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An Inventory Model for Repair Parts -- Approximations
in the Case of Variable Delivery Time

Martin J. Beckmann

The following continuous inventory problem arises in connection with
the storage of repair parts. ILet demand be for one unit at a time and
Poisson, and let delivery time be either fixed or a random variable of
known distribution. The size of an order need not be specified until the
time of actual production or delivery. The following costs are assumed
to be given: A storage cost propertional to quantity of stock and time,

a fixed cost of ordering, and a penalty for shortage proportilional to the
amount of the shortage and its duration. No orders are lost. Alternatively
the probability of a loss may be incorporated in the shortage penalty.

The stochastic process which governs the expected value of discounted
future costs through time may be described in terms of a pair of differ-
ential-difference equations to which an explicit solution can be given,
[CFDP 50]. Since the rate of discount is always small, the expected value
of future discounted costs 1s, as a matter of general principle, very nearly
equal to the average cost per unit time divided by the discount per unit
time. It is sufficient therefore t¢ ccnsider the average cost per unit of

time which is given by the following formula:
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vhoere &  reordering point
g +D optimal starting stock

k fixed ordering cost

hx h storage cost

f(x) =
g(x) g shortage penalty

A = average number of demands per unit time
p(i,t) = probebility of seiling i units during a (random) time
interval of length +t
a{t) = probability that delivery time is t
Q(t) = probebility that delivery time is t or less

Observing that under the assumptions made p{i,t) is the Poisson

)l s .
T e and substituting for f(x) one obtains after

some calculation
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where t, 02 are the mean and variance of the delivery time distribution,

respectively, and
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Now if the delivery time distribution is concentrated at large values of
t , then for small i when p(i,t) is concentrated at small values of +t

one has the approximation



This will noct be true any more for 1 = s , but since most of the contri-
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In order to determine the optimal s we set the first difference of
£(s,D) with respect to s equal to zero and obtaln the exact condition
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Using the (rough) approximation a; = % in (1) to obtain
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we see that s 1is of the order of At s the average demand in the least
time, the interval between placing order and delivery. A better approximastion

is obtalned by observing that

o i
a, =/ %ﬁl e ™MI1-q(t)] at
[#]

w 1t i
)
= i%?l e M ap - g(t)at
Q Q

[-5)

= [ PF(t) q(t) 4t , say .

Replacing the average of a funetion by the function at the average we have
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where P(i,LE) is the cumulative Poisson distribution with a parameter

»f . Thus
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The cumulative Poisson distribution has been tabulated. [Molina, E.C.
"Poisson's BExponential Binomial Limit," New York, Van Nostrand 1952]
If the delivery time distribution is known with sufficient accuracy,

better values for s may be obtained,of course,by calculating ay
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For example, when g is the exponential distribution q{t) = ue—ut
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To determine D we set the first difference of £(s,D) with respect
te D equal to zero.
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Recalling now that s is somewhat larger than At and that £ (s-i)s.i
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somevhat smaller than gi we see that R is very small.
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For an approximate value of S = D+a we obtain therefore
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If we now observe that the optimal starting stock S5 is approxie
mately, and that D + At is exactly, equal to the average size of a
shipment (since old stocks will be nearly zero st the time of a delivery
on the average), the reason becomes clear why these expressions closely
resemble the Wilson lot size formula. In fact, this equation agrees with
the Wilson formuls, when delivery time is of fixed length, for then 02 = 0.

If delivery times are large and average demand not too small the
second term under the square root dominates the first and we have the

even simpler epproximation
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