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stimation of t ted

Koyck in his recent book proposes a particular lag scheme for the purpose

of studying investment behavior and similar prcoblems in econometrics. 1) A

1)} L.M. Koyck, g, (Amersterdam: North-

Holland Publishing Co ) 195k

general distributed lag of the form

(1) Yy = iEb a, X

g ¥pog T Y

in which Y, and xt are observable variables of intereat to the economist
and ut 1s a random disturbance, is clumsy and presents inherent difficulties.
In the first place, the right hand sum must be truncated at a finite point
allowing sufficient degrees of freedom in the statistical estimates of the
parameters. Secondly, intercorrelation among the suéeasive values of Xe_g
often impart a high degree of unreliability to the estimates of the individual
parameters a; - Sums or other functions of the parameters may be estimated
with a fair degree of precision even though individual components are quite
unreliable; nevertheless for some problems we may need to use estimates of
specific parameters, not the more reliably estimated functions of them. Thirdly,
a substantial amount of work may be involved in estimating all the individual

coefficients o

.

i
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To get round these problems, Koyck proposes a more restrictive type

of scheme

e i
(2) Yy = X oA x
i=0

g-g t U o 0<A<11.

In this system of lags the coefficients decreease gecmetrically. Irving

Fisher put forward at one time a related scheme in which the coefficients

1)

decreased arithematically. Koyck's scheme has the apparent advantage

1) Irving Fisher "Note on a Short-Cut Method for Calculating Distributed
Lags," Bulletin de L'Institut International de Statistioue, Vol. XXIX, Part 3
The Hague, 1937, pp. 323-27 - '

that it is readily transformed into an equivalent relationship involving only

three observable variables. Form the difference between the two equations:

2
Yy 2Q X+ X, T O AT x + ¢ s s+ U

t t-2 t

+ +« ¢ « + U

2
Ay = N x ) +a L'_x -1

-1 t t-2
to get
(3) Yo =0 X + Ay v T AU, .

This is the simplified form that he uses in his atudy.
First I shall take up the statistical problem of estimating « and )

from a sample of observations on Yy and x In a final section, 'I shall

t L]
go on to a brief general discussion of the suitability of scheme (2) or its

derivative (3), for the investigation of particular problems in econometrics.
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An obvious procedure leading to estimstes of o and A 1in (3), is the use
of the ordinary method of least squares regression of Yy and X, and Yi-1
with (ut - A utﬂl) treated as a composii® disturbance term. Lagged values

in small samples give rise to least-squares bias,l) but even in large samples

1) L. Hurwicz "Least-Squares Bias in Time Series,” Statistical Inference

in Dynamic Fconomic Models, ed. by T. Koopmans, (N Y.: John Wiley and Sonis),
1950, pp. 365-83

the straight-forward least-squares treatment of (3) will, as Koyck shown, lead

to biased estimates. The blas occurs since u part of the composite disturbance,

t-1*
is not independent of y, ,, one of the "independent" variables, In addition,

the composite disturbance has an automatic serial correlation even if the u,

is correlated with Uy
2)

t-1°

- Ay

are serially independent, i.e., u_ - A u -

t t-1

because both expreasions contain a mutual term in wu

2) Transformations of equations in dynamic systems mey generally intorduce
serial correlation. See in this cqnnection L. Hurwicz, "Stochastic Modela
of Economic Fluctuations," Econometrica, Vol. 12, 1944, pp. 11hk-24

Koyck develops a method for estimating o and A without bias but makes

it depend on an assumed value for § in

(4) A

In other words he assumes that the original series ut

but does not give a method for estimating ¢ from the sample data.

may be autocorrelated,
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In this paper it is proposed to show that Koyck's consistent estimste is a
type of maximum likelihood estimate in the case § = 0 (or some other known
value) and to suggest a method for estimating o, A, and ¢ simultaneously
from the sample data when §& 1s not assumed to be known. In addition, we shall
show how the computational steps suggested by Koyck for obtaining a consistent

estimate can be simplified.

_Nonsutocorrelated disturbances (& = Q) . Koyck suggests that one first
compute ordinary least-squares estimates of o and A from the regression of
Yy on x. and Vo1 * Call these g and £. From this regression compute the
sum of squared residuals

T

T 22 %
2, = (y, ~ax -4y, _
gl © tel T t t-l

2
)
For consistent estimates of o and A, he proposes the two equations

o Z'.xt + AL Ve1Xy = Eytxt

(5)

” 3 2 ALz
czz.xtyt_l + k}:yt_l ‘z'ytyt-l + - ‘I._

If o were eliminated from (5), we would have a quadratic in { .

Another way of looking at equation (3) is the following:

(3) (v —wy) =ax + My -9, ) -

In this form, we have the classical equation of the linear relation with variables
subject to cobservation error. Since u N is, by assumption, a nonautocorrelated

series, the two errors are independent. The "true" values, or "systematic" parts
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of the observed variables are each independent of the errors as required in the

classical model as long as x, 18 independent of the errors. This can be immediatecly

t

gseen from

[+
E“t(yt 'llt) =Euta ZL:LX

1=0 t-1

In short all the standard assumptions of the classical model are met in the case
at hand. With that model it is well known that estimates of the coefficient
parameters depend on the ratios of the error variances. In equation (3) this

ratio is unity for a long series.

If only two variables are involved, a variance ratio of unity implies an
orthogonal regression for estimation of the coefficients. In effect, we have
a s8light modification of that form of regression since two variables are assumed
to be measured with the same error variance and a third with no error.

If the u follow the normal distribution, maximum likelihood estimates of

t
o and A from (%) are identical with a form of least-squares estimates. 1)

1) See appendix. The "maximum likelihood" estimates discussed in the text
are not full maximum likelihood estimstes since some restrictions are ignored
in the maximization process.

Since the two error variances are equal, we can derive least squares estimates as

or



g 2 T 2
(y, ~ax, -xn._.)  + Z(y._, -n.) = min.
Rafhed’ t £-1 oy 1 T Mgl ’

where
Uy * My = Vg
The minimization is carried out with respect to each of the n, (the "systematic"

part of the observed variable), @ and A . The first order conditions for minimi-

gation are

2

(6) yt‘l - Tlt-l + A Yt “AQ xt - A “t"‘l =0 t=1,2,...,T
z Tt
y. X, - « X, - A X, M, = 0
t=l ¥ % t=l ¢ tml ® 7L
Y. Npn - o] X, M., - A A, _ =
tml t 't-1 t=l t 't-1 t=1 t-1

From the first of these three equations, we can express Ny in terms of Yer Xgr Yioq»
and the parameters. Substlitution of this expression into the cother two equatibns.

and rearrangement of tarms leads to

2 2
ey )™ - Typxy

2
L

Lxy Yoo Ly
L X

xe(

- 2 o .2
"L Y¥eo) A ¥y "Ly *

Ly x, zxtyt-lg)

2
th

+ Qo - =0
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An estimate of A 1s obtained directly by extraction of a root from this quadratic

equation, and the other coefficient is estimated from

-est AL X Ypoq t z xtyt

zx’;’

est a =

The advantaege of this computing method over Koyck's is that one does not have to
make estimates in two steps, but the values obtained will be exactly the same as
his, computed from (5). Without going through the algebraic manipulations we may
simply remark that the quadratic in i implied by equation system (5) is exactly

1
the same as that implied by (6). ) Apart from the computational facility, we may

1} To prove this, express o in terms of i in the first equation of (5);
substitute into the second and collect terms. At the same time, the ordinary
least-squares estimate of X , written as £ in (), should be expressed in

2 .
in terms of the moments X, thyt, ZX Yy 10 Z@%;l:‘wﬂﬂﬂ ,nyyt_l .

interpret Koyck's consistent estimate as either a generalized least-squares or a
maximun likelihood estimate. For given values of Xy it can also be interpreted
as the orthogonal regression of Yg ©O0 ¥yq

Another way of looking at the problem, fron a general point of view, is
through the well known determinantal equation associated with the estimation
of the linear structural equation with cobservational errors., To estimate the

coefficients of

n
L a(y,, -49,.)=0
1=0 i*it it !

we form the equation

det. |} Zyityjt L 94 =0



whierre 811 is the Kronccker gelta and aij is the covariance betweszn uit
and th = The characteristic vector of this cquation is the estimate of the

coefficients a but without knowing the ratios among the variances of the

i’

different W we cannot find it. 1In the context of Koyck's equations, the

it?

appropriate determinant is

- 2
LYy - uo Z¥yxy L ¥e¥yo
L y.x T X2 5 X,y =0
™% t tY4-1
2 .2
z Yol -1 L XYy Lyiqg-uo

) . 2 2
Thit defines a gusdratic equation in w o where o is th~ common variance
-

of U, angd W The oot of this quadrstic and the solution vector of th-

-1 °

angocisted couation asystem,

al ;'? fj . Al - _

Ly, ~ke @ LYy MLy 7O

, 2

l,ytxt - th - AL X Yyoq = O

1 u 2 2

IR0 SO Lx Y ARy, tud)=0

yield the same estimates as those fro® either equations (5) or (6). With this
method of formulation, however, one can readlily extend the principles to any

number of variables.

tocorrelated dis 8 . In equations with lengthy distributions
of lags, the provision for sutocorrelation in disturbance may be less urgent since

the serial effects of the past are already accounted for in the lagged variables.
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For this reason, when treating the problem of distributed lags, the case already
dealt with (& = 0) may be the most important. Koyck suggests thet nonzero
autocorrelation is ﬁsual and assﬁmes the more complicated model, although he
gives no basis for estimating € from the data.

Without teking up the additional difficulties concerned with distributed
lags, we can readily develop a procedure for estimating & linear equation with

1)

autocarrelated disturbances. In this case it 1s possible to derive a polynomial

1) See L.R. Klein, A Textbook of FEconometrics (Evenston: Row, Peterson and Co.}
1953, pp. 85-89.

in the unknown autoregressive parameter, alone. For eny given value of the auto-
regressive parameter, it 1s possible to estimﬁte the other parameters from a
linear system. Thus in two steps the nonlinear system of estimation equations
can be solved.

The situation is similar but not quite so favomable in the present situation
combining distributed lags and autocorrelated disturbances. AS in the simpler
case mentioned above, the coefficient parameters can be directily estimated for
any given value of the autoregressive parameter. We see this immediately by
remarking that the equation to be estimeted can be changed into one not involving
autocorrelated errors by suitable transformations of variables. Thus if we have as
an objective the estimation of (3) and the disturbances follow the sutoregressive

law in {4), we find that (3) can be transformed to

- ' t - ]
Q) Vg TOX YAVt T A%
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The transformations are

c‘:<-
|
=
]
vy
(_':<
=

el
i
>

If the variebles are subjected to the same autoregressive transformation as that
followed by the disturbances we can derive an equation that has the same form as
(3}, If & were known & priori, we could mak~ the same computations with the
transformed as with the original variables for the estimation of o and A in
the case treated previously with nonautocorrelated disturbances. The errors

e, are assumed to be nonautocorrelated.

t
We can see from the substutution of (4) into (3),

yt axt+kyv1+§bV1+et-kﬁbl

that the special case of £ = A can be handled very simply. The least-squares
regression of Y on xt and yt-l would give congistent and efficient estimates.

The problem then is to estimate (T) for

tE AN and £ £0 .

Lot us assume that et is normslly distiibuted and mnonautocorrelated. Maximum

likelihood 1) or generalized least-squares estimates will be obtained from

T T
z ef + L i-l = min.
t=1 t=1
or
S (s -ax e T o)
Y. “ax) - AN _ + Yioa =W, = min.,
t=1 t t t-1 £l t-1 t-1

) - v
where et + 7 £ yt

1) See appendix.
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The minimization is carried out with respect to each of the n't, o, A, and E .
Equations of the same form as thos: in (6) above will be obtained with the only

alteration bpeing that primes are placed on all the varisbles. Let us call such
an equation (6'). In addition there will be one more equation (minimizition with

respect to t).

T
(8) tgl[yt TEyg e (x mEx ) -t () lox -y )
T
+ tzl (yt'l - g yt_g = "I't,.l) (_ Yt_e) = 0 .

Bquation (8) together with (6') can be solved for all the unknown parameters

Jointly. From similar equations developed without taking up the guestion of

distributed lags, it was possible to derive a single polynomiai in the autoregressive
parameter. The form of (8) and (6') is not correspondingly simpls, but a straightforward
iteration process can be déveloped to obtain a solution. First aszsume a valuc

for ¢ and transform computed momcnts of the original variables into moments of the
primed variables. Using the methods of the previous section (& = 0), ons can

solve equation system {6') for estimates of @ and A . Next, with the first round
estimates of @ and A, solve (8) for ¢ . In doing this step N'y.p Will have

to be eliminated from {8) by means of the first equation in (6'). Repeat the

process using the first round estimate of &, and so on.

e _commne the interpretation ang significapce of distributed 5.
It was mentioned above that the case of & = 0 18 of great importance since
it is unlikely to find significant sutocorrelation in disturbances after the

entire history of explanatory variables has been taken into account.
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This is partly an empirical obscrvation that computaed residuals from equations
in whiech strong lag effects have been estimated are often found not to exhibit
marked serial correlation.

This is particularly the case, empirically, if lagged values of the dependent
variable are included in the estimated equation. Pr=is, in s study of corporate
savings behavior from individual compuny records, follows un on a device used by
Dobrovolsky in making lagged dividends a determinant of either current savings or

1)

dividend disbursements. One can interpret this type of eqguation directly in

1) S. Prais "Some Problems in the Econometric Anslysis of Company Accounts.”
Paper presented at the 1956 European Meeting of the Econometric Society,

Aix-en~Provence. S.P. Dobrovolsky, Corporate Income Reteption, 1915-4%, (New York;
National Bureau of Economic Research) 1951.

terms of the tendency towards meintenance of a stable dividend policy or more
circuitously in terms of Koyck's scheme of distributed lagsfram  hich equation (3)
is derived. Prais chooses the latter interpretation. If Koyck's model is to be |
used, one must estimate a relation between Yo Xio and Yg.; Such that the

2)

disturbances have some built-in autocorrelation. This ought to carry over to the

2) Dobrovolsky investigetes bvoth time-geries and cross-section semples. The re-
marks in the text above wpply to time series samples. Prais, howvever, is concerned
withcross-section samples only, and autocorrelations of disturbznces are not the relevant
criterion. In a cross-gection sample we are concevned with the mutus) independence

of all the disturbances and & lack of such independence is not, a5 in a time series
sample, represented by autocorrelation. Least squares bles dus to lags in small

samples (see p. 3 above) 18 not particularly relevant in cross-section samples. The
type of bias involved in Koyck's problem remsins, however, and the methods suggested

in this paper carry over to estimation in cross-section samples.
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computed residuals but will not do so in most cases in which an ordinary least-squares

regression of Yy on X and Ye-1 is made. The use of Y.y @8 en explanatory

t
variabvle will probably extract most of the serial dependence among the residuals.
Using ordinary least-squares methods, Dobrovolsky's simpler assumptions seem to be
more logically consistent. On the other hand, the methods of consistent estimation
suggested by Koyck and claborated in this paper provided a technique whereby the
assumptions made sbout the autocorrelation of disturbances may be carried over to
the residuals. As mentioned, however, the case with & = 0 would seem to be the
most useful and simplest model to employ.

In studies of the consumption function, Brown (with the present writer, Stone

1)

and Rowe following his lead) has used lagged consumption as an explanatory varisble.

1) T.M. Brown, "Hebit Persistence and Lags in Consumer Behavior," Econometrice

Vol. 20, 1952, pp. 355-TL. L.R. Klein and A.S. Goldberger, An_Econometric Model
of the United States 1929-52 (Amsterdam: North-Holland Pub. Co.) 1955. R. Stone

and D.A. Rowe, "Aggregate Consumption and Investment Functions for the Household

Sector Considered in the Light of British Experience," Nationai dkonomisk Tidskrift,
1956, op. 1-32.

This procedure could be interpreted in terms of a general theory of hysteresis or again
in terms of Koyck's model. Stone and Rowe begin with the straightforward premise of
lagged consumption behavior and derive Koyck's distributed lag model. They do not

deal with the stochastic properties of the model and consequently do not go into

the problems of bias in estimation. Friedmen in a recent attempt to construct a

theory of the consumption function has put forward a distributed lag scheme similar

to Koyck's,a) but as a continuous instead of a discrete distribution. Brown's methods

2) M. Friedman, A Theory of the Consumption Function, National Bureau of Economic
Research (mimeographed), 1956.
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of estimation do not build on Koyck's premise, although his equation may be interpreted
in this light. Brown estimates his equation, however, as though the disturbances
are not serially correlated, and his residuals are not in fact, serially correlated.

Intercorrelation among explanatory variables such as etc.,

Xge1? Xp-pr Xg-3?
is, as mentionad earlier, a reason advanced by Koyck for making his distribution of
lags depend on only two parameters, « and A in

o

a L A
i=0

1
t-1°

While it may frequently be the case that one finds high intercorrelation among different
lagged values of the explanatory variable and consequent magnification of sampling
errors in individual coefficients, this is perhaps not the best criterion to consider.
An F-test which compares the ratio of variances with and without some gencral lag
scheme would seem to be more appropriate in chcosing between two systems of lags than
5 geparate test of each coefficient individually against some null hypothesis. Koyck's
distributed lag has a very special time shape which cannot be justified on purely a priori
grounds against other schemes, particularly those which allow more freedom to the
estimation of the coefficients of the different values of ey An advantage, however,
of Koyck's model is that it has an infinite time span historically and need not be cut
off at an arbitrary finite lag.

For purposes of the present paper, I have tried to advance the understanding of
Koyck's model by only one step. In doing so, his implicit assumption that X, is an

exogenous or predetermined variable has been retained. If there were a pure lag in

equation (1), i.e., if this relation took the form

+ u

o0
-"'t”z ¢

Q, x,_
i 1t

by ruling out i = 0, large sample justification for the treatment in this paper could
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be made. Similarly if x N is a purely exopgenous variable (independent of u %

agsumes ) the procedures developed follow quite readily. The estimation of the type of

as Koyck

distributed lag considercd for systems of simultaneous stochastic equatiors in which

wee do nobt have B u t:{t = 0 is a separate problem.
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Appendix

Maximum Likelihood Estimates
of Distributed ngsl)

In deriving meximum likelihood estimates of parameters in Koyck's distributed

lag scheme

(2) v, = O Tt x. L +u,

it would seem most natural to proceed directly without transforming the equation to

(3). Assuming ¢ = 0, the likelihood function is

L
e” = p(y,) p(uy) ... p(ug)
for a sample of T observations. If u is normally distributed with mean zero

t

and variance 02, the maximization of eL is equivalent to maximizastion of

T
L=-T(log42n:-n-]c>go)-"—l'—2 Zui
20 t=1

with respect to @, A, and o . This, in turn, is equivalent to minimization of
T

o3
i
S = 7 (y -a L A _ )
t=1 ¥ 1=0 t-1

2

with respect to o and A . The first order conditions are

T @ o 1
(9) Ly, - Za x.4) & 2Mx =0
t=1 i=0 i=0
T o« - -]
i -
By -a 2 ax_) Ziattx =0
=1l 1=0 1=0

1) These remarks are the result of provocative queries by R. Redner.
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Apart from involving infinite sums, these conditions are intractable

equations in « and A .

In the definition of N, as the "true" or "systematic" part of Yi?

.Yt"nt"'ut:

we sec that nt is also defined as

[ -]

i

n, =& XL A X, _, -
t i=0 tei

From this definition we can write

E i til i + t
o Aox, . FO AT ox, L
=0 t-1i 1=0 t-1 o}

Hence the sum of squares te be minimized is now written as

T -1 .
S = L (yt -a T oAt Xe g " ht ﬂo)2 ’
t=1 i=0
The first order conditions for minimization with respect to a, A, and
; til N g t-1
(y, ~¢ X x__ ., =2 n) ZA x,.=0
£=] t 0 t-1i 0 o t
T t-1 t-1
(10) Yoy, -a Al X g -xtno) (@ 1At
t=l ° 0 0

n

o

norlinear

are
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These eguations are in terms of finite sums but still remain highly Dnonlinear in
the unknown param~ters. It would be possible to solve them empiriclally by iteration
although it may be a lengthy process. For an assumed value of )\, the first and third
equations are linear in @ and Mo * These two parameters can be estimated in the
first round of approximations. With the first round estimates of @ and Ny7 A can
be estimated as a root of the remsining equation - a high order polynomial in A .
With a new estimate of X, iterations of @ and N, can proceed agein, etec.

The estimates derived in the text by consideration of analogies from the theory
of cbservation error are not maximum likelihood estimates in the sence of these

impliedl by (10). 1In the first place, the double sum of squares

would be derived from the likelihood function (joint normel distribution)

p(uluo) p(uyuy) «o. plugsun ;) -

If we assume that € = 0, thls expression becomes
2
p(u ) [p(ul)la [p(u,)1™ ... [p(uT_l)]2 p(uT)-

If
p(u) = pluy)

we have the square of the ordinary likelihocod function

el « p(u,) p(a,) ... plug) -

The problem of end-effects in large samples is not serious; therefore this difference

is not of msjor concern.
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The straightforward procedure of minimizing

T t-1
s= % (y,-a & alx_, -l n)?
t=1 i=0

can be derived from another formulation which is more closely connected with that

used in the text. If we define

The 1 t must satisfy the recurrence formala

nt = x, + A nt-l .

The full maximum likelihood method is, therefore, equivalent to
T T

s= L 0= L (v, -1)° = mtn.
tel t=1
subject to
Tlt=axt+l"]t_l, tal,a,ono,Tl

If instead of using Lagrange multipliers for minimization subject to restraint, we

substitute all the constraints into S, term by term,we obtain

2 2
S = (yl Tax - ﬂo) + (¥ -« Xy ~@ A X - A ﬂo) + (y5 “axg tahx,

2 .3 2
oA x) xno)

2 - 2
+...+(yT"axT"C£lXT_l'CIX XT_Q'---‘Glexl'lTno)
or
T t-1
S = L (yt -a Ial Xpug " A ﬂo)a .
t=l i=0 :

On the other hand, we did not fully substitute all the constraintes when deriving the

minimization equation (6) in the text. There we substitute as follows:
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T P T P
o 2 2 2
b + 0 = Ly, ~n)+ Z (y._~n,_.)
t=] ut t=1 Ut-l t=1 t t t=1 t-i Tt-l
T P
= Ly, —ax, -rn )2+ z(y - )2
g=1 © t t-1 t=y v1 Ul
since
My =@ X + AN,
1)

But this does not fully eliminate all the nt except “o

1) It may be remarked that if we had two separate "systematic" variables, 1, and ;t ,

t
not related as are nt and nt-l’ the simple eliminstion procedure would be valid.

Two separate minimization problems may be formulated.

3 2. % 2
Y =@ x, -AN )+ X (¥ g "My q) =min
£=1 t t t-1 t=1 t-1 t-1
subject to
nt=axt+lﬂt_l- tal,E,tov’T
or
T
g (y, ~ax_ - A0 )2 + Ly -9 )2 = min
b=l t t t-1 el t-1 t-1

In the first whether the method of Lagrange multipliers or direct substitution of

restraintes i1s used, the estimation equations are highly non-linear. In the second,



-21_

we have maximum likelihoo§ equations not using all the constraints. We might
call this a "limited information maximum likelihood" method and it leads to nothing
more complicated than a quadratic equation in the present model.

Two observations about the nature of the "limited information maximum likelihood"

estimates are revealing. 1. Although we do not have
Ny =@ X + A Ny
for each time period,we do have

LML S L D L ML I

therefore we can say that the restraint is satisfied, on the average. 2. The last two

equations of (6) imply

T
@ -au ) x, =0
" t-1) *¢ »

T

Z(u -xru . ,) 0, =0.

t=l

By the assumption that x_ 1is an exogenous variables it is independent of both

t

'l.:l.t and ut_l . Vi

the text amounts to the definition of 1 _. in such & way that it 1s independent

1) Koyck derives his correction for consistency of estimation
t-1 °

Since is not independent of LR the method proposed in

of ut =l

1) The first set of equations of (6) assigns values of N,., that will be

independent of u, - Au, oo

from just this point of view.



