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1. Introduction

At a recent conference, Merrill Flood described a target #ssignment model
which he considered to be of some military relevance. He pointed out that
although the mathematical form involved optimization subject to constraints
similar to those of the "personnel assignment" problem {5], the minimand
was of distinctly non~linear form, and from this faect he felt tempted to
conclude that linear programming would be of nco avail to him.

This note is to suggest that by a falrly minor modification of the
original problem, and then & transformation of variables, it is possible to
recast the model into linear programming form - and indeed, into a special
case of linear programming under uncertainty. In this form, speéific
numerical solutions should reqﬁire little more than clerical taleﬁt.

2. The assignment problem

It is assumed that there are m guns, labelled i =1,2, . . ., m,
and that these are to be assigned against n targets, indicated by the
subseript J = 1,2, . . . n. The objective is stated as one of minimizing
the value of the expected number of surviving targets. More formally, iT
we let xij represent the probability with which the i th gun will be

assigned to the j th target, the probability that the i th gun will

destroy the Jj th target, and 8, be the unit worth of the j th target,

Flood's problem becomes one of selecting yalues for the Jf::].'j 50 as to

s *
minimize:
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i
1, i=1

d



subject to:
n
(2) j§ Xiy = 1 (1=1, . .m)
and (3) X4 4 >0

% Note that if the i th gun is assigned to the j th target with a

probability of xij , the probability of surviving this gun is;

)

(l = xij) + xij (l = Pij) = (l - Pljxij

Minimand (1) is clearly of a non-linear nature, end I know of no
way to obtain an.exact solution to the stated problem. What is proposed
is to make the following not-so-heroic approximations: (I) If & gun has
a non-zero probability of destroying the j th_target, the individual
kill provability is pj - & value which is identicel with that for all
other guns which can be brought to bear upon the particular target.

And (II), the approximate survivel probabilities are to coincide with
the original ones for integral assigmments - i.e., for xij values of
zero end one. If these two shortcuts are legitimate, expression (1)

becomes equivalent to the following:
n Y.
Minimize (1.4) 5 a, (1L-p)"Y
jo1 9 J

where yj represents the total number of guns assigned to the J th

target.
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In 1ts new form, the minimand still appears distinetly non-linear,
but at this point the idea can be invoked that Dantzlig, Charnes and Lemke
have suggested for dealing with "separable convex functions”. [I ung 3]
The individual terms (1 - pj) J are each convex decreasing functions of
Y. , and there is no difficulty in providing z linear programming

(e

anzlogue to such functions.* All that needs to be done is to replace yj

* Convexity results from the fact that 1 > pj > 0.

with a sum of individual terms ykj s Lo impese upper bounds cf unity
upon these individual terms, and to label them in decreasing sesquence

of their "marginal productivity".*

* Bince pj represents the provability of destroying the j th target with
a single gun, 1 > pé > 0. How if k guns are assigned against this target,
the probability of survivel is (1 - pj)k. Hence the "marginal productivity"
of the k th gun (or change in total survival prooability attributable

to the k th gun) is:
- k-1 . k-1
(G-p) - (@-2)"7]=-p, (1-p)"" <0.

Clearly the k th term in such a series is smaller absolutely than

the k-1 st term. Hence in a minimizing solution, ykj < Y1, 3 The
- = hTly oo

. process of minimizetion ensures that the components y, . will be assigned

o

nesitive wiliues In oscending crder of thelr index %, 80 that the Tuncticn (1 B) will

provide 4 ciose approximation to (1.A). Indeed, in any optimal linesr progromming



(footnote, cont.) -k -
solution, the value of the two minimands will be identical.
Why is this so? Because the model is now of the same form as the
"transportation" problem, and in an optimal solution each of the xij
and Vi3 variables will take on the value of either zero or unity. [2]
Not only does the integral nature of such solutions mean that (1.A) and
(1.B) will coincide at all relevant points. This fact also eliminates
any embarrassing questions about the physical interpretation of a solution
that requires a gun to be assigwed against each of two targets with a

50-50 probability. Fractional assignment values are automatically excluded.

The model now looks as follows:

- 2 o k-1
Minimize (1.B) .E 8 (1 -kil P, (1-pJ) ij]
J
subject to:
n m
(%) :121 %5 -1:—3.1 Ygy = © (3=1, « + . , n)
n
(5) ji x5=1 (1=1, . . . , m)
(6) x4 20
and. (7) 12w,20

3. A numerical illustration

To demonstrate the equivalence between this and the "transportation”
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*
problem, it seems easiest to make use of & numericel example. Hereafter

* It is true that this is a "transportation” problem that also involves
upper bounds upon the individual ykj variables. But see Dantzig [3] for a
proof that such upper bounds do not alter the essential character of the

problem.

we shall confine the discussion to the case of m = n = 4 (four guns and
four targets). Further, to illustrate the case of zero kill probabilities,
we shall assume that gun 1 is incapable of destroying target 3, and that
gun 2 cannot hit target 1. The array of variables now appears as follows:

target j

1 2 3 i Availabilities

gun 1 X1 X5 :::”<:: X3y =1
gun 2 > X50 ¥23 *ol =1
gun 3 Xz X35 X33 %3 =1
gun 4 Xy, ' X5 Xz Xy), = 1
gung of ef=-
s _ - _ - - - - > .
iLCulVeHESS y113 1 yléz 1 313 > -1 Vi = 1
guns of ef-
. - - - - - - - > -

gectiveness y212 1 yéaz 1 yé5 > -1 Yol 2 1
guns of ef-

gectiveness 'yBlZ -1 “Y522 -1 Y33 2-=-1 -yjh.z -1

guns of ef-
iectiveness ::::’<::: -Yhez 1 ::::><:::: T > -1

Require-
ments

e () = 0 =o =0




-6 -

In this "transportation” tetleau, the column sums correspond to
equations (4), the first four ro’ sums to equations (5), and the restrictions
on ykj’ 1o the ineguallties (7}, Botnh the Kij and the ykj are understood to
te nonnegative.

A1l thet remains is to state the "cost" coefficients. TFrom the
minimand (1.B), we observe that those coefficients associated with the
xij variables are all zero, and that those connected with the ykj depend
only upon two parsmeters for each target j: +the kill probability PJ and

the unit worth aj. Table 1 contains a set of assumed numerical values

for these parameters, and then the corresponding unit cost coefficients.

Table 1. Calculation of the

e 3 “cost" coefficients

Index Target Jj 1 2 3 4

£

Kill probability, Py .2 .9 5 M

Target value, a

3 100 Lo 4oo 60

1 -2, b, (1mpj)° -20 -36 -200 24
1

2 -2y Py (l—pj) -16 -3.6 -100 -1k 4

5 || -e, b, (3.-pj)2 -12.8 -.36 -50 -8.64

3 5
bl -ay by (1-p)) > =036 | T>< | <518k

The optimal solution for this problem can be read of{ by inspection:
Assign gun 1 to target 2 and all the others to target 3. In terms of our

variables, *yp = x23 = X = 1.

33 T Xy3 T V1p T V13 T Yoz = V33
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All remaining variables are set at zero.

This assignment pattern looks peculiar only if one's attention is con-
fined to the target value coefficients, aj . Target 2 (with the lowest value
of aj) is attacked in preference to targets 1 and 4. The paradox is
easily cleared up, however, by referring to the kill probabilities, Pj'

The fact that Py and Py, are so low makes it worthwhile to concentrate on the
other targets, and to leave these two alone. Drawing a reckless generalization
from this single example, we conc'nude that if the kill probability for a
particular target is low, either the target should not be attacked at all, or
else a considerable effort shoul:i be expended ageinst it. An intermediate
policy is unlikely to minimize the total expected value of the survivors.

4. A generalization

George Dantzig has proposed a generalization of the computing method
that has just been deseribed. Since his proposal is free from the assumption
made here about uniformity of all non-zero kill probsbilities, it is a
considerably more powerful cne. His suggestion is to replace minimand

(1) with the following:

Minimize (1.c) g a, '[Ell' (1 - p, )1cij
=1 9 i=1 i
Dantzig points out that the functions (1) and (1.C) take on identical
values whenever the xij are integral, and that they should not be too dissimilar
for fractional xij' There is, of course, no assurance that the set of

x4 which minimizes (1.C) will alse minimize (1). The only guarentee that

can be made is that the minimum velue of (1.C) represents a lower bound upon



that of (1).
The problem of minimizing (1.C) subject to constraints (2) and (3)
is still not a linear programming problem, but it may be converted into that
form by defining new variables yj as follows:
I
(8) Y. ={: xij lOge (l-Pij)
Then (1.C) may be written:
n -y.
Minimize (1.D) = ea,e Y

—y- .
Jig convex, the new minimand may be approximated by a convex

Since e
broken~line function, and the argument proceeds as previously in the con-
version of (1.A) to (1.B). The problem has been reduced to the “"transportation”
form with upper bounds upon the individual components of yj; The only major
difference between the two models is that the simple column sum equations
(4) are replaced by the more general linear equations (8). Numerical solutions
to this class of problems are not difficult to obtain. The computing layout
is now identical with that encount»red by Ferguson and Dantzig in their
model of aircraft allocation to routes with uncertain demands. Aside from
some increase in numerical effort, the only objection to Dantzig's
suggestion 1s, as he points out, the fact that the resulting linear programming
solution cannot be guaranteed to be free from fractional values for the J!:i‘j
variables. Not only does this create difficulties of physical interpretation.

Tt alsoc means that the minimum value of (1.C) may lie considerably below that

which is attainable for the original expression (1).
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