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Theory of Teams: Introduction.

1. SINGLE-FE S -STAGE SIONS: s ORMATTIO
STRUCTURES. "

1.1. Concepts and problem. The following list of notations will be presently
illustrated on simple exemples. It is given at the outset for future reference,

X = (xl, ...,xm) = external variasble(s): & random vector with given pro~

bability distribution. |

¥ = information {(generally incomplete) about x ; ¥y = f(x) .

1 = "information structure."”

a = action based on information y ; a = a(y).

O = decision rule,

o = payoff function.

w(x,a) = gross payoff = @&(x,& (n(x))).

e
]

Eu = Eo (x,@ (n(x})) = U(x,n) = expected gross payoff.
U =max U(a,q) = U(an,'q) = best expected gross payoff
o
‘for given information structure. This alsc defines:

. best decision rule for given 1§ .

~ :Q>

= information coat function.

y(1) = information cost.
V(a,n) = U(a,n) =7 (1) = expected net payoff.
v =max Vian) = V(@)

a,n
This also defines:

best expected net payoff.

-~
a

R

best decision rule; v = best information structure.

~ M

Problem: find a , 1 , given the payoff function & and the information

cost function vy .



l.1.1. Information Structure. In general, an information structure is s partition
of the set of states of natqre into subsets; that is, in our notation, a partition
of the m-dimensional space of external variables. Information (observation made,
message received) is the statement that nature is in one of those subsets. If;
under information structure 1, the set of states of the world is divided into
certain subsets, and if, under n', these same sﬁbsets are further partitioned,

we say that 7' is a "finer" structure then n' . We can suppose that to use a
less fine structure is nevér more expensive than . to use a finer one. Note

also that :q' will contain a greater amount of information in Shannon's sense.

1.2. G8pecial assumpiions,
a) m will be a binary number: saccording as ite i-th digit is 1 or O,

information y will include precise knowledge of the value taken by X, or no

knowledge of it. (In & more general case--not treated here--y would give the
measure of precision with which each varieble is to be ocbserved.)
b} x will be (approximately) normal, with zero mean and with covariances Uij 0

b = M i i =0. .U o
Write: a, g,. ; correlastion coefficient oy 13/01

ii J

1.35. A _case of linear payoff in a bounded action veriable.

m
let 0<€a<l; u=1a. z X, . Economic interpretation: a = scale of
1
operations, its maximum (the "capacity") being chosen as a unit of scale; 1let

By ¥ X, = price of i-th output (if positive) or input (if negative); and Y My = 0.
Then w = profit.
1.3.1. e =2 3 e input, one output.

In this case 7 has 4 values: (11), (00), (10), (01), to be considered in

this sequence:



~ 1 >
n = (ll); Yy = (xl X ); a(y? = 0 if xl + x2 < O.
Up,.= E(xl + xe)l(xl + X5 > 0).

If ¢ 1is the normal density function with variance 02 then

w0 . -
| to{t)it = ¢ N2x . Therefore,

o]
- ‘ 2 2
(1) Uyq -J_Var (xl + xe)/an = J(U:L + g, + 200102)/211 , where p =p ..
Now turn to = (00). Then y is "no knowledge of values of x, or x2,"

& = afy) 1is constant, and for any action a, E(xl + x2) = 0, hence

(2) Upo = ©O-

Thus Uy, 2 Uoo; it also follows that, if X1, X, could only be observed

1 + x2 could

be regarded as a single variable, the advantage Uy - U, ©f observing this

sihgle v'az_'iable would. be proportional to its standard deviation. If and only

together [as in (11)] or not at all {as in (00)], so that x

if thie advantage exceeds the cost of observing the variable, i't pays to do so.

. g
| 2
Now let n = (10); y=(x); Blx; + x)fx = x,L+p —5— )

E(E(xl + :;2) | xl)| x, > 0)= ( ‘31:|- p 02)/42 =

gy + p o
0; Uy, = o 2-;

~ 1
If o, + po,> O, a(xl) = if x 10 = Jox H

2 0 d

A YV

If o+ po,< 0 a(xl)g 1 if x Q, Uo = - o .

AV

10

(3) Summarizing: U, . = |al + p 02| /J_est;
Finally let n = (01); ¥ = (xe). Then, by symmetry with (3),

(%) Uy = | o, + P oll / Nex



Hence U, 2 max (UIO’UOl) 2 Uy, - Moreover, U,, is larger (smaller)
than UOl if ol is larger (smualler) than Op Without loss of generality,
let 0<o,<0o =1 (ir the above econumic interpretation, o; =1 implies an

appropriate choice of money unit); then

) U 1 2U..=0.

11 2 Y9 2 Uy 2 Ugg
On Chart 1, the maximal expected gross profits under each of the four information

£

structures are plotted against the correlation coefficient p, given Oy = 5 o

The results confirm two intuitive conjectures: 1) that it pays more to get information
sbout a highly volatile variable then asbout s less volatile one; 2) that, since

higher correlation (positive or negative) allows better estimation of a variable

from the knowledge of the other one, the advantage of knowing two rather than one
variable is small when the absclute value of the correlation coefficient is low.

The latter consideration might suggest that the gross expected payoffs, as well
as the differences between them (i.e., the comparative advantages of the information
structures) are symmetrical functions of the correlation coefficient, with extrema
{(if any) at p = 0 . This is not so. The asymmetry (Been in Chart 1) can be made

plausiblé in terms of the economic interpretation, by the fact that a Eigh positi%e
correlation between output price and input price (i.e., in our notation, a high

negative correlation between x., and xa) tends to make the average of positive

1
profits low; and it is the positive profits that one tries to make, (by putting a = 1),
and the negative ones, to aveid (by putting a = 0) .

To cdmpare the best pet expeéted profits, we must make assumptions about informatior

cost. Let c¢ = cost of being informed about any one of the two variables: thus,

y{00) = 0, ¥{(10) = ¢ = ¥(01), 7(11) = 2¢ . Then, by (5), the information structure (Ol)




(6}

is inadmissible. The compariscon between

\'s = U -2c ; vV

11 11 U.. -c¢; and Voo * VYoo

10 © Y10 00

for given p and 02, results (for c¢ = 0.1) in Chart 2. We see that, under
our assumptions, it pays to observe both variasbles only if the smaller of the
variances (c2) is not too low, and the absolute value of the correlation
coefficient not too high; but high #ariances paired with high pegative correlation
make it best to close shop (or, with a slightly different economic interpretation,

to proceed in a routine manner, using a constant scale of operation without pay-

ing attention to external variatiors} !

1.3.2 Cage_m>2 . In this general case, each of the 2" information structures
is defined by picking out the (possibly empty) subset S consisting of those
variables that are to be observed. After computing, for each S , the expectation

m

E 2 X | (Z x.>0),

i=1 Jes J
(an exercise in multivariate regressions) one finds the best decision rule for
each 8 , and computes the corresponding gross expected profit.

2 n- -

= a

2.1 Concepts snd problem. The previous concepts are generallized by re-interpreting
the symbols n , y , @, a as n-tuples; the subscript i will refer to an action

variable a; (a component of a), controlled by the team member i . Then

vy = ni(x) = information of i-th member

ny = information structure for i-th member

N = (ni,...,nn) = team information structure
ai = decision rule for i-th member

o
n

o) - -
N i(yi) action of i-th member
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= (ai,...,an) team decision rule

P
t

= (8 ,+++,8 } = team action
1 n

2.2, Additive teams. If it is possible to decompose the gross payoff into additive
components

n
u(x,a) = L ui(x’ai) ’
i

then we say the team is additive, and there is "no iﬁ;eragtigg” between its members.
In this cage the only reason for communication betweén members can lie in the fact
that some members have better access to certain types of information than others.
In this case, it is easy to apply the principles d2veloped in Section 1. Let ¢
be the cost of establiéhing a communication link; let n; and ny o respectively,
be two information structures_for the i-th member, with and without that link. Then
the communication link with a,cost ¢ is only worth establishing if

o
mg:ic U (@;m,) - mg: u(e ) > e,

where {J. = Bu, -
i i

2.5, Information matrix for a teem, If we assume as before that the informaticn
structure ny for the i-th member is a binary numbe?, the information structurz
for the team becomes a matrix n = || My || where Tyy = 1 or O according as
the i-th member does or does not receive information on the external variable xj

Note that, in general, aﬁ action variable a; ascribed tco the i-th partner
may itself be a bundle of physically described actions; and similarly with the
external varisables.

2.%. Information costs.



o.4.1. Pixed and varisble costs. The fixed information costs (which may be also
ealled the cost of the network) are not only the installment costs of physical
equipment for information and communication but alsoc, more essentiaily, the
executive saléries peid on long-term contracts to the extent to which the time
is taken by gathering and exchanging information. [The rest of execﬁtives' salaries
is paid for decision making, and we might well add a cost of decision making 5(x) ,
to the cost of information 7(ﬁ) in our conceptual scheme.] We may occasionally
distinguish the cost of each observation post and the cost of each communication
link. |

The variable costs are those costs depending on the degree of use of the
equipment and of the long-term personnel: these include the salaries on short-term

contracis.

2.k.2. Igig;mgLign_ggsj,ggLJ;ﬂﬁnhgiign_gg_:giggngggﬁ“ A "finer" information structure
in the sense of 1.1.1 can never be less costly than & coarser one. This statement

is weaker than the following one: the larger the amount of information the larger.
the cost. For, the case when one information structure is finer thén another is

more special than the case of two differing information amounts.

2.5. The case of co-specialization of action and information. In this important
case, there is a one-to-one correspondence between action-variables and external
varisbles, in the following sense: the observation cost of the i-th externel variablo
fo the i~th partner is smaller than it is to any other partner. Thus each member is
a "specielist" in a particular external varisble.

In this case, the number of admissible informaticn structures is reduced. For
n=2, denote each network by a pair of symbols, of which the first refers to i=1,

and the second to i=2 . The symbol .[] will mean "no observation performed,"



and x will mean “observation performed.” An arrow —» denctes communication;

a double arrow ¢ means two-way communication. Then, of the ah = 16 possible
information structures, only those generated by the 9 following networks rémain

admissible

1) OO 20 x 3 3 {0 x % xx
5) x—>[] 6) [Jex 1) z—>x 8) Xe—x §) X &> x

2.6, Linear sdditive team. Its payoff is

Because of decomposability, the expected gross payoif for a given information
matrix 1 = |[n,.|| , is obtained by computing max Eu,(a,,n,) for each row

1 oy itiT
(following 1.3.2.), and adding over all rows. (We still assume normel distribution

of x, for simplicity).

2.6.1. The gase n=2_, with co-specialization. Assume further for 1llustration's
sake that the cost of each observation post = cost of each communication link = ¢ >0 .

Then the net expected payoffs of the nine networks listed in (2.5) are as follows:

1) o 3 2) Ujp = © & 3) Uy = €3 4) Uyp ¥ UOl - 2¢c ;
5) 2Ulo-2c; 6} UOl-'ac,' ) UlO+Ull-5c; 8) Ull+UOl—5c;

9) 2Uy, - ke .



If, as in 1.3.1, we let (without loss of generality) o, < o5 s then
UOl g'UlO , &and there remain the net payoffs of only three admissible

networks:
D v §)=0;5 5 Vx—[]) =2, -c); 9) Vlxes) =2(U, - 2¢) .

Clearly, the conditions for any one of these three networks to dominate the
other two are identical with the conditions, developad in 1.%.1, for any of
the 3 single-person information structures (00), (10), (11) to dominate
the other two.

Hence, Chart 2 can again be used, with the 2-person symbols

D D X—>> D X——
replacing, respectively, the l-person information structure symbols
(00) {10) (11) .

2.7. A_necessary condition. Looking back at the best decision rules dl ) @

derived and used in our team example, we see that they satisfy simultaneously

the following conditions: al is that function of ¥y vwhich meximizes the

conditional expectation Eu(xl,xe,al(yl),ae) | Yy 3 and a, 1is the function
t i '

of v, hat maximizes the conditional expectation Eu(xlf:E’al’az(yé)) [ Yo -

Radner has proved that this necessary condition applies to/team with any payoff.

2.8. Decision Skills. We can conceive of a person's decision skill as a set
of past values of the external variable, retained in his memory; or, more generally,
as a set of constants known to him. If the "organizer" of the team does not have

the samz knowledge, the precise determination of the decision function will be left
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to each member. For example, let us modify the payoff function just used,
u=(a + aa) (xl + x5) , dinto & new function, u = (a.1 + ae) (xy - By + %y - §2) ,

where the constant gi is known to the i-th partner. Suppose the network is

(x x) .

The deéision rule, ~ 1 >
ai(xi) = o if x, < 0,

will then be replaced by
~ 1 > 7
aiaxi) = 0 it x; < £, s

the constant Ei ’ knqwn to the i-th partner, is possibly unknown to tpe team's
"organizer." The decision rule is then prescribed to each member only in a form
that is not fully specifiéd. It is for the member himself to specify it fully.
However, 1f the organizer has to choose the optimal network, he will have
to assign at least a probability distribution to the constants £, - Stated

in this form, the problem is reduced to the original one.

2.9, Authority: Communication of Decision vs. Compunication of Fvents.

ot

In the example of 2.6., the asymmetry of the network with respect to the two -

partners arises only from & difference in the variances of x, and x, : if

1 2

o > o, then it is more useful to let the value of Xy be told to the second

partner by the first, than to let the value of X,

by the second. More of the talking should be done by the man who has access to

be told to the first partner

relatively uncertain events than by the man who observes relatively certain ones.



..ll..

Is this perhaps the reason why the tribal priest (in charge of predicting weather,
thus setting the day for planting crops) has more "power" than the women (in charge
of making pottery on the basis of rather constant properties of clay)? It may be
objected, however, that "power" does.not usually consist in the role of communicating
events (xl, in our case).

We may now add, on the basis of 2.7., and using the modified payoff example
presented there; it is the high variance of (xi - gi) that makes the i-th
partner the communicating one. But the variance of gi merely measures the
ignorance of the organizer about the value of §i known precisely to the i-th
member. That is, the latter must possess a "specisl,” "expert” knowledge.

However, even this "expert" reporting will be felt by many as not coinciding
with "power," or "leadership."” The usuai form in which a "leader" communicates is
in telling of his decision (or that part of it relevant to the subordinate's sction),
not of the state of external variables. Moreover, the difference in skills is not
essential: it is easy to give examples of operations in which one person gives signals
to be followed by the other, and where such division of functions is useful even if
no different skills are required: as when, for example, one person gets out of the
car to help the other park it, by signalling the needed movements.

In our example of 2.5., with network x-——>[:] (and with o, > 02) , 1t is
sufficient for the second member to learn from the first, not the precise value
of Xy but only whether it is positive or negative; and this can be inferred from
the first person's decision (viz., a. =1 or O agcording as X |

1 1
Thus while the amount of information to the second person is decreased, the payoff

> or <0).

remains the same. Now, it 15 chesper to communicate when there are only two possible

events to tell about, than when there are more than two (seel.l.lgbove). Therefore,
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more
it will be /edvantageous, in the case under discussion, if the first member tells

of his decision than if the tells the walue of xl .

[One can also introduce the concept of "communication skill"! the knowledge,
by member 1, of how best to map his information into the information for member 2:
that is, which "code" is cheapesﬁ and best understood., )

In the previous example, with the network x-—> [?, the communication of

the walue of Xy contributed to the payoff exactly as much as the (presumably

cheaper) communication of the decision a Therefore, the latter method was

1
clearly prefereble. In general, the choice will not be so simple. By communicating
a smaller amount of information, the payoff may be diminished. If it is diminished
by less than the diminution of the cost of communication, the cheaper form of
communication is preferable; in particular, the "aufhoritative“ way may be the

preferable one. As an example, consider the network x—) x and compare the expected

payoff produced by member 2 if he observes X, and, in addition, receives information:

2

(I) on the value of x, or (II) on the action &, and therefore on the sign of

1 1

x, . In case (I), the expected payoff is the quantity U,; computed in equation (1),

1

Sec, 1.3.,1. If we assume, for simplicity oy

What is, under the same assumptions, the expected payoff in case (II)? In this case,

=0, = l, and p =0, then Ull = lﬁJ& .

the second member's best decision rule is as follows: ”a2 =1 1if ané only if either

;=1 and x, + (Exl | X, > 0} >0 or a, = 0 and x, + (Exl | x, < 0)>0.

This ylelds an expected payoff

a

' 1 1
U, = ——_ exp (57~
Jor kn
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]
The difference Ull - Ull

would have to be achieved by the "authoritative” method (communication of decision)

( =« about 0.38) is the information cost saving that

in order to justify its use, instead of communicating full information about the

external variable xl v

2.10. Hon-sdditive teams.

2,10.1. A ncn=-smooth example: Consider the production and the sales departmept

of a firm. To each production levei corresponds a certain action, of the pro-
duction department--purchase of raw materials, 2tc.--and a certain expenditure
depending on external varisbles such as the prices of raw materiaels. To each sales
level corresponds a certain expenditure of the sales department for promdtion, etc.,
depending on external variables such as the prices of media and the state of the
markst. Denote the value produced by a

1
promised to be delivered to customers) by =a

dollars, and the value sold (i.e.,

o Let the corresponding expend itures

be fl(al,xl) dollars and fe(ae,xe) dollars respectively, where the parameters

X, 5%

(no storage possible) the profit (payoff) is ® = min (al’EE) - fl(al,xl) - fE(ae,xe) .

, are the relevant external random variables. If the commodity is perishable

We can assume each f, differentisble, with afi/aai >0 . If, moreover,

Befi/aaf > 0 (increasing marginal cost of production as well as of sales), Chart 3

represents the lines of equal profit, for varying pairs &y, ae and a fixed pair

of valuss of xl and Xy v Maximum profit is reached at a certain point df the line

1 > n —
(a rldgg ) 8) = @, .

Clearly, the payoff is non-decomposable into two separate payoffs, one to each
department. This non-additive nature of the payoff can alsoc be expressed by saying

that there is interaction between the activhs 2, &nd &, At least at some points,



the effcet of an increase in ay, with a, unchanged, does depend on the size

of 8, - True, there is no such effect as long as 8 both before and after the
increase remains say, below 8y changing from, say ai to ai + h < a, - For

then the increase in the payoff will be equal to fl(a: + h} - fl(ai), hence it

will be independent of 8, However, if ai < a, < 32 + h, the payoff increases
by (a2 - a:) + f(a; + h); and this quantity does depend on a,

In 8 modified form, this model will be closely analysed in R. Radner's paper

presented at this seminar.

2.11, e th_a constant jnteraction coefficient. If the payoff is
twice-differentiable, the interaction coefficient between two action variables

a;,8, cen be defined simply as aau/baiaa . We shall consider, in particular,

J J

the case of a payoff quadratic in the action variables, and with Bgu/Baibaj

independent of the x's . Then the interaction coefficient is a constant. As an

exemple (with n = 2) consider

2 2
u=-a -a;+ 2q a

o a,x. =~ aX. + uo; 0<g<1l.

1% T 2% T 8%

This payoft runction may be given the following economic interpretation: u is

the profit of a firm, if xl andyfgz are the deviations of the prices of the two
R

iy

inputs from their means; a, and &, are the inputs, measured in appropriate units

1 2
from appropriate origins (see below); ug is then a linear combination of Xy and X5s
2 .
independent of 8y apd 8, - The expression (- 8, "8, + 2q alae) gives the

.phyéical output‘(up to a constant term) and also the money revenue of the firm, if
the price of an output unit is comstant (=1) . The lines of equal profit are given

on Chart 4. They are ellipses (circles when q = 0) .
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Note, that in the assumed payoff function - unlike that of the pa&off
previously discussed in 2.7 - aeu/aaiaxj =0 (1 ¢ j): the effect of changing
the i-£§?2§;s not depend on the price of the j-th input. Hence the reason for
coomunication which existed in that earlier example does not exist in the present
one, This will make it possible to isolate the roleci?interaction coefficient
in determining the best network.

Radner has shbwn that in the "smooth" case, the necessary condition of
2.7 is also sufficient; and that in the case of quadratic payoff functions and
normﬁlly distributed exterﬁ£§§variables the best decision functions (given the
information structure) are linear in the x's . It suffices therefore to makimize
simultaneously the two conditional expectations Eu|yl and Eu|y2 with respect
to the unknown coefficients. |

Since the (rather simple) role of the ratio 02/0l was already discussed

in a previous example, we shall assume simply o, =g and ¢oncentrate on the

1 e
rolée of p and q . We shall study again a case of co-specialization (as in 2.6.1).
These assumptions reduce the problem to the choice among six networks; for each .
of these, the optimal decision rules and the best gross payoff can be read off
CHART 5. Note that the first and last lines of the chart convey the meaning of
the origins from which 8,y and &, were measured. These origins are the "normal"
optimal inputs in the following sense: when the prices of the inputs are not known,

or whether they are at their average levels (so that x

1= 0= xe) , then the

best inputs are at their origins.



-3_6-

Chart 6 is derived from the gross expected payof$ of Chart 5, and the

additional assumption that each observation post and each communication link

has a cost ¢ = ;
3. MULTI-STAGE TEAMS.
3.1. A multi-stage single-person problem as a tesm problem. Denote by a

i

the person's action on the i-th "day," based on the information on a single

external varieble received on this and each of the previous days, beginning

with day 1. If the information received on the j-th day is «x

rules (the "strategy") are Q) 5y e e e

if the planning has a horizon of m days. The strategy a = (al,...,a )

3 the action

m

m

can be chosen as if the person were a team, with a triangular information-

matrix (compare 2.3%)

wvhere the i-th row corresponds to the action on the i-th "day," and the j-th

column corresponds to the information on that "day." Such information matrix

assumes perfect memory.

It cen be modified if, for example, memory lasts for



_l"(_

at most k(< m) "days."

It is also obvious how the matrix will be modified if certain external variablgs
are observed on certain days and other variasbles, on others. It remains true under
all these modifications, that, for a given information matrix, the best strategy

and the resulting expected payoff can be computed entirely as in section 2.

3.2, Extensjon to n persons, Feedback. This extension is also obvious. We
can also (as in Section 2.9) allow for communication of decisions, including
lagged ones. Also, we cen now allow for "feedbacks," i.e., the communications

about the changes in the state of nature resulting from past action.

3.3, Inf tion cost lti-stage teams. 1In addition to the number of links,
observation posﬁs, and the number of decision makers~-see 2.4.1 above--a further
cost factor can now be added: the number of communication pulses, or some other
measure of time needed to convey information to & given member of the team. Another,
and more fundamental approach to the cost of delays between external events and team
decisions, would involve the probability distribution of external variables over
time: the damage due to delay ié the larger the more probable is a large difference
between the state of the world at the time of an event and the time of a decision
based on it. Hence, the larger the varisbility of an external variable the more
important it is to diminish the delay of responding to it, and hence to diminish

the number of "pulses.”



Chart 3. Lines of equal profit.
Profit function: min (al,ae) - fl(al) - fa(ae) .



Chart 4

Chart 4. Lines of equal profit. Quadratic profit

function, with - 1 <g<1l.
at the origin.

Maximum profit is



Chart 5

Best decision rule Best decision rule Best expected
@ : o5 : | - gross payoff
kK Coefficient of Coefficient of
*1 X5 Xy *2
] 0 1o 0 0 0
- ; .
> o Q 0 I
_ 14 pg %0 4+ | o 1420 g40°
.2 T 2 i 2
2(1 - q7) i 2(1 - ¢%) (1 - q°)
. i .
X R 0 0 . N (1 + pq )
- - e
2{(1 - pq) 2(1 - pq) 2(1 - pEQ;)
_ 1.+ pg _2(1 + g0) 1 DAl &)
b > 0 o - To . : P .
2(1 - q) 2(1 - 4q7) 41 - 4q7)
R - g 1 1+ po
T 2 | 21-a) | ea1-) | 20-d) 2(1 -q°)
2(1 - ¢°) 4

Chart 5. Quadratic team with 01 = 02 =1 .

Of the nine admissible networks six are shown.
For the other three ( [ x, [] 4 x, x &— x),
the entries can be obtained by interchanging the

subseripts 1 and 2.




Chart 6.

Choice of networks for quadratic payoff
function.
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Regions of (q, § )-plane in which each network is best
q = interaciion between inputs.

= correlation between input prices.
Variance of each input price = 1

Cost of each observation post or commmnication link
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