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RANDOM ORDERING

H, D, Bloeck and Jacob Marschak(l)

80, Introduction

The present study was motivated by the need to substitute

"stochastic consistency of choices™ for the "absolute consistency

of cholces." The latter 1s usually assumed in economic theory but

iz not too well supported by experience and is, in fact, not asgumed
in empirical econometrics and psychology. We set up various types
and degrees of stochastic consistency and analyze the logical rela-
tions between them, in Sections 1 and 2 of this Report. Section 3
deals in a tentative way with the testing of the hypothesls that a
certaln type of stochastic consistency is to be ascribed to a glven
person,

Let A be the set of all alternatives (actions; bundles of goods).
In the non-stochastic theory of choice we say that x Ty (x is pre~
ferred to y by the individual i) if and only if the individual i,
having to choose exactly one element of any subset B & A containing

x and y, never chooses y. We say x = ¥y (i 1s indifferent between
i

x and y) if neither x > y nor y > x. We write x >y if x >y or
i 1 3 i

X y. (The subscript 1 will be often omitted). The individual i

[WRRNTRS

is gaid tc be absolutely consistent if the relation > is transitive;
i

it will then induce a complete weak ordering on A. Given a (socalled

"offered" or "feasible") set B & A, the subset B, € B is called its

i
"optimal® subset if it consists of all elements xy of B such that

Xy z x for all x in B.
1
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Under certain weak restrictions on A, satisfied by all finite
sets and by an important class of infinite sets (see Debreu [1]) thc

existence of the relation =3 implies the existence of a real valued

i(y) if x » y. The function -

1

. i .
function £' on A such that fi(x) > f

{called taste~function or utility-index function of the individual i
is unique up to a monotone transformation. Given a feasible set

EBGEA, the optimal set By consists of all elements %é in B such that

max fi(x) = fi(ﬁé).
XeB

To take an economic example: the individual's monetary wealth
and the set of market prices of consumers? goods determine the
feasible set B, consisting of all combinations of goods that he can
buy. His taste function fi determines then the optimal subset Bi'
Note that fi is not directly revealed by the individual'!s cbservable
actions: the latter consist, rather, in the actual purchases made.
Using certain assumptions on £ Abraham Wald [3} has suggmested a
method to evaluate fi from such observations, using the non-stochas-
tic model just cutlined end not attempting to develop a method of
statistical estimation.

If A is finite, with elements laheled arbitrarily 1,...,n, and
if Bi has to consist of only one element (i.e., ties are excluded)
then each of the nl! permutations (rankings) r = (rl,...,rnJ of the
first n integers can be regarded as a distinct taste-funciion, viz.,
k) = ry; and precisely one of these taste=functions will be fi,
the taste function of the individual 1, so that £+ = pt = ri,..a,ri)c

Again, the permutation ri characterizing the individual's taste will

not be revealed by his actions directly. Although 1t 1s possible to



ask him to rank verbally the elements of A, or of any subset B (A,
according to his prefeorences, this verbal resgncicoe may or noy Lob Lo
consistent with his actuasl choices, What he will actually choose,
will be only the most preferred eloment of an offered subset B of A,
It is these "first choices™ (for varying subsots B) that constitute
the observable data. In the non~stochagtic model, the individual 1
is characterized by a constant permutation ri such that Iif k ls in

i é r§ for all § in B,

Proceoding now to stochagtic modols: onec way to weaken absoluto

B then »

consistoney into stochastic consistency 1s to assume for the indi-

i

vidual 1 tho oxistence of a probability distribution F© (or F, for

brevity) on the set of 2ll real~valued functions on A. We may call

Pl the taste-distribution. For any subsct B A, the distribution

Fi will gonerate a distribution Gg of the optimal subsots Bi' I,

in addition, cach By congists of one clement only, or if all oclemocnte
of Bi aro assumed cquiprobable, Fi wlll generatc a distribution Hé
of all the first cholces QE made out of the subset B. Suppose now

that for certain given subsets B’, B", .«» Of A one knows the dis-

tributions H%,, Hé" , seo Of the first cholces made., What can be

1

then inferred about the underlying taste distribution F& ¢

In cconomic torms: suppose agaln that we have observed the

variations of commodity prices and of a given individual's monctary

n

wealth, and henco know the various fcasible subsets B', B s e+« that

have been acecessible to him--cach subset possibly obscrved scveral

i
B!

ey 1.e.,, the probabilities with which he allocates hls given

Hi

times, thus pormitting onc to cstimate the distributions H BN



-l -
resources (at given prices) in any particular fashion, What can be
inferred sbout the underlying distribution FL  of his tastes?

This problem can be easily reformulated, and existing economic
statistics (consumers! surveys) used, for the case when F‘:L is assumed
to be the same for all individuals,

Preliminary to such investigations, one has to ask the question:
which properties of the (cbservable, in principle) distributions H% are
necessary and sufficient for the existence of the (non-observable distri-
bution F-?

This gquestion is studied in our Section 2 (Choice among . n objects),
for the case when the set A is finite, and hence the offered subsets B
are finite, Let R be the set of all permutations of A = (1, Juey n);

denote its generic element by r = (rl, asey rn), and let the subset Rj'B
3

B

consist of all those permutations under which o >r for all k in B,

k
Denote by P(j,B) the probability that the individual, when offered B ,
chooses its element j'i The quantities P(j,B) can be, in principle,
estimated from observations, If the distribution F{(r) of permutations
(rankings) exists, then, for any B and any j in B,
P(j,B) = ZF(r) ,

the summation extending over the set Rj,B .

Section 1 deals with a more special caset: here the offered subsets B

are pairs, Assume that the individual 1 , when forced to choose from the

pair (x,y) chooses x with probability
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Pl(x,y) or P(x,y) for brevity ]. When P(x,y) > 1/2 we say that he
prefers x to y stochastically, This replaces the concept of absolute
preference, If the relation of stochastic preference is transitive, 1,64y
if P(x,y) =1/2 and Ply,z) >1/2 imply P(x,z) >1/2, a simple
ordering on A is established, Then, under Debreuls restrictions on A
there will exist a real valued function w on A, unique up to a monotone
transformation and such that w(x) > w(y) whenever P(x,y) > 1/2, Ve may
call w a "weak utility function.” An assumption that is strictlj stronger
than the transitivity of stochastic preference is the existence of a "strong
ubtility function" w on A , unigue up to a linear transformation and such
that P(x,y) is a non-decreasing function of ulx) -~ uly): for all
x,y, Px,y) = olu(x) - uly) ] where ¢ is a distribution function whose
mean and median are zero,

The transitivity of stochastic preferences and the existence of a
strong utility function are shown to be the extreme links in a chain of
conditions on the probabilities P(x,y) , each condition strictly stronger
than the preceding one, This is the subject matter of Section 1,

The two ways of weakening absolute consistency into stochastic con~
sistency——by‘assuming the existence of a distribution F of tastes (as in
Section 2) or by assuming the existence of a weak (w) or a strong (u)
utility function (as in Section 1)=—are independent, F can exist without
w (let alone u)j and u (and hence w) can exist without F (ef 2.43).
However, both u and F exist for any finite set of alternatives
A= (1, yeas n) if there exist: 1) a random vector U = (Uy, seey U )

n
such that, for any j in B € A , the quantity P(Jj,B) defined above is
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equal to PT(U‘ >U ,all k in B) , and 2) a constant vector

k
c = (cl, vees cn) such that c¢ ~ U is distributed symmetrically in its

J
The random variable Uj nay be called the "current" utility of J , while

veriables, Then F(r) = Pr(UI.1 > Ur2 > ves 2'Ufn) 3 and uj) =c, .

the parameter u(j) is its "permanent" utility., If U is normal with

equal variances and equal covariances, the means are permanent utilities,
In essepce though without formal elaboration, the strong utility

function wu(j) —with "sensations" playing the role of our utilities--was

used already by Fechner [4]. He applied to the results of his psychophysmcal

H

S

trials a rough test of t;e gglstence of the univariate distribution (de—
i)

fined above), assuming y’to be normal, Thurstone [5] introduced, in essence,

the symmetric distribution of the random vector U and assumed it to be
normal (symmetry implying that all variances be equal and all covariances
be equal); Mosteller [6] proposed statistical tests for Thurstone's hypo-
thesis, permitting however the symmetry condition to drop.

While Fechner and Thurstone (and their numerous successors) deal with
the psychology of perceptions and of attitudes, respectively, an extension
of Fechner's approach or of some still weaker stochastic assumptions on
choices between two alternatives (as in Section 1) to decisions and to
economics was undertaken during the last decade by Hans Reichenbach [7],
Clyde Coombs [B), Stephan Vail [9], Ieo Tornquist [10], Ward FEdwards [11],
Duncan ILuce [12], Andreas Papandreou (in collaboration with Leonid Hurwicsz
and others) [14]; Kenneth 0, May [15]; Donald Davidson (in collaberation
with one of the present authors) [16]; and others, The application to
sconomics of some stochastic concepts relevant to the choice between n

alternatives
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(as in our Scction 2) was suggested by Nicholas Gecorgescu=-Rocgon
[17], David Roscnblatt [18], Duncen Luce [13], and J. Marschak [191.

Our Scection 3 deals with statistical tests, Each of the condi-
tions of the procoeding two secctions defines a "region of consistoncy"
in the spacc of cortain probabilities, Aftor observing a limited
number of choices made by the individual from various feasible sub-
sets of alternatives, one has to test the hypotheosis that the role-
vant probabilities lic in that region. In psychophysical experi-
ments, the replication of a trial with the same feasiblo subsot for
a large mumber of times is limited by lecarning and fatigue, unless
onc pools the trials on several individuals and assumes the latter
to have identical stochastie properties. When cxperimenting with
human choices (and attitudes) the roplication possibilities are evon
morc scverely limited, becausc of the offects of memory: the subjoct
may feel "committod” to a recont choico and is likely to ropeat it,
The statistician may even have to considoer the extromec casc, of each
foasible subset being offered to tho individual only once. This is
analogous to the case whon a coin-minting machine is assumed tc have
a cortain unknown probability distribution Y ~of the chance vari-
able P, the probabllity that a coin falls hoads. One is permititod to
toss scoveral coins, cach only a limitod numbor of timcs (or perhaps
indocd only once) in order to make inforcnecs about Y .

We had the bonofit of discussions with A. Calderon, Wassily

Hoeffding, L., Hurwicz, and A. Sharma.



1., Choice botwoon two objccts.

1.1 Definition. Lct A be o sct of olcments {alsernatives) (7., ...

For a given person at o given time we assume that for cach pailr (a,b)
2 ¥ b of eloments from A, therc is a certain probability P(a,b) that,
if thc person is forcoed to choose between a and b, he chooscs g. For
brevity we denote P{a,b) by ab. We definc aa = %. Then ab + ba = 1.
The set of numbers {ab,...} thus definod might or might not have the
following properties:

U (Utility Condition): Thoro oxists a real valued function u on A

such that for cach a,b,c,d in A:

u(a) - u(b) z u(e) - u(d) if and only if ab 2 cd

SS (Strong Condition on Scxtuples): Any six clements al,aa,a3,
bl’ba’b3 in A which satisfy a; a5 z b, b3 and a, 8y 2 b, b, also
satlsfy a4 2q 2 by b3.

Q (Condition on Quadruples): Any four clomonts a,b,c,d in A which

satisfy ab > ed also satisfy ac > bd.

8, (Weak Condition on Soxtuples): Any six clomonts, al’a2’a3’b1’

b2,b3 in A which satisfy a; a; z by by and ay 84 b, b3 also satisf;
aq a4 z by b3.
TS (Strong Transitivity, or Strong Condition on Triples): Any throo

clements a,b,c in A which satisfy ab > % and be % also satisfy

ac > max [ab,bc].

Tw (Weak Transitivity, or Weak Condition on Triples): Any three clo-

mentg a,b,c in A which gatisfy ab > % and be 2 % also satisfy ac g;%



1.2. Remarks.

1,21) U can also bo stated thus: There exists a real valued
function u on A and a monotone function f of the probabilities ab
such that f(ab) = u(a)-u(b); or, alternatively: There exists a mono-
tone function Y such that ab = Y{u(a)~u(b)), The function #’ can
be regarded as a distribution function, with Mz) + W-z) = 13
hence 4 (C) = %’ i.e., the medlan is zecro, If the first moment
exists thon E(z) = 0; if a density function r#} cxists then ﬁ/' is
an even function.

1.22) One might consider extending S to the condition that,

for any integer n, a8, 2 blba’ &l g = b2b3,...,an_lan = bn—lbn im-

pliecs that a8, 2 blbn. However 1t is easy to see by successive ap-
plications of Sw that this is equivalent to Sw‘ On the other hand
consider the following extension of SS,nS: Let n be any integer and

let r be any permutation of the integers 1,2,...,n-1; then 8185 2

br(l)br(l)+1’ az8q 2 br(Z)br(2)+l""’an-1an 2 br(n—l)br(n-l)+l

imply that aja, z byb,. We have not yet examined the condition ng.
Although it clearly implies Sy it secems likely that it is not impliec
by SS; and although U c¢learly implies Ny it is not clear whether or
not ng implies U,

1.23) T, implics that a transitive order relation "a" exists
among the clements of At a z b If and only if ab 2 %. Under certain
mild restrictions [1l], this is equivalent to the existence of a real
valued "weak utility function" w on A, such that w(a) z w(b) if and

only if ab > 1/2.
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1.2&) TS is equivalent to the following property; call it T: :

if ab > % thon ax > bx for every x in A, Proof. If TS holds and

ab > % then for any x such that bx > %, ax 2 bx. If by < % and

. L 1 1
vya z & then yb 2 max[ya,ab), so ay z by. If by < 5 and ya < 5
then ay > % > by. This TS implios Tg. Conversely if Tf holds and
ab > %, be = % then ax z bx and by 2 cy. Lotting x = ¢ we got
ac z be and letting y = a wo get ba > ca and honec ac > ab. Thus
¥t

S

Implics Ts'

1.25) In the prescnce of T, tho order relation "z" imposod by
Tw onn the sct A (sco Remark 1.,23) now implics that\gﬁ Is an incroeas-
ing function of g and a decreasing function of E; Thug the probkabil-
ities can bec put into the form of a lattice; c.ge If A consists of
four eclcments we shall have

y1
2 51

VAYAY
/\/\/\
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whoroe the arrowheads indicate " > ". Tho dircctions of the arrow

botween 2 and 31 or between L3 and 31, o.g., are loft undctermincd
by TS

1.3 Theorcm 1:

U -.j;-;—}ss‘:t::;‘;Qq::,&Sw:s::}TSt#Tw, (where A 4==xB

mcansg that A implics B but B docs not imply A),

Proof (i) U implies 8 . If aqa 5 2 b2b3 and a,8 32 > byb, then, by U,

1) = u(b,). Adding

uag) = ulay) 2 ulby) - u(d,), ule,) - g(aB) > u(b 5

the last two inoquallties we get u(aq) - u(a,) = u{bl) - u(b,),

3 3

which by U implics that aqa 32 > b b3

(11) 8, implios Q. Let ab z cd; since be z be, we got by S (Lot~

ting a; = a, by =a, =b, a, =b, = ¢, b, = d) ac 2 bd.

(iii) Q implics 8,+ If ajo, 2 byb, and asa 3 2 b2b3 then, by Q,

albl z 8sb5, asby 2 a3b3, Honce a,bq = a3b3, and by Q, 8184 2 blb3

(iv) 8y implics Ty. Lot ab z % = bb. Sinco be z be, S, implics

that ac z be., Similarly be = % = bb, and ab z ab gives, by Sw’
ac z ab,

(v) T, implies T . (obvious)

(vi) T, does not imply T . Tet A = (n,b,c) and let ab > ac > 1/2

and be > %. Then Tw ls gatiafied but not Ts.



(vii) T docs not imply S . Lot A = (a,b,c,d) and take 5 < ab < be

< cd < bd < ac < ad. Then Ts 1s satisficd but not 3 ; for oc > bd

and be > ab (ba > cb) would give by 8,4+ be > cd. In the notation of

the ordering given in Remark 1.25 abovo, this examplc takes the form

<3 <32 <21 < 31 <42 < L1, Another cxample would bo

e e ol

<21 <32 <13 <42 <31 <lid; of. Nomark 1.42 below

(viil) 5, doos not imply Q. With A = (1 <2 <3 <L) we may usc

cithor % <32 <3 <21l <31 <}2<ldor

% <13 <21 <32 <31 « b2 <1, Each of those satisfics 5., but not
Q; since 31 < 2, Q roquires L3 > 21, The verification that s, is
satisfied can be c¢xXpedited by noting that mogt of the relations of
Sw arc implicd by Ts (which is casy to vorify directly) and by nak-
ing use of the symmetries; of Romark 1,43 below.

(ix) Q docs not imply Sq- It is possible to give several cascs in-

volving five clements which have the property Q but not SS; C.f,

% <21l <58l «32 «<}j3 <53 <31 <2 <hl <52 <01,

Here Q is casily verifiable whilo from Sl > 21 and 43 > 32, 8, would

require 53 > 31. Another sct of cxamples is obtained by taking

-

5 <32 <3 <2l <5k <53 <31 <ll<52<5],with3 <}2 <53,
Cf. Remark 1.4l below,

(%) 8, does not imply U. The following systom with A consisting of

ninec clements satisfics SS but not U.
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% <76 <21 «98 <32 <31 <65 «<h3 <87 <8h <75 <86 <2<

<97 <ljl <96 < 6l <53 <85 <7 <352 <
<5l <95 <63 <73 <8 <62 <72 <
<6l <9 <71 <83 <93 <8 <81 <92 <
< 91,

To sco that U is not satisficd noto that 21 = 76, 32 > 98, L3 > 65,
sl > 87 which, by U, would imply that 51 > 95. To sec thaot 8, 1is
satisfied, start with a slightly difforent system, namoly onc satis-
fying U with u(l) = 0, u(2) = 101., u(3) = 302., u(l) = é12.,

u{y) = 1017., u(b6) = 1326., u(7) = 1y26,, u(8) = 1826., u(9) = 2026,
This gives rise to a sct of probabilitics which differs from the
given sct only in that tho position of 51 and 95 arce reverscd {and
of coursec the images 15 and 59 arc alsc recverscd). Since 8, is
automatically satisfied in the new system, the only possible way in
which 1t can be vioclated in thoe given systom 1s in sextuples wherc
cne of those occurs on cach side of the inequality; but, for those,

S8, is roadily vorifiod directly. Cf. Remark 1.45 below

1., Remarks

1.41) If A consists of only threc clements thoen T, implies U.
If A has four or foewer eloments, then Q implics U. If A has five or
fowor clements then 1t appears that Ss implies U; the preoof of this

last statement is however not quite complete.

1.&2) The oxamples in (vii) werc arrived at by the following

considerations. Wo first restate Sw thus: "Thc threc relations
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\

8185 2 bybs, 858, 2 b2b3,‘a3al 2" byby« mply that 211 -thros of the 2

Hi

arc cqgualitics, Now any two (unordecred) triplos of clomonts

(al,ag,a3), (bl’bZ’b3) generate the. following six triples of rola-

tions (using z throughout without loss of genoerality):

(1) = > b2b3, a,04 = b.b

371 = "371

[
-
[A]
t
lea
}.—J
o)
no
-
o
o
o)
o
!

(2) a1a2 = b2b3, &2&3 = bBbl’ a3a1 = blba

(3) 8,8, 2 b3b1, a2a3 > blba’ 2304 > b2b3
(L) aja, 2 bybos 885 2 byby,  agay 2 byby
(5) 2,85 = boby, agly 2 ble, 2307 2 b3b2
(6) aja, 2 byby,  apa, 2 byby,  agny x boby

If A consista of four eloments then if The Lwo sets of triples
have zerec, onc or ~hrec clements In corinon tacn T, does imply in
(1)=(6) the cquality holds in each casc. For cxample with triples

(x,2,x) and (v,a,z) the relations (1) bocome xa » ya, hence xy 2

?:

X 2y (in the notation of 1.23); ax 2 az, honce z

1%

X; XX

Y

Zy3
hence z = y = x and oquality holds throughout (1). Similarly with
tho relations (2)=(6). If the two triples of clemonts have two cle-
ments in common as in (2,x,b), (a,y,b), then by similar argument,

Tg will make the velations (1), (), (5), (6) into equclitics. Thero
remains the relations (2)3 reclations (3), caquivalent with (2) undoer
interchange of lotters, we need not consider. We have by (2):

ax z yb, xb 2 ba, ba =2 ay. By Ts’ if a £ b, thoesc rolations Imply
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% 2 ob =z ya z yb = ax and honco the scquence x 2 b z o 2 y; if

2 2z b, they imply tho rcverse sequenco, Thorcfore we can, without

il

loss of gonorality set x = I, b = 3, a 2, ¥y = 1. The triple of
rclations now becomes 31 > L2; 43 » 32 2 21; or, the roversec
31 < 42; i3 5 32 5 21. Using the lattico condition of 1.25 (it suf-
fices to consider its upper part) we soc that the only ways to obtain
?, without S are bi,31;5 42,h3; 32; 21 and 41,425 31,m; 32; U3, wherc
the commas and scmi-colong stand for z, but at luast onc of tho soml-
colons significs >,

1.13) 7o construct the exomplos in (viil) onc uscs the sym-
metriss and procceds very much like in Romark 1,42 above,

1.10)  The construction of the cxamples in (ix) is based on
reasconing similar to thot in Romark 1.L2, owploving the symmotrics
to simplify tho cnleculasions.

l,ASJ The eongtraction of the cxample in (x) is motivated as
follows. Wo assumc that the numbers xzy have boen modifiod (cf
Remark 1.46 below) sc that xv = % + u(z) = u(y). Suppose that tho
objects have alroudy beon arranged in a latuice (Remark 1.25) e.g.
9 > 8 > .>»L. The dircction of the missing arrows” is determined by
tho diffecrence of the u's, i.¢. lot u(i+l)-u(i) = ;. Then e.g.

98 = eg+ 1/2, 87 = e, + i end 98 » €7 i arnd only if Eg > 8

7 % More-

7
over the sum of a cons»ecutive rua of <'3 is exprossible as one of e
numbors Xyj C.g. €g + fg = 1{6) ~u(B)+u(7)~u{6) = u(7)-u(5)} = 75 -~ 1/2,
How if wo take €1 > €y, &5 > Eg, 53 > 85, 84 > a?, it follows by add-

ing thet 51 > 95, But from only thceso assumptions on the ets, S_

# Thlg, incidontally, furnishos a workablc algorithm for testing :
whether a givon scet of numbers satisfios U, The relative size of tho
£'s arc determined oasily from tho order and thoe order may thon bo
tested for consistoney. This is not however the explicit, simple
criterion sought in 1.46.
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docs not imply 51 > 95. It remains only to pick such et!s, form the
u's and compute tho ordering. The e's arc thon adjustoed so as to
meoke 51 and 95 adjacent in the ordering; this makoes the verification

of Ss simplor. Thc e's usod for the cxample glven wore e, = 101,

1

ep = 201, €5 = 310, g) = g, ec = 309, g, = 100, e, = lLo0, gg = 200

7

1.l6)  The following qucstlion, which ariscs in an obvious way
from the foregoing, has not yet boon answered. Lect (kij) bc an anti-
symmotric matrix with no off-diagonal elcments oqual., Suppose the
numbonskij (which corrcspond to tho probabilitics minus %) arc
marked as points on the roal line in the usual way. Call this an

arrangoment of thoe points., Now move these points on the line in any

way which leaves the order unchanged. Call such an arrangement cquive

alcnt to the original one, Wc would like to know for which of the

nrrangemonts there cxists an cquivalent arrangement ki with the

J

proporty that thore is an increasing function u such that k£

J

u{i)~u(j). An alternative formulntion is to ask thet thoro coxist
ineroasing functions h and u such that kij = h{u({il)~-u(j)). Clearly
n nocossary condition is that kij be an incroasing function of 1
and decreasing in j. Conditlons analogous to Ss, @ and Sw are also
clearly necossary, but what is desired is a reasonably simple crite-
rion charactorlzing thosc arrangements which admit tho above repro-
sentation.

If A can be ropresented by a real intorval, say [0,1], the ma-
trix (kij) is roplaced by a functlon f{x,y) on the unit square; and
the question analogous to the onc just discussod is answered by the

theorems in tho next scction (1.5).
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(For our purposes, rcad v U, b £ a, D the unit square in what fol-
lows. )
1.5 Theorems.

Lot £(x,y) be a continuously differentiable function on a two
dimensional domain D and whose range is a set of rcal numbers fﬂ
Lot %% # 0 in D. A curve y = Y(x) on which f(x,y) is constant is

callod a contour line of f; clearly along a contour line the slopo

M (x,7)

%% = :—_%%E—_T . Then we have

Iy

Theorem 2. If thore exists a function g on [-1 and differentiable

functions u({x),v(y) defincd over the projcction of D on the X and ¥

axcs respectively such that g(f(x,v)) = u(x)-v(y) then at each point

Iy I

41 = E—Lzl . Conversely if at each point @2 a(x then there are
dx u‘(y) dax b{ ]

functions g, u, v such that g(f(x,y)) = u{x)~v(y},.

Proof: If g(f(x,y)) = u(x)-v(y) then, along & contour f(x,y) = s,

g(s) = u(x)-v(?(x)) so u'(x) = '(y)%% . Conversely if along each
contour f{x,y)} = s, E% %( ), let u'(x) = a(x), v'(y) = b(y); thon
along that contour v'(yldy = u'(x)dx or u(x)-v(y) = C(s), say. Hence

u(x)=-v(y) = C(£(x,y}).

1.51) Corollary 1. If, in addition, f is monotonc increasing ir

x and decreasing in v then: in the first part of tho theorem the

monotonicity of g implies that of v and v and vice-versa; and in the

second part, the g, u, v will all be monotono.

1,52} Illustration., The thoorem can be used to detormine whethe

a given specific function has the desired representation and, if so,

the explicit form of it. For examplc lot f(x,y) = T%%%§— . We
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ask: Do thorc oxist monotone functions g and u such that g(f(x,y))

= u(x)-u(y)? This doecs not appcar to bo immoediately obvious., How-

L
o (_i_:l = = 1 = G(X) = 1 - -
ever we form &b . ) where a(x) Tioy SO that the desired
- 2 &(y
ropresentation is possible. We can take u(x) = log (1+2x). To find
g, lot D(x,y) = Fde=5; i,0., vy = E2878X | Then g(s) = u(x)-
T4x+y s +1

u(y(x)) = log ii8 ,

1-s
An alternative reproscntation is to let h = g-l so that
z
£(x,y) = =2~ 1s oqual to h{u(x)~u(y)), whoro h(z) = oz-l = tanh %
1+x+y o +1

and u(x) = log (1+2x).

1.53 Corollary 2. Supposc that A is representable by an interval

I and that P(x,y) (the probability that x is choscn over v) is con-

tinuously differentisble on the domain D = A XA with %% + 0 on D

Then the condition Sy is sufficient to guarontec that the condition

U is satisficd.

Froof: Lot f(x,y) = P(x,y) - %. Let a,b,¢ bo threc arbitrary num-
bers in I. Lot {a+ix,b+ry) lie on the contour through (a,b) so that
f{a,b) = f(a+Ax,b+dy). Lot (b+ay,c+rz) 1lioc on the contour through

(b,c) so that f(b,c) = f(b+Ay,c+Az}. From the last two cquations S,

implics that f(a,c) = f{a+ix,c+pz). Thus whon we lot Ax->0, wo have
Ay==0, Az~>0, %% is tho slopc of the contour at {a,b), %% tho slopo
of the contour at (b,c) and %% the slopo of the contour at (a,c).
f,{b,e)f, (a,b)
But %% = %ﬁ %% = & L Since P(x,y)+P(y,x) = 1, wec have
¥ f2(b,c)f2(a,b)

f{y,x) = ~f(x,y) and it follows that f,(y,x) = -fl(x,y). With b



£, (x,b) oy
fixed lot Yi(x) = £ . Then %% = 72191 » Whieh, sincec a and ¢
£,(x,b) ¥lec)

arc arbitrary, is the surficicnt condition of the thcoram.

1.5l Remark. Since Q implics Sw it follows, under thc conditions of
Corollary 2 above, that Q implies U. Howovoer wo give the following
proof of this beecause of its simplicity. Along a contour f(a,b) =
f(a+ix,b+Ay). By Q, f(a,a+Ax) = £(b,b+Ay). Thon by the mcan valuc

f,o(a,a) -
thoorem, f,(a,a) = £,(b,b) 2L, or W = -2 = a)
° (50 G o7 & t(6,0)  Y(b)

1.55 Roference., With regard to tho material in this scection cf,
Debreu [2], where, however, a diffcront dofinition of the continuity

of the sct A 1is uscd.

82, Cholecc omong n obiccts,

2.1) TIhrco alternatives. Suppose that A consists of threc

alternatives a,b,c. Let x,y,z dcnotc distinct generic elcemonts of A
If we are glven the probabilities, xy, that x is chosen when x and vy
arc offercd, then ono might asl whether thore c¢xists a probability

distribution on tho six permutations of x,v,2 such that

(1) Xy = Xyz + X2y + 2ZXy.

Herc xyz dcnotes tho probability* thaet the person's ranking of the
triple (x,y,2) is such that x comos first, y sccond and z third; and
cquation (1) oxprosses the fact that the probability of choosing x

over y should be the sum of the probabilitics of those rankings in

% In scction 2.3 below we ghall usc P(xyz) to denoto this probabilit
in order to distingulsh between thoe permutation itsclf and its proba
bility.
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which x is ghcad of y. This will be possible if the six ocquotions
(1) hove solutions xyz,... which form a probability distribution,
i.¢., ore non-negative and add up to onc. It can bo shown that this

is possible if and only if
(2) 1l <ab + be +ecn g2
or, cqulvelontly 1 and only if
(3)  =xy + yz + 2x 2 1,

This may also bs writton
(h) =xy + yz 2 xz.

However, instoad of procccding to show this direcetly wo Intro-
ducc tho probabllitics x(x,v,2) of choosing x from among tho sct
(x,y,2); these prosumobly will be obscrvable, as well as xy which
will honceforth bo donoted by x(x,y).

Supposc tho obscrvable probabilitics of first choices, x(x,y)
and x(x,y,2z) arc known and arc in fact the reosult of an underlying
probability distribution on tho six pormmutetions. Thon, in additiorn

to (1), the cquations

(5) x(x,7,2) = xXyz + xXay
will also be satisfied.

The solution to tho system (1), (5) is
(6) =xyz = y(y,2z) = y(x,7,2).

Thoso solutions sum up to 1, and huncce the condition
(7))  =x(x,y) 2z x(x,y,2)

ig nocossary and sufficicnt for tho oxistunce of the dosired proba-

bility distribution, Thus, if wo spocify all the probobilitics of
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first choices x(x,v), x(X,¥,2), the probability distribution on the

permutations which gensrates them exists if and only if (7) holds;

when it exists it is unigue.

It is easily verified that (7) implies (3), while if (3) is
satisfied it 18 possible to specify three non-negative numbers
x(z,y,2) < min(xy, %z) which will add up to 1; they will satisfy (7).
To see this let % = min(ab,ac) + min(bc,ba) + min{ca,cb)., Without
loss of generality say ab ls minimal among the six nwnbers xy. Then
ba is maximal. Hence ¥ = ab + be + min{ca,cb). But ab + be + ca
= 1 by (3), while ab + bc + ¢cb = ab+l 2 1. Hence 4 2z 1. This
proves the existence of the desired numbers x(x,¥7,2). Furthermore
if the inequality holds in (3) and all xy > 0, then 7 > 1, and the
numbers x(x,y,z) may be chosen in more than one way; by (6) this
shows that the solution xyz is not unique. Thus we have proved that
in the case in which only all the probabilities of first choices out
of two, x(x,y), are specified, then an underlying probability dis-
tribution on the permutations whleh generate them will exist 1f and
only if (3) [or equivalently (2) or ()] holds; if the inequality
sign holds in (3) and if all xz{(x,y) > O then the solution is not
unigue.

2,2) Pour Alternatives, If A consists of four alternatives

&, b, ¢, d and we are given the probabilities of first cholce

wiw,x), w(w,x,vy), w(w,x,y,2), wherse w,x,y,2z, are distinct generic
elements of A, then we ask if there exists a probability distribution
on the 2l permutations abed, abdec, ... which generate the given probs
bilities of Tirst choice; i.e. (letting wxyz denote the probablility

of that permutation)
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(1) w(w,X) = WXyz + WXZYy + WYXz + ... + ZYWX
(2) W(W,X,¥) = WXYZ + WyXZ + ... + ZWYX
(3) w{W,X,¥,2) = WXyZ + WYXz + ... + WZYX,

where the sum in (1) is over all permutations in which w precedes x;
in (2) where w precedes x and y, and in (3) where w precedes X,y and

z. Before proceeding to solve (1), (2), (3}, we note that

(L) W(W,X,y) = W(W,X,¥,2) = ZWXY + ZWyX
and that
(5) w(w,x) ~ [w(w,x,y)+w(vw,x,2)] + w(w,x,y,2) = yZWX + zywx,

which gives the necessary conditions
(6) W(W,X,y) 2 wiw,x,y,2) end
(7) wiw,x) = [wlw,x,y) + w(w,x,z)) + wiw,x,v,z) 2 O.

We shall show that the conditions (6) and (7) are indeed also
sufficient for the existence of the desired probability distribution
glthough the solution is not now unique. The system (), (5) con-
gists of twenby four equations; each permutation occurs exactly oncec
in the set (L) and exactly once in the set (5). Thus the system
(L), (8) vreaks into six sets, with four equations in each set; eact
set involves exactly four permutations, none of which appear in the
cther five sets: viz.

wxyz + wxzy = x(X,7,2) = %x(w,x,¥,z)

h

wxyz + xwyz = y{y,z) - [y(w,y,z)+y(x,7,2)] + y(w,x,¥,2)

xwyz + xwzy = wiw,y,z) -~ wiw,x,y,z)

xwzy + wxzy = z(y,z) = [{z(w,y,z)+z(x,¥,2)] + z{w,x,y,2)

which is of the form
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Pp + Py = @
Pp * Py = B
Pq + ), =¥
Py Py =06 =a~-pf+ 7,

where a, 3, % , 0 are non-negative by (6), (7). This has non-negatie

solutions P15 Pos p3, ph since, if B < 7 we may take Py = 0, while

if B > 7 we may take p), = 0. Thus for each of the six ways of
choosing a pair of objects for the first two (or, equivalently, the
last two) one gets four permutations (i.e., wxyz, wxzy, xwyz, xwzy):
of the probabilitiles to be assigned to these permutations, cne may
be chosen freely in a sultable region while the other three are then
determined.

We have thus established the existence of non~negative solutions
of (4), (5). By substitution into the right hand sides of (1),(2),
(3) it may be verified that any solution of the system (L),(5) also
satisfies (1),(2),(3). By adding, e.g. (3) over the four values of
W 1t is seen that the sum of the desired prcobabilities 1s indeed

unity.

2.21 Remark. Although the necessary condition for the three element
case (condition 7 of section 2.1) does not appear explicitly in the
above, it Is of course implied by the conditions (6) end (7), as may
be seen by adding {(6) and (7) or from the fact that the existence of
the probability distribution on the permutations of four elements
must imply the existence of the marginal probabilities of the permu-
tations of a specified three; i.e., xyz of the three element case

would be wxyz + XWyz + Xywz + xyzw of the four element case.
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2.3 n_Alternatives. Suppose that A consists of n elements a,b,...

and suppose that, for each subset B of A a probability distribution
for the first cholce out of B 1s given; i.,e., non-negative numbers

x(B) such that & x(B) = 1. If there exists a probability distribu-
xeb

tion on the set of the nl permutations of the n elements of A,
(uv...2z) such that x(B} 1s equal to the sum of the probabilities
P{uv...z) taken over those permutations in which x precedes the other
elements of B, then we say that the given probabilities have the

property D (distribution). The generalization of 2.1 (7) or 2.2 (6):

(1) If ¢ €38 & 4 then x(C) 2 x(B) for each xeC

is again a necessary condition for D, This follows from the fact
that x(C) - x({B) must be equal to the sum of the probabilities of
these permutations of B in which at least one element of B~C precedes
% while x precedes the elements of C=x. (cf. 2.1 (6) and 2.2 (L)),
Moreover we also have the identity generalizing 2.2 (5), viz.

3P (W,V,X),X5,.005% ) 1s a subset B & 4 then
(2) uu,v) - [u(u,v,xl)+u(u,v,x2)+,..+u(u,v,xm)] +

[u(u,v,xl,x2)+u(u,v,xl,x3)+...+u(u,v,xm;1,xm)]

~ e dulu,v,xg, e ,x ) = 3 P(xil.,.xi uv),

m

the sum on the right being teken over all psrmutations of B which end
in uv, To verify (2) one may count the number of times, with sign,
that any particular permutation is included on the left side. A term

of the type ...u...Vv..., Where k > 1 oslements besides v follow u,

will have the coefficient
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ky

cee 2 (g )k

1= e (-

1 = (1"1

= 0
and ao the only terms remaining will be of the specified type.
Thus we have as necossary conditions (1) and that the left side

of (2) shall be non-negative; whother these conditions are also sul-

ficient for D when n z 5 we can only conjecture.

2.l Remark. We have not yet discussed the logical relations betwee
the conditions formulated in the present §3 and those formulated in
§2. 83 has dealt with conditions that are to be satisfied by the

probabilities of first choices from all subsets of A, in order to

establish the condition D, i.e., the existence of a probability dis-
tribution on the permutations of the slements of A, 82, on the othe:
hand, dealt with a sequence of conditions of increasing strength

(T, T, S, Q, S

w? Tas U) which are to be satisfied by the probabilitie

g2
of first choices from all pairs of elements of A, in order to estab-
lish the existence of a weak utility function (by Tw) or a strong
utility function (by U) or of certain intermediate types of stochas-
tic consistency of choices.

We can show that D does nol imply Tw (and hence does not imply

U); and that U does not imply D,

2.41. Thoe following two examples, suggested by P. R, Halmos and
C. Winsten, respectively, show that D does not imply Tw.
(1) Let A, B, C be three dice, loaded so as %o turn up with

the following probabilitics

Face No| 1 | 2 3 I g 6
]
Dis: Al O 0 .5 |1 .5 0
Bl 0 |.6 0 0 o |.h
cl.h | o 0 0 .6 0 |




Y

Let X, ¥, Z be (independent chance variables) thc number of

spots turning up on 4, B, C respectively. Then P(X > Y) = ,6 > L

N

P(Y > 2) = ,6L > %, and P(Z > X) = .6 > % .

ii) Let 0 < a <« % then the following six numbers are positive
and add up to unity: abe = bca = cab = % + aj cba = bac = acb =
1 - b = 1
z - a. Here ab = be = ca > 5 .
2,12, On the other hand Tw does not imply the condition (3) of 2.1
and hence certainly does not imply D. This is ghown by the example:
A = (a,b,c) with ab = ,1, bc = ,2, ac = .lj. Here T, is satisfied

but since ab + be + ca = .7, the condition (3) of 2,1 is violated.

2.43. We shall now show that T implies the condition (3) of §2.1.
For, if 2,1 (3) does not hold, then with a suitable labelling of the
elements we have a(a,b) + b(b,c) + c(a,c) < 1. Then a{a,b) + b(b,c)

< 1; ala,b) < c{b,c) (or in the notation of §1, ab < cb). It then

follows from T, (soce 1.25) that c(a,c) > % . Similarly a(a,b) > % ,
b(b,c) > % so that a(a,b) + b(b,c) + cla,c) > 3/2, a contradiction,

Hence T  implies 2.1 (3).
This shows that if ornly all the probabilities of first choices

out of pairs are observod (or gspecified) then (for three objects) T,

docg imply that an underlying distribution can exlst which generates
the given probabilitics. On the other hand if we are given all the

probabilities of first choices out of all subsets, the satisgfaction

of TS (which 1s a condition only on the probabilities of first cholcer

out of pairs}, or even indeed U, is not sufficient to guarantee D,
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as may be seen from the example:

a{asb) =1 = bla,b) = .7 5 b(b,c) =1 =~ cfb,e) = ,7 ; c(a,c) =

1 - a(a,e) = .1 ; a(a,b,c) = bla,b,c) = .3, cla,b,c) = . .
Here U is satisfied since we may take u(a) = .7, u(b) = .5,
u(e) = .3 and x(x,y) = % + u(x)-~u(y), but since c(a,b,c) > c(a,c)

the condition (7) of §2.1 is violated and hence D is not satisfied.

§3. OStatistical Tests.

We intend in a later paper to develop stetistical tests for all

the conditions U, Ss’ Q, S TS, T D, Here we present two methods

W’ W’

of testing Tw'

During the course of the experiment the subject will be asked
to choose one from each of the sets (a,b), (b,c), (a,c). Let py be
the probability of choosing a from {a,b), p, tho probability of choos-

ing b from (b,c), p., the probability of choosing ¢ from (a,c); then

3
p= (pl,pg,pB) is a vector in [0,1]3. Assume that the subject has a

certain probabllity distribution Cﬁ) of cheoosing points in [0,1]3,

Let f(p) = plpgp3 3 (lnpl)(l—pe)(lwa) = ﬁ + G0, + a2a3 + 2,0

where p,; = % + a;. The region of [O,l]3 where T, iz not satisfied

(call it R) is characterized by the fact that all three ai's are of
the same sign. It is desired to estimate ﬁj(R) = 9.

ﬁ. If p # R then P(p) <

iy
noj—

If peR then f(p) , for if ay = -a,

a, = B, ay = 4 (a,B, » non-negative) f(p) = ﬁ + P¥-a(B+P) <
ﬁ + B¥ s % and the other possibilities are covered by symmetry.

When the experiment hes been performed, let Xl = 1 1if a is

chosen from {a,b) and O if b is chosen; let X, = 1 if b 1s chosen
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from (b,c) and O if ¢ is chosen and let X, = 1 if ¢ is chosen from

3
(a,c) and O if a is chosen. Let Z = X XXy + (1—x1)(1-X2)(1~X3), oz

a given vector p, P(Z=1) = f(p). Now

P(Z=1) = P{Z=1|peR) ﬁj(peR) + P(Z=1|péR)Cﬁ)(P¢R). Hence
P(z=1) g @ + 5(1-8) = $(1+6) and P(Z=1) 2 ﬁ +0= E ., Thus 7 is o

binomial chance variable with moan p = P(2=1) where

(1) ... E S U s % + 2.,

)Y

Lot 29,25,440,2, bo independent replicates of Z, (We assume

that a random choice of triples (a,b,c) leads to a random choice fron

o) _ n
(0,11 with the distribution (F on it,) Let Z=% I Z,. Our
i=1
first tost is based on the following. 1) Let 0 g 6_ < 3. If © 5 8_
e
then by % + 3§. Let V, be a binomial random variable with
1 Qo 1 eo
P(V =1) = 5 + =, Then P(Z,=1) < P(V =1), Let a, 2 5+ » . Then
P(Z = ao) < P(VO 2 a,). Now if a confidence level a  1s specified
one can choose n sulfficiently large so that P(vO z ao) < %5 Hence:
ir e g 8_, P(Z = ao) < a.
e
] 3 . l
On the other hand let 0 < 6; < 1: 2) if & > O, then p, 2 - Let
e

1A

Vl be a binomial chance variable with P(vlzl) = T Then P(Zizo)
8

- ~ 4 5 7 .
P(V, = 0). Let a; g - Then P(Z 5 a,) £ P(V] 5a;). Agein with a
specified confidence lcvel Qy, We can chcose n large enough so that
P(Vlgal) < a;. Hences:

if © 2 0., P(Z 5 a

1’
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Tho test then consists of the following. If 24 z a  we

assert & > 90 if 4 = 8, we agsert € <« @1; ir a) < Z < a, wo assert

-

nothing. The congequences of this are shown In the following table

of probabilities of occurance

True State:— | & < GO e > 91
Assertion:i
S > 8 <a. "
o} o]
0 < @1 - <a1
Nothing - -

where the dashes indicate probabilitics that we have not estimated.
This procedure protects us against extreme errors of clagsification
but lcaves open the possibility of coming to no decislon,

If n is large enough so that the normal approximation to the
binomial may be used, then the constants involved in the test are
determined by the equations _%2

8
—— dy = a and
vfm V2x ©

V4 (2a0~1—90)

VTI+6 (16

L ~L
ol
€
- dy = a.
j Jzm

/T
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Our second method is to find a confidence interval for 6, Lot
0<% <1and0<a<1lbe given., Then it follows that for n suf-
ficiently large P(~6 < Z - y < &) > l-a; 1i.c.

P(Z-y < & and Z-p > ~8)> l-a, or P{Z <& +u and Z > p=6) > l=q;

from (1) it follows that P(Z < 6 + % + g and 7 > ﬁ -~ 8) > 1-q. Thu

P(27 - 206-1 < 9 < IZ + L18) > 1-c.

While 1t 1s true that the length of the confidence interval

(2Z - 26 = 1, LZ + 8) 1s 2Z + 66 + 1 > 1, 1t 1s not centered at

so that if Z is ncar zero or unity the effective length of the inter-
val may be quite small; e.g., if Z = 0 the conclusion is -26~1 < @& <
i6 which has an effective length of only I6; while if Z = 1 the con-
clusion is 1-26 < © < I + L& which has an effective length of 26.
Since for a prescribed significance level l~a we do not know § ex=
plicitly we can usc the estimate & = k(a)ci = k(a) {gg‘ < k(a)

: 2
Thus P(27 - E&%l -1l < & < 7 + éE&_l ) > lea.

n /n
If the normal approximation for the binomial is used k{a) is deter-

rmined from the eguastion

k{a) 2

o 32

— dy = 1 - a.
~k(a) /2%

The confidence interval may also be used for making decisions,

€.8., let 0 <8, < @3 < l. If the confidence interval is contained

in the interval (0,©,) assert that & s 92 3 1f the confidence inter-

val is contained in the interval (93,1) assert that € > ©,: otherwise

33
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e
asscrt nothing. In other words if Z < Tf - EL%; assert that € < @
2yn =
e
ir 7> e, + 1+ 5y qosont that 6 > 6.3 1p -2 - K& _ 5
23 MH = 3 1:. g/ﬁ - -
%(l+93+5§%l) assert nothing. We then get the following table of
n
probabilities
True State:=> 0@ < 92 @2 < 9 g 93 93 <8 g1
Assertion:.L
& <95, - <a <a
Q> & <0 < -
-~ 3
Nothing - - -

F'OOTNOTE

(l)Research sponsored by the Cffice of Naval hesearch.

o3
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