption of zero backlogs seems like gquite a
reasonable starting point. From this assumption, together with the
economies of scale phenomenon, Chenery derives his "permanent" excess
capacity hypothesis: ". . . excess capacity will occur even with per-
fect forecesting; this may be called 'optimum' overcepacity."” [6, p. 2].

Despite the impressive list of sectors Jjust noted, it would be
& mistake to suppose that the assumption of zero backlog possibilities
is a universally velid one. The economist who is accustomed to work
with a downward sloping price-demsnd curve will certainly find it jJjust
ag reasonable to believe that backlogs are admissible, and that they
are accompanied by some kind of penalty cost to the firm. The zero
backlog model then turns out to be a special case - the case in which
backlog costs are infinite. Everything hinges upon the penalty cost
gasumption.

To a petroleum transporter, for example, these penalties are far
lesg than infinite. If he is unable to ship crude or refined products
vie a pipeline, there is in almost all cases & transportation alternative
availsble - tankship, barge, railroad tank-car, or tank truck. The
penalty for failing to have enough pipeline capacity is simply the dif-
ference between the short-run marginal operating cost of the pipeline
and the marginal cost of using the aliernative mode of transpoft. No
irreversibility effects seem significant here. As soon as new pipeline

capacity becomes available, the oil transporter will not hesitate to
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switch over from the high-cost mode that is temporarily in use. The change-
over costs would be negligible.

This kind of reasoning is surely not confined to petroleum pipelines
alone. A steel producer might find that the penalty for being short of
capacity in one section of the country would amount to nothing more than
an increase in the amount of freight absorption needed to supply the region
from a more distant point. Alternatively, the shortage penalty might
consist of the profits foregone in being uneble to bid on such marginal
business as a large construction project or the export market., In none
of the examples Just cited would it be reasonsble to assume that the steel
company loses permanent customers. The penalty for being short of capacity
is of a temporary nature, and is confined to the period of full-capacity
operations.

In graphical terms, the analogy with Figures 1 and 2 is shown on
Figures5 and 6. Just &s in the earlier case, we assume that demand grows
linearly at the rate of one physical unit per year. Again, X upits will
denote the size of each new installation and the points to, to + X, to + 2%
« « « 5till mark the points of regeneration: the points at which excess
capacity has just been wiped out. The entire difference between this and
the earlier case is that we allow excess capacity to become negative here -
in other words, permit backlogs of demand. Once such backlogs become
admissible, there is no longer any & priori reason to believe in the ne-
cessity of Chenery's excess capacity hypothesis. With sufficiently low
penalty costs, it 1s even conceivable that excess capacity will, on the

average, be negative.
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Figures 5 and 6 have been drawn on the assumption that whenever the
backlog in demand grows to y units (that is, whenever excess capacity
equals minus Yy ), & new facility is bullt - one of size X « We now have
two decislon variables: X , the size of each Installation, and y , the
"trigger" level for backlogs in demand.* Penglty costs will be assumed
strictly proportional to the quantity 2z , hereafter employed to denote
the size of the backlog.

Iocking forward into the future from a point of regeneration, total
discounted costs are a function of both x and y . If we denote these
discounted costs by C(x,y), the expression that corresponds to (2.2)

is as follows:

(4.1) clx,y) = ? cze TPz + e TV (k) + 7T olx,y)

. _ . z=0 ‘ ‘
vhere c represents the penalty costs per unit of backlog.

It is easy to see that when demand is growing steadily at the rate
of one unit per year, a backlog of size 2z occurs exactly =z years after
a point of regeneration. The first term on the right-band side of (k4.1)
therefore measures the discounted sum of all penalty costs lncurred
during the course of a single construction cycle. The second term meas-

ures the installation costs, and discounts them y years back to the

beginning of the cycle. Finally, the last term indicates the future value

¥ Any reader will note the striking similarity between this and the Ss
theory of optimal inventory policy. One important &aspect tends to

be concesled in the deterministic form of the two modeis. A replenish-

ment lag is characteristic of the inventory studies, [1,2]. In the
interests of simplicity, however, the corresponding feature - & construction
lag - is ignored in the present paper.
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of all costs incurred in subsequent cycles, and discounts this wvalue back

over & period of x years. From (4.l), we readily obtain:

J
1 e f ze ™ %z + e ry(kxa)
-rX
l-e z=0 .

C(XJY) =

Dividing through by k 1in order to eliminate one parameter, and christening
the ratio c¢/k with the name b , we finally have the cost expression to

be minimized:

¥
(k.2) C(E’yl - & = b [ ze Tldm + e TV 4P
: 1l- z=0
— L [1-e ¥ (Liry)] + ™7 X*
-rx 2
l-e r

Expression (4.2) involves three parameters: a , the economies-of:
scale factor; Db , tﬁe penalty factor; and r , the discount rate,
Minimization of (4.2) with respect to both X &and y could concelvably
have been accomplishéd by caleulus methods as in the earlier one-variable
case, but this approach seemed rather clumsy.* Instead, refuge was taken
in numerical methods. An electronic comyuter** evaluated C(x,y) for a
large number of combinations of x and y , and reported the miﬁimum for

each specified set of values of & , b, and r . The results of three

* If we differentiate (4.2) with respect to y , we obtaln as a necessary
condition:
a
~_x%
b
From this it is clear that f vanishes only when b , the unit penalty
cost, becomes infinite.

#% The machine was the I.B.M. 650 located in the Yale University Computing
Center. &, Uren performed the numerical analysis, with help from M. Davis,
Director of the Center, and also from D. Ciosek.
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Table 2

Shortage Penalty Costs, Optimal Backlog
Trigger Ievels and Capacity Increments

(a=.5 and T = .15 )

shortage penalty
costs = b ” -0 40 %
optimal capacity 8 9 12 21

increment = %

optimal backlog
trigger level = § ° 1 2 14

minimum discounted

k

(see (4.2).) 4,048 3.791 2.8853 2.027
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such calculations are shown in Table 2. As in Table 1, the parameters
a and r were set at ,50 and at .15, respectively. One word of caution
about the numerical construction of this table: ‘the decision variables
x and y were restricted to integer values.

Table 2 and similsr calculations strongly suggest one conjecture -
a conjecture which I have not, however, attempted to demonstrate rigorously -
that a decrease in the penalty cost factor b can never lead to & decrease
in the optimal levels, ic_\ and ’i « This conjecture is supported by the
general appearance of the partial derivatives of (4.2) with respect to

gc_and A

5. The probabilistic model - backlogs considered

The Pinal stage of this investigation will consist of fitting to-
gether the two kinds of generalizations of Chenery's model: (a) proba-
bilistic growth, and (b) backlogs in demand. Just as in the zeﬁo backlog
case, we again assume the operation of a diffusion process such that D(t),
the growth in demsnd that takes place in % years, is a normally distri-
buted random variable - one with a mean of upt and a variance of ozt .
The particular asymptotic process leading to thils result consists of the
cumilation of successive independent changes e(t) » (Refer back to

(3.1).)

Aslbefore, we shaell let u(%t;x)dt represent the probability with

which t +time unite have elapsed at tbe point when total demand first

exceeds the initial level by x units. A similar definition holds for



- 27 -

u(t;y)dt. We already know the Iaplace transforms for these two probability

distributions:

ALX

(5.1)  alx;x) = [ ult;x)eVat = e 2
t=0 :
- °° - Moy
(5.2) & (z53) = J u(tsy)e™lat = e 2
L =0

(Refer back to (3.6), (3.8), and (3.10).)

Now in order td deal ﬁith the backlég question, we shall have to
introduce one additional piece of notation: w(z;t,y)dz . This symbol
will denote the probabllity with which the backlog lével equals 2 - given
that + time units have elapsed since the most recent point of regener-
ation. Why does the decision variable ¥ 2nter into the definition
of this probability? Because the process of bullding up a backlog will
come to an end as soon as demand has increased by & total of y units -
that is to say, by an amount large enough to trigger off the construction
of a new facility.

In Brownlan motion language, w(z; t,y)dz represents the probability with
which a particle, starting y units aﬁove the origin, will at time
be 2z units beneath 1ts initial position, without having previously touched
the absorbing barrier at the origin. Feller has already provided the
generating function for the corresponding probability distribution in the
case of discrete time and one-unit movements of the particle. [10, problem

16, p. 336.] The analogous result for the Laplace transform in the continuous
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¥
case 1s as follows:

(5.3) ¥ (z3m,y) = [ ow(zst,y)e  at
£=0

A2 MY A, (z-y)
=K {e 2" _ & 2 e 1 ]

In order to derive this result, we recall the following definitions:

v(z;t)dz = probability that demand will change by exactly z
uni=: - glven that + wnita of +imn baws elanged;a normal
density function with mean ut and variance t; (unconstrained
random walk with the particle initially at the origin).

u(t;y)dt = probability that exactly t time units have elapsed
at the time when demand first exceeds its initial level by
Yy units;(absorbing barrier at the origin, with the particle
initially located y umits above the origin).

From these definitions:
t
w(z;t,y)dz = v(z;t)dz - [ u(vr;y) v(z-y;t-1)dzdr
- =0

Denote the laplace transforms of u, v, and w by u, v, and W
respectively. Then:

w(z;r,y) = v(z;r) - u(r;y) v(z-y;r)

In order to derive 5(2;3) end §(z-y;r), one follows the same line
of reasoning as in deriving u{r;x). One starts with the Fokker-Planck
partial differential equation. (bee [10], pp. 325-6.)

2 .2
Bv(z;t) = Svgzit! + 5 v(z;t)
5t - 5z 2 Faz

Since the coefficients of this equation are identical with (3.5):

_ xlz haz
v(z;r) = Kl(r)e + Kg(r)e

Here we have as our boundary conditions:

1

Ii

? v(z;t)dz

@« o

f / v(z;t)e—rtdzdt =
t=0 2= -

o R

T v(z;r)dz
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In order to satisfy these boundary conditions for all values of T,
and also in order to preserve contimuity in the function v(z; r)

A Z
- Ke 2 >0
v(z;r) = oz according as z
‘ 1 <0
Ke =
Kllz

where K = ;Ti;—xzy

Noting that =z > 0, but that (z-y) < 0, this completes the derivation
of v(z;r), v(z-y,r), and u{r;y), and from these in turn, equations (5.3)
and (5.4).

I am much indebted to Gerd Reuver for working out these expressions.

where A, and ), are as determined earlier by (3.8) and where the para-

meter K 1is given by:
A A

oM A
(5'h) K= r(h, - l)

The cost equation for the new model may be written down by direct

analogy with the deterministic one (4.1):

¥ _ Kgy a hex
(5.5) clx,y) = [ czw(z;r,y)dz + e~ (kx ) + e
‘ ‘ z=0

¢(x,y)

Total expected discounted costs, C(x,y), will - as in the preceding
cages - be measured from a point of regeneration, a point at which excess
capacity equals zero. Now the first term on the right-hand side of (5.5)
measures the expected discounted sum of all backlog penalties incurred |

between this point of regeneration and the point at which the backlog
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reaches the critical level, y . (See Figure 5. Also equation (5.3).)
The penalty cost integration extends over all possible backlog levelé |
between O and y . Note that it is quite conceiveble for the backlog
to become negative at any time after a point of regeneration. Our cost
expression simply says that whenever this happens (that is, whenever
demand drops off enough to create some excess capacity), no additional
outlays are incurred beyond those that were previously committed.

The second term on the right-hand side of (5.5) is the one having
to do with construction costs during the current cycle. These costs are
all incurred at the time of reaching the level y , and so the appropriate
Iaplace transform is (5.2).

Finally, the third term (that measuring the discounted sum of all
costs incurred in subsequent cycles) refers to & cost that is dated as
of the beginning qof the following cjcle. This cycle will begin whenever
the total demand first increases by X units over the current level -
i.e., whenever the x units of new capacity are, for the first time,
fully utilized. In the third term therefore the appropriate ILaplace
transform is (5.1).

For purposes of numerical analysis, the cost function (5.5) may be

rewritien:
Ay A=A Ay
1
X,¥) - -
(5.6) bK
k . l“elzx L2 X2
' 2 1
ng [
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Table 3

Variance of Demand Versus Optimal Backlog Trigger Levels
and Capacity Increments

(& =.50, b=,10, and r = .15 )

o 0 1 b 16
M = =l Nard? ® 2.1802  .6208  .2130
o
1 2
12 ==z |1 - NJErO -.1500 - 1402 -.1208 -.0880
U — —
Mo
K o= . - B771 b7L2 L4152
r xa - ll

optimal capacity
increment = % 12 14 16 2l

optimal backlog
trigger level = § 5 6 8 11

minimum expected discounted

o T .Y

costs = ° 2.883 2.83%  2.831 3.079

(see (5.6).)



where b again equals the ratio c/k s, a8 In the deterministic calcu-
lations of the preceding section.

The numerical analysis of (5.6) is only slightly more complex than
that of (4.2).* There are still just two decision variebles, x and y ,
and three economic parameters a , b , and r . The only additional
feature 1s that in the present case we must also take account of the Iaplace
transform parameters Ll 3 XE  and K . As can be seen from the row
headings of Table 3, these last-mentioned parameters all depend directly

5 backlog case,

upon the variance o . Just as in the zero/we now examine the effects

of increasing the variance while holding the expected increment in demand

constant at unity. Also held constant in Table 3 are the parameters a

2

b, and

Table 3 would be of little interest if it merely confirmed for
tha “:acklog case what we already knew about the zero backlog model:
that an increase in variance i1s inevitably accompanied by an increase in
C(®, §)/k , the minimum level of expected discounted costs.

Instead, it provides an immediate counter-example to this conjecture.
Minimim costs keep dropping as 02 increases from zero to four times the
expected annmual increment in demand. Only for the case of 02 = 16 does
the level of expected costs increase again.

Iest the reader suppose that it is utterly implausible to find any
decreasing relationship between varience and expected costs, it is in-
structive to consider the following illustrative example based upon discrete
rather than continuous gquantities: Suppose that every six months there

is & discrete change in demand. In the deterministlic version of this
problem, the increase in demand is exactly 1/2 unit every six months. In

* In fact, the same L.B,M. 650 program written to solve (5.6) also
handied (4.2).
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the stochastlc version, the increase is either zero or else one unit with

50-50 probabilities.

in either

case.,)

(The expected annual increase is a total of one unit

Now suppose that the capacity increment x and the trigger value
are both set at the arbitrary level of unity. With these values of x and

Y » & point of zero excess capacity is reached every six months with the

probabilistic model and every year with the deterministic one.

Becausge of

the resulting annual coincidence in regeneratlon points, it is sufficient

to compare expected discounted costs over a one-year cycle instead of over
an infinite horizon.

In order to simplify the cost expressions, let k = 1 .

Iet

b

denote the penalty costs incurred per unit of backlog outstanding at the end

of each szix-month period.

for a single six-month period.

(p:e )

-r/2.

marizes the expected costes for a one-year cycle.

0<p<l.)

And let p denote the present-worth factor
Table 4 then sum-

Note that expected construction costs are always higher in the prob-
abllistic than in the deterministic case - a result that coincides with our

previous findings for the zero-backlog situation.
costs, however, Just the reverse is true.

higher In the probabilistic case if and only if: -

2
Ly +m) < (——-———“zp )(l+b>

or

p(1 + b)

Table 4.

< 1

Expected Cost Comparison;

One-year Cycle,

Discrete Time Parasmeter and Discrete Changes in Demand

For expected penalty
Total expected costs will be

Version of Change in Respective Discounted Discounted Total
problem Demand Probability | construction penalty expected
end ofjend of| of stated coate¥* costs discounted
first |second| changes end of|end of |end of jend of costs
six six in first isecond|{first |second
months [months demand six six six six
months |months {months |months
. 2 2 pb 2
Deterministic) | 0.5 | 0.5 1.00 0 0= |p(b/2){p"(b) }-—-5 + p°(14b)
0.0 | 0.0 .25 0 0 C(J ) o [ .
1.0 0.0 25 o] 02 pld 4] fo¥ ) 145
Provebilisticd| 56 | 1.0 .25 0 0 0 [e2(v) [[\7— )P
1.0 | 1.0 25 p 2 | p(b) [p2(D)
a
* 8ince k=x=1, kx =1.
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6. Summary and generalizations

For the benefit of the reader who has persevered through the sensitivity
analyses that went with each of the four medels analyzed here, it seems only

merciful to recapitulate the chief results for the two stochastic cases:

Backlog triggering
Assumption Zero non-zero
Cost equation (3.12) (5.6)
-~ ~ >
ac =2 > 0 = 0
d0 <
§£§ >0 ?
od

In each of these cases, the regeneration point technique - when
coupled with the appropriate laplace transforms - made it & rather simple
matter to relate total costs to the decision variables in a closed analytical
form. There was no need to employ a Bellman-type functional equation [4].
This is not in the least to underrate the importance of the funcilonal
equation approach = only to point out that other tools may also prove use=-
ful in sequential dynamic optimization.

Among the problems that seem closely related to the one discussed
here would be models of inventory stockage [1, 2, 11}, of equipment replace-

*
ment [%, 12], and of forestry economics. Each of these is characterized

¥ The forestry problem was suggested to me in an unpublished paper by
R. F. Keniston of Oregon State College. A similar case was, of course,
investigated a good many years ago by Knut Wicksell [13, pp. 172 - 18k4].
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by & cyclical spurt of builq~up activity (either ordering some inventory,
or installing a new piece of equipment, or cutting down and reseeding a
piece of fdrest land) - a spurt w?ich is followed by & fairly long gest-
ation period (rundown of inventk;&, accumulation of operating inferiority,
or the growth of new trees) until the beginning of the next cycle. Karlin
has already demonstrated the usefulness of the regeneration point approach
in the case of discrete time inventory problems [1l, esp. pp. 280-85].

As intriguing as the research prespects in allied areas might be,
the fact remains that we are far from having exhausted the subject of
capacity expansicn in this paper. It is easy to think of certain gen-
eralizations that would be quite straightforward: It would be a fairly
simple matter, for example, to replace the construction cost function (2.lf
with a different one - Jjust as long as the new function also exhibited
economies of scale. (Without economies of scale, the whole rationale
breaks down for the buﬁching together of investment activity.) Another
fairly simple generalization would consist of replacing the pfoportional
backlog penalty cost with an arbitrary non-linear function of the backlog
size, z . The Iaplace transform (5.3) would still remain wvalid.

5til1l another generalization would deal with the case of a construction
time-lag. If one assumes that this lag is fixed rather than random, the
obvious modification is to follow Beckmesnn and Muth [2, p. 149] and to regard
the state variable as the composite quantity : existing excess capacity
plus construction orders outstanding.

Even if one wished to alter the probability structure underlying the
demand growth pattern, there are certain alterations with which no great
difficulty would be experienced. Instead of representing the time series

of demand by a continuous random-waik process, one might assume that each
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change in demand consists of a discrete amount (either +1, 0, or -1 unit) -
and that these changes occur at discrete time intervals. In this case, in-
stead of a linear differential equation such as (3.7) for the Iaplace
transform, one would work with & linear difference equation for the generating
function of first-passage times. In other respects, such a discrete version,
though somewhat more awkward, would be gquite similar to the continuous one
described here.

Now to enumerate several of the more intractable generalizationg:
Suppose that one wished to deal with a discrete case in which, during each
period, demand elther increased by 2 units with a probability of P, oOT
else decreased by 1 unit with a probability of 9 + Then, no matter what
value is assigned to the "trigger" level of excess demand, there is no
assurance at all that the random-walk process will pass through this point
on each cycle. Unless demand is constrained to mcve from one point to an
immediately adjacent one, one cannot be sure that the construction process
will be triggered off at exactly the same backlog level during each suc-
cessive cycle. The problem would become the much more difficult one of
calculating the optimal installation size as a function of the backlog
level. In order to attack this class of problems, the functional equation
approach would seem most natural.

One final kind of generalization that is appealing from the viewpoint
of economic realism, but which leads to some analytical difficulties 1g
the following: Suppose that one wished to replace an arithmetic growth
model with a geometric one. Instead of postulating a random-walk process
for the absolute level of demand, one would be likely to assume such a

process for the logarithm of demand. Even after working out the probability
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distributions and laplace transforms for a model of this sort, there would
still remain the problem of optimization. Neither the optimal backlog
trigger value nor the installation size would be independent of the absolute
level of demand. Again, perhaps the most convenient way to handle this
process would be to resort to the functional equation approach. Here, how-
ever, it would be necessary to relate everything to two state variables -
not only the current level of excess capacity but also to the absolute

level of demand. Using the principle of recursive optimelity, it would be
easy enough to calculate numerical results. Analytical results would, I
conjecture, be considerably more difficult to establish than with the

linear probabilistic growth pattern treated here.
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