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CHAFTER T

General Discugsion of the Yeam

1. Problem Formulation and Sumary of Results.

1.1. A Review of the Statistical Decision Pz-éblem.

The statistical decislion problen is concerned with an individual
who chooses a decision a from a set D of possible decisions, and is

thereupon rewarded‘according to his choice and the prevailing state of the

world x. It will be assumed herc that the reward is a real number ufa,x)

determined by a payoff funetion u, In a given situation the relevant state

of the world may be the outecome of same random ﬁrocess, as in a prediction
problem, or it may be a particular probabiliiy distribution of random events,
as in an estimation 'problem, or it wmay be a combinatioﬁ of the two. There-
fore let Z be a measurable space, whose class %’( of measurable subsets

ig to be interpreted as the class of random events, end let P be a set

of probability meastres P on Z. The states of the world x will be
represented by pairs (z,p), with 2 in Z and p in P.

Typically, the decision maker bases bis decision upon certain
information about the state of the world, according to some rule or decision
function. This concept will be represented in this paper as follows.

Assume that t.hére are given a field @ of subsets of P and a field oJ
of subsebts of D, and lst % bé the field of subsets of X that'is the

Cartesian product of %, and @ y iet y be a given subfield of % H

y See Halmos {9], p. I4C.
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then any qf’—measurable function from X vo D will be called a decision

function bosed upon the information subfield Qf . In some problems the
decision functions nay, for sore external rcason, be restricted to sare
given set A,

A probably more familiar way of representing information would be
in terms of a transformstion, that is, a measurazble function from X to
some other measurable space, say Y; decision functions would then be
measurable functions from Y to D. These two ways of representing infor-
mation are equivalent, and in this paper one or the other will be used,
according to the nature of the partic¢ular problem being considered. For
8 discussion of subfields, transformations, and the closely related concert
of a "statistich, see Baggdur (2], and Bahadur and Lehmann [3;.

For ény given decision function « and any probability measure p

in P, the expected payoff is

Uy ,p) = y uly (z,p), (2,p)] 4 plz).
z

The problem for the decision maker is to choose a decision function from

the given set A that will make U(g,p) large in some sense. Two

approaches, commonly knovn as Bayes and minimax, will be considered in
this paper, with emphasis on the former.
If G is a given a priori probability measure on P, then the

Bayes payoff for a decision function o 1is defined as

V(g ,G) = j Uly ,p) a G{p),
P
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Ea
and « 1is a2 Bayes decision function if it maximizes the DBayes payoff on the

[

set A. Note that as scon as the Bayes approach is adopted, the distinction
between .Z and P ceases to have Qny real significance, for once a par-
ticular a priori measure G is given, the wholc pfobability structure of
the problem cen be summarized in terus of a single measure on X,

For any decision function o« , and any p in P, the risk is

defined as

L
e(q,p) = sup  U(y ,p) - U(y,p).
of €A
~
A decision function o is minimax in A if for all of in A,

pS;sz elat,p,) & psgpp £ly,p).

1.2. The Tean.
Suppose now that the decision variable a actually is an N-tuple

(al,o.,,ap) of decision variables a,, with ai in D,. Suprose further

that each of the component decisicns is based upon different information;
that 1s, ihere are -.I*I subfields ?i of % » and the decision function
of is an N-tuple of functions §o(i{ such that each function- ﬁ’i iz a
?é»i—measurable function frem X to Di“

For exarple, the "décision maker" may be a.group of ¥ persons,
each with access, to differenﬁ information {becauvse of gifficulty of commun-
ication, say), each deciding about sometling different, bgt receiving a

comuon payoff as a result of thoir joint decision. As a second exanple,



the decision moker might be an individual moking different decisions in
successive time periods, the payoff being a functicn of all the decisions
macde over the total time period. In such a case, if the decision maker
does not "forget! anythins from one time period o the next, then
‘*_3'/1 - '1?,2 Cyeney & %hi" However, the keeping of records might be
costly, so that it might be worthwile to forget something.

Althoush from the most peneral point of view the decision problem
just outlined is a one-persen problem, it is sometimes suggestive to talk
abcut it in terms of the first, "many-person", example &bove, and this

will be done in this paper., J. larschak has called such a decision maker

a Eggg,;/ to emphasize thist there ave no conflicts of interest between

",
N

the members of the group. Ig'should alse be pointed out that differences
of opinion (as embodied in different a priori distributions on P, for example)
cannot be handled in this context, since these result formally in the same
N-person gaﬁeatheoretic Qifficulties as ao conflicts of interest.

In this paper it will be assumed that for each 1 the set Di of
possible decisions fér the it’h team member is a Dorel measurable éubset
of the real line, This assumption is not quite as speelal as it might ab
first seem, for a pfoblem in widch some Di is a Borel ieasurable subset
of Medimensional Fuclidean space could be recast in the present framework

by replacing that person.by ¥ rpersons, all with the same infozﬂation,'each

1/ . . . .
= Seeg larschak [11.].



with a one-dimensionsl decision variable, and with their decision functicns
possibly subject te some Joint constraint. Admittedly, although this device
aclieves a certain tecimical rencrality for the present fra.cwork, in
ﬁractice it might sometimes lead to umnecessary complexity and awlorardness.
However, all of the results in this paper can be reinterpretaed in terns

of vector decision variagbles,

1.3. Summarvy of Hesults,

The remainder of the first chapter is dewoted to some of the things
that can be said about the Bayes problem for the team at the level of
generality of the preceding problem formulation, and consists of rewmarks
on the value of information for different team members, on sufficicent
subfields for team members, and on conditions under which “person-by-person®
maximization leads tec o true Baycs decision function.

Chapter Il explores the consequences of assuming that tlic payoff
function w is guadratic in the decision variables for a.e. x. The
geormetry of Hilbert space is helpful in investigating the existence and
uniqueness of Baves decision functions, witieh can be interpreted as
projsctions.

If} in the guadratic payoff function, ths coefficients of the
quadrabic terms arc independent of x, then the situation is even more
amenable to analysis. Chapter III proceeds on thils asswsaption, and is

devoted mainly to s exrloration of the rele of linear decision functlions

in this setup. It is schom that if the a priori distribution induces a

normal distribution of 211 the Iaformation varlables and of tho coefidcionts
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in the linear terms of the payoff function, then the Bayes teom decision
function is linear in the information variables. 4 team analoguc of the
Larkoff problem is solved snd the minimax rroperties of such solutions are
investigated.

For a discussion of the case of a tean with a linear pzyceff function

anc with linear constraints on the decision variables, see [12].

1.4, Acknowledrements and Historical Remarks.

The origin of the problem considered in the present parer is
Marschak®s work on the theory of organization (sse Marschai: ill])q Yarschak'ts
approach 1s in the spirit of the thcory of gaues and of decision theory.

This paper grew out or an aptempt.to analyze sore of the many-person aspects
of organizatiocns that are préaent even in the absence of many-person game
complications (i.e., conflicts of interest and differences of opinion),
Initially this attempt took the form of the study of scme simplified examples
of organizétions (see references {18j-[{23]).

From discussions with Marschak and with Savage ancé from a study
of Savapge's recent book (13] I derived both encouragement to undertake and
continue this study, and hel§ in érriving at the present feormmlotion and

in working out sypecific probleus,



2. The Value of Information in the Bayesian Problem,

2,1. Interaction Between Infoprmstion Subfields.

Consicer a team that has adopted the Bayes approach, with & glven
o priorl distribution G w@d o glven Netuple ﬁ%%*-{ %?-;ga-a+2%¥q§ of

informstion subiieids, and suppcose that the supremum

sup Vo« ,G)
R

of the Beyes puyoff is finitc. This supretwm actually depends upon qug
_ ) 1
and might be denoted by v{U). A changs in ‘%% , say from %f to %} s

would be accompanled by the change

v(‘*?f) - f(‘* )

in the maximum Bayes payoff, which might be called the yalue of the change

in %} . (This interpretation of the above difference, of course, makes
good sense only if it is apprepriate to think of the expected cost of
infermation as something to be subtracted-from the expected payoff. (See
Savape (131, p. 118.) Such ar assumption will be made implicitly here,
thus making it sensible £o discuss the "walue of a change of information"

without explicitly consicering costs.)

Correspondingly, define the value of the chaagge of a single %fi

Lt fo b ¢
ﬁ\vo(%fiﬂ}) = V\eijgz‘gw '-':;i::’;iy“u‘?jz.;) - V(G{j«)

i

As the notation supgests, this value will in reneral depend boih upon ?%i
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and wpon all of c?j/ . In what circumstances will it cepend only upcan ‘3}/
and alj ;7 To be precisc, for every i 1let g 4 be a fardily of subfields
of % , and let 5 be the set of all "'“4.-' such that ”?jx 8 for all

i. If for every 7} 8 every 1, and every - jl in g

g
Ay WYy, Y)

¥ .
depends only on %ji and igi’ then there will bLe said to be no interacticen

between subfields, in 8 . In such a case it is elear thal there exist

functions v,,...,V, such that for all ‘"j/ in g

W) =2 v, ()
"4

In particulor, this is true if the pervoff function u has the form:
(1) ula,x) 32 :ui(ai,x} a.c.,
i

for scme functions Upyeen sty A team with o payoff function of this

- - 3 m k) . . , L3 ,
form is, in a sense, degenerate, for the Bayes decision function of
charseterized by the facl that; for sach 1, Q(x. aximizec the expectation

k 3 - i1 =52 ke bl 1 Q;
E ui(c(i(x},x), subject to o ; measurable- ffi“
Thig is the best that can be said without naling any specific
assumptions aboul w and the a priorl distribution G; that is, given any
- * 3 % 2 a .

{mon~trivial) &y , there exist w and G such that thoere is interactien

betyeen subfields, in N . Two snecial swannlez of no interaction are
& L H



given below in Chapter III1, Secticn 6.

t should be noted that if the minimax appreach is used, the
value of information could also be defined, in terms of the minimax risk
corresponding to each Qj,§ but it is not true, hbwever, that equation (1)
implies lack of interaction in the minimax situation. Counterexamples can

easily be constructed.

2.2. Sufficient Subfields for Team liembers.

Suppose thai the payoff function wufa,x) is, for every fixed a,
a funetion of p alone, and that every information subfield (E?i is
contzined in i% a;/

In the one-person prgblem, if the informaticon available tq the
decision miker is.represented by the subfield qj/ , then a subfield
ﬂkﬂlg%iis_said to be sufficient for P relative to ‘%P if, for every

Ye 2, , the conditicnal probability 2/
&’d s

P(YIW) ,

can be chosen so as to be independent of p in P. If W is sufficient,
thien the use of any cother subfield ﬂ/Cqu/cannot increass the expected
payoff, no matter what the a priori distribution G or the payoff functiocn

w may be (as long as u satisfies the assumption made at the beginning

i/ Strictly speaking, "contained in the field of all sets AXF such
that Ag %, ",

2/ For a discussion of conditional probability and expectation defined
in terms of subfields see Doob (5], Charter 1, Section 7-10.
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of this section). {See Savage |13, Chapter 7, Section &, and Bahadur [2].)
The concept of sufficicncy, suitably modified, can also be made
to apply to the team, as follows. If (¢ and 6 are subfields, let F(J 5,@)
denote the smallest subfield containing both & and @ . A subfield
W, < ‘lji will be called gufficient for P, relative to qj’l’””’?’l\}

if for cvery T, € ‘7? . the eonditional probability

Py | FCOW, 1Y 56 3490

canq be chosen so as to be independent of p in P, ond messurable- OWI

The reader can easily construct examples in which “W’i is
sufficient relative to Qj,i ; in the one-person sense, but is not sufficient
relative to cij-l_,co Q,HN 1}1 the team sense.

If, however, ”%1,”., ‘Zj,ﬁ are statistically independent, then it
is easy to see that the {fone-person) sufficiency of Wi relative to ig/i
implics the {tcam) sufficiency of QW’i relative to q?j’l’”"’?akl\!“ That
the independence of qj‘l’“""j‘ N is not necessary for this implication
to hold is showm by the fellowing exarple.

Let 4 and & ve independent subfields of 3 5 let 65— Q and

(= a .
ﬁg C; and consider a 2-person team with:

PIRE.Ce)
W, =},
Y= &

)



It follows that F(ﬂﬂ/lfiyz) @ F(égséi)n If £ is the characteristic

funetion of a set in T};la then gecording to the lemma of Chapter II,

Section 3.2 below

BLE | FCW LU = e W

Hence if CM/l is sufficient relative to 11/1, it is sufficient rclative
to ﬁéﬁl and 1d/2a '

It should be pointed out that the above concept of sufficiency
could easily have becn made to cover problems in which the pgyoff depends
gpon =z, but this would have complicated the notation. On the other hand
a whole-hsarted Bayesian app;oach would have simplified the situation, as
there would be no distinctioﬁ\between Z and P. (See Savage (13],

Chapter VII, Section 4.)
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3. Person-by-Person Maximizabicn nnd Stablonarity in the Bayes Problem.

“ - - o . ~ " - x * 2
If ¥ 1s a Bsyes teanx decision function relative to a given a priori
A
distribution, then the decision function & 4 for any one tean member i

must be best, given that every cther wember § uses the decisgion function

0?’ i Call a decision function o person-by=person maximal if & caonnot
be improved by changing q’i for any one i alone. Thus any Bayes decision
function is person~by-person maximal., The converse is not true; however, as
the following example shows.

Consider 2 team of two members, whose payoff funetion is independent

of x, with contour lines as in the sceompanying figure {for ezample,

™

™~
.

. R - Y2 (12 L2
u(algag) mam%al (3.2 1), (al 1) azg,

where each decision variable ai is restriected to the unit interval)., It

is easily werified that oy a for which a; = &, is person-by-person maximal,
{e.g., point P in the fipure) whereas the maximum of u is attained only
at a; =a, = 1/2. HNote that w may be strictly concave in a,

Suppose the decision functions of 211 but one of the team members
are fixed; then the problem facing that one member becomes a one-person
Bayesian problem if he thinks of the actions of the obher members as part
of the "state of the world"; aud he can therefore apply B"‘ayesa Rule. Nore

A :

preciscly, let ¢ be person-hy-person maxisal, and suppese that for each

i, cenditional expectations iven ﬁ"{f,., are bona fide expectations; then for
F
A &l A - [} H L] x i
svery 1 and a.e. X, % i{x} mayimizos, with respect to a,, the conditiconal
e

gxpectation
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Ei(ai,x) =R %ul&l(x)w”;aia”w X H(XJ’KH ‘:‘ﬁj’iz

These N simultaneous conditions constitute the team analogue of the one

person Bayes rule, but as was just showm, they are not in general sufficient

to determine the Bayes decisioen function.
If, in addition, 3(8ysx) is differentisble in a,, then
3 }:i(o( (x),x) = 0. Call 2 decision function o stationary if, with

E " defined as above,

(2)

(x),x) = 0 ‘a.e.,

for every 1i. Thus, under stdtablo regularity conditions, a Bayes decision |
function is stationary. The following theorem gives one condition under
which a stationary decision function is Bayes. This theorem will be applied
in Chapters II and 111,

The Bayes payoff functional V(&) = V(¢ ,G) will be said to be

locally finite at a( if

2. for any decision function S such that J (e + & )l < o, there
exist kl’”“’kN all positive such that | V(O(’ +h 61,.99,0( Nﬂlﬂ S N)é < 00
for all hy,.. a,hﬂ for which |k 0 < kl,a.a,lhml = ke

In what follows it is assumed that the set A frow which a decision

function is to be chosen ic actually the set of all § = (9¢,....,9fp)

auch that ﬁ’ i is 73, i-measurableu
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Theorem I.1. If

1, wla,x) is concave and differentisble in a for a.e. x,

o
p

sup V() < o0 ,

é i

3. V is locally finite at & ,
4. 4 is stationary,

then O( is Bayes.

Lemma, If f{c,x} is a concave function of the resl variable ¢ on the
1 1

. ton ¥
closed interval (e ,c¢ ], for a.e¢. x, and |E.f’(c,x)| <o on [c,C

T
1
then

¥ - !
d : g
KgEf(c,x) . E-;Ef(c,x) q

c =D c =
d” a”

§ .
Proof: For ¢ > c¢ , the concavity of f iwmplies that

T i
fle,x) - fggg,x} _ £le x) - f(t.: LX)
4 11
¢ = C - e =0

20 a.g.,

'
and inecreasses monotonically as ¢ approaches ¢ . Therefore, the first
part of the lemma follows fram the Lebesgue monotone convergence theorem

(Halmo (93, Secticn 27, Theorem A); the second part follows by symuetiry.

Proof of the theorem:

Suppose that V(g + &) > - w0, Let
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fleyx) = wig 4(x) * klgl(x),“,,,q yx) * kNSN(x),x] 5

and F(k) = Ef(k,x). By the assumption of regularity, F is finite in some
neighborhood of 0, and it is easy to verify that F 1s concave. Hence,

+ -

for every i, %—E- F{0) and g—-}; F(C) are finite. Hence, by the lemma,
i i

for every 1,

+ +

a-—. a—

s P{0) = B £(0,x) .
aki EN s

But f is differentiable in k a.e., and hence

o
a ky ] k,

£(0,x)

B S, (x) -—9‘3-5; AL (),

which last expectation is therefore finite.

On the other hand, by the lemma, applied to the condition of

staticnarity,

E{ aaai ul ¢ (x),x] l (j’l% =0 ;

o
hence E -3 ul o (x),x] is= finite, and therefore
i .

. Si(x) a&ai uLy (x),x] = E(E %gi(x') ;ai uLo((x),erLé/-iz i

500 {2 w0 Y2 )
i

ﬂOO



(See Docb {5], Chapter I, Theorem &.3.) Hence,for every i, F(0) = G,

P
o ki

and therefore

s
£yt 5) =Y == F(0) = 0
| t =0 i *

(sec Bonnesen and Fenchel [17], Section 13). Since V(o +t%) is & concave

function of t, the theorem follous imnediately.



CHAPTER 11

The Team with a Quadratic Pgyoff Function

1. Introduction.

This chapter will explore the consequences of assuming that for
every state of the world x, the payoff is a quadratic function of the team

decision. Thus:

(1) ula,x) = Alx) + Mlx) a' - aQloa

where a is in N-dimensional Cartesian space Rn, and for every x, ~Alx)
ig in Rl, A4(x) is in RY  and Q(x) is an NX U symmetric matrix

(A,4and Q all measurable). I want to consider only the situation in
which, for every a.e. %, u(a,x) hss a unique maximum in aj; it will

AN

therefore be‘assumed that Q(x) is rositive definite for every a.e. X.

It will be more convenient to spesk in torms of less {in the
technical sense) rather than payoff. Completing the squarc, (1) can be

rewritten as
u(ax) = -la - £ MG C0T Q) ta - F S0 T
¢ AGo + 3 pe o) )
The best team decision for any given x is clearly
Y@ = A )
_and the loss due to using any obther decision a is therefore

(a-YG)] lx) fa-¥ &7 .

~18-



The risk, or expected loss, given the team decision function Q and the

state of nature p, is

(2) ?(c{ sp) = E %i_o( (x) -F(x}] Qlx) Lof (x) -?f(x)jig p¢ .

For any a priori distribution G, the Bayes risk, E § , will be denoted by
_ G‘(q(, G}, or sometimes just by & (q) .

The risk function can be transformed fo a certain extent without
altering the problem., let T(x) be a measurable, NX N-matrix valued
function of x that is non-singular a.e., and such that for any decision
function ¢/ , both Lo((x) T{x)] 3 and  lof {x) T"l(x)] j are measurable-

% 5 then the function /6 defined by
B = y(x) T(x)

is a decision function if and only if ¢/ is, and the risk function

E S BG) - TG 7601 TH) 669 (1)’ 16 = ¥ 16’

defines a problem equivalent to that defined by (2).

For example, let the team members be divided intc subgroups
Il gozeslys and let T(x) be a matrix with blocks ‘l‘k(x) down the diagonz'{l
and zeros elscwhere, where T,(x) 1s a non-singular matrix of order equal

to the size of proup I, and measureable- m %k' In particular,
- kel '
i

T{x) can be faken to be any diagonal natrix such that, for every i, tii(x)
is rensurable= yi} typically, tihis will be the conly transformation that ean

be nade.
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2, Dayes Decisiomsas Projections - Their Existence and Uniqueness.

A glance at equation (3) abeve shows that the team problem loocks
something like a prediction or cstimation problem, with a quadratic form
replacing the one-~dimensional pean squaped error. It is not surprising,
therefore, that the Bgyes solution can be described in terms of a pro-
jection in a sultable Hilbert space. Thecrem 1 below describes the set
of toan desision funetions that have finite Bayes risk, and shows,
ineidentally, that it is no real restriction to assume that the coordinates
of ¥ have finite mean square., Theorem 2 proves that if any decision
function has finite Bayes risk, then the best deeision exists, is unique,
and can be characterized as a projection.

In what folioﬂa\it is understood that therc is a given a priori
probability measure on P, and that all-expectqtions, probabilities, and
references to "almost everywiere" are on the basis of it. Any two functions
~on X that are equal az.e. will bé considered equivalent, so that hereafter
whenever any space of functicns on X is introduced, it is to be understood
that, strictly speaking, the object under discussion is really the corres-

pending guotient space modulc the space of functions that are zero a.e.

Lemma 1. let I be the set of all neasurable functions %/ from X to
RN for which
]
Eyx) olx)¢({x) < oo;
then, under the inner product
¥
(of ; ) 2 Bd(x) x)pl)

H is a {non-trivial) Hilbert space.



Proof. The only things not imwediately obvious are the cbmplet,eness of H
and 1ts non-triviality. Let & be the space of all measurable ﬂ from

I to RN for wiich
2 L]
ﬂﬁﬂK = Eﬁ(x)}?(x) < oo

For any sequence ?ﬁ(n)f in X, ”ﬂ(n)“ —2 0 implies that

K
E(ﬁ i(n))z —~ 0 i‘:;r i=1,...,N; hence the Riesz-Fisher Theorem Y applies
coordinatc-wise,. and. K is therefore complete.

Since Q(x) is positive definite a.e., Q(x) = .S(x)Si(x) , where
S(x), a squarc root of __\i;a(x), is non-sinpular a.e. S induces a linear

transformation J from Hto E by
(f o 1(x) = of IS(x) .

Furthermore,

udq«zaﬁa ol

Wyf B, = uBH,

s¢ that yj is an isometry, uand therefore H 1is also complete. Furthernmore,

K has non-zero elements (e.,g.,,--the bounded functions),.and hence so does H,

Y For a proef of this theorcn, see the remarks al tlie end of Section
42 of Halmes |91, who, however, does not ldentify it with this narej or
see Stone [i4], p. 25.
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(n)g

~ Lemma 2. 1f the sequence %0( econverges to a( in the norm of I,

then there is a subsequence that converpes to & coordinatewise and

pointwise a.e.

Proof. Let A = go{ and [g(n) 52?(_,((11)0 As in Lemma 1,

Iic((n> -y Hﬁ(n) m(?NK ~—3 0, By theorems 25.A4, 22.D, and 21.3

of Halmos [9], applied to the first coordinates of 'ﬂ(n) and 4 ,

there exists a subsequence 5,8 (m)f such that B () (x) —> /57 (x) a.e

1 s e

again, there exists & subsequence %ﬂ(k)} of ip(m)g such that
(k)(x) — {5 (x) a.ey, ete. Thus there exists a subseguence ? (j)f

ﬁz 5 o5, ote. 7 q A

of the original sequence such that ‘éij)(x) - /gi(x) ae. for 1 =1,...,N

¥ LJ:(x) = i ﬁ J)(X)S(E)lo "‘)‘ ﬁ(X)S(X)}D q -(x) a-eeI (1==lj°¢.’ll)j

which completes the proof.
Iet A be the set of all measurable 0( from X to RN such that

. &
. 1is . =Ineasurable,
X %1 easurabl

Theorem Il.1. For any measurabie 7 from X to RN, the set F of Yy in

A f‘or _‘u':hic:h
Bloy(x) - ¥ 0] ) 1g(x) - Y] <o

is either empty or it is the closed linear subvariety

ANy ")
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of the complets ligear variety (¥ + lI) wider the distance function

dly ,8) = W -Y) - @~FNy .

_Iir_g_gi, ;Suppose that F is nobt cupty. It follows from Lemsa 1 that
F=Af}(¥+ H andthat (F+ ) is complete under the given distance
function; it remains to show that F is closed, Let 0(0 be any

element of F; then (¥+ H) = (q’o + H) . The transformation that takes
any ’6’ in (Y¥+ H) into (ﬁ—c{o} in L is an isbmetry from {7+ 1)
onto H, and the image of F under this transformation is Af)Y H. There-
fore, ¥ is closed if and \-only it a4V H is closed. Suppose that the
sequence S(O((n)z in A ﬁ 0 converges, in the norm of H, to c( s which
is thereforc in H. By lemma 2 there is a subsequence S(“D((k) € converging
to c( coordinatc_}wise and pointwise z,e.; hence each q"i is Qé,i-»measurable,
which puts of in A,

The Bayes problem is cne of finding an element of F that is closest
to ¥ , in the sense of the distance <, Because of the isometry betueen
(F+#) and H, this problem is equivolent to the rroblem of finciiﬁg an
element of A()VH that is closest to - o © in the sense of the norm

of H {where o © 45 as in the proof of Theorem 1). Therefore, if F is

not emply, 1t can be sssumed withoul less of penerality that 3 is in H,
and this will be done from unow on. It then follows, of course, that
F=afti,

From this peint cm, the subscript H will be omitted from the

syubel of the norm of a function, it being understood that the norm is in

H,



Do

As an example of a case in which F 1s empty, consider o problem
such that A contains only constant functions, but thé elements of Q{x)

A
do not have finite mean and.lz is in H.

Theorem II.2. If F is not empty, then there is a unique team decision

A
function o that minimizes the Bayes risk 6() = Mef~¥# on F, and

A
c‘f is tlie orthogonal projection of ¥ onte F,

Proof. Immediate from Theorem 1 and the rinimizing property of the

orthogenal rrojection {see Halmos [8], Theorems II.1 and II.2).
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3. Staticnarity.

In this section it is shown that, under a certain condition on
the random matrix Q{x), the hypothesis of Theorem I.l is satisfied, and

therefore that a staticnary decision function is Bayes; also an example

of the application of the stationarity condition is given.

3.1. The Condition of Stationarity for the Quadratic Case.

Theorem II1.3. Let r(x) be the smzllcst characteristic root of Q(x)

with respect to the guadratic fomE :qii(x)aiz , and let r = ess iaf r{x).
i b d

If r >0, and if & 1is stationary, then o/ is Bayes.

Proof. The present theorem z;:i\l.l be rroved if it can be shown that the
hypothesis of Theorem I.1 is satisfiedo-l'/ The only point not immediately
obvious is that the risk § is locally finite at X , which point is

covered by the following:

Lemma. If r > O, then ¢ is locally finite at every ‘Y such that

¢ {(y) < oo,

Proof. As showm in Section 1I.2, there is no loss of penerality in

3
assurdrig that || ¥4 = E¥Q Y < oo, and hence that 6o ) < oo if
and only if g i< oo. Suppose, them, tihat N Jl < co and

o +$If < o3 it follows by Theorem II.1, that &)< oo, For a.c. x,

i/ In interprcting Theorem I.l the reader shoulu keep in mind that he
is now concerned with risk.
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1

Hence

s e

¥

rE L a0 §;%00)
i
B2 a0 82 s & pgw?
b 3
and thus for every 1,
B ay; (0 §56) < oo

Let 8(1) = (0,...,0, Si,Ci“ua,bJ; then for every i, Iig(l)ﬂ <~ w , and

hence by Theorem I1.1,
“a( S kg 6(;}.

for all real kl,“;,kﬂ, which proves the lemma.
It might be noted that in tihe quadratic case the condition for

stationarity becomes (see equation I,2):

( .
’ \{E;qij(x} ) =Y, ] %7%

for every 1 ond a.e. X,



A EY

ERTS P a——

sopvations,

A
p

4 : o
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(ibid., Scection 32, Examwple 5) that it is sufficient to ;;rové the lemua
for all funetions f that are simrle on the ring R( ,,47(, é ). lence
it is sufficient to prove the lemma for all funétions f = ade, viiere a,
d and e are characteristic fungtions of sets in @ s 47 und é R
respectively.

Since E {’Efl F{ (B ,/ﬁ »CCo )fg is measurable - F(@,/f,&), it

is sufficient to prove

(4) {S eie e 8, 7,85)¢ ”gf

)

for all S€&F( @ L, & ) ‘Since the indefinite integral is & totally
finite sipned measure, it is sufficicent to prove that (4) holds for all

S such that S = CNBNE, for same Ce £, BE # ana Fe &

(see ibid., Scction 13, Theorem A and Section 29, Theorem A). Equivalently,
it is sufficient teo prove thut for 211 ¢, b and o‘ that are characteristic

functions of sets in A, 6 , and & , respectively,
s -~ '
(5) Eibee Eif{?(@,ﬁ,&)g ]=FEbee f .

If f = ade as above, Lhien

E%fiF(@;ﬁggp)é =deE§alﬁ{ ,

t 1
because for all characteristic functions b neasurable — 6 , d

L)
measurable /fj and e measurable Ccp 5
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E %bgdﬂeede Eia i (] { =E %dgdeie Eib a 1@ ]

4

T %d;deﬁe E B %Engalﬁ ]} {(independence )

i

E idﬁdegez E %b'af

a

H 1 ]
F %d de e b az . (independence ).

Hence, proceeding to verify equation (5):

E{bee ESENR(EB P, 50

[T

"E[\bcek de E %J. é@(]

4

El_cdefea g ia’o i 6(3
= E[cdeeﬂ] Efab]

i
= E cdee ab

= E(bce ){ade) 5

which completes thie preof of tie lemna.

Returning to equation (3), and recalling that E(Q{iq"%i) = in,

ene gets
Dol O Gy T “r
(6) 4y Y3 = B %i‘ i?i’ 7;[4\ 4 3 E(O(j { ?1} .

" By the lemma just proved,
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) E(a(jmgi'hﬁ(ogjgaw‘. for 3£1.
Taking the conditional expectation of (3) given “V.:

£ oy B V) = RSV )

Since Q 1is non-singular, it follows that

(&) o1V ) = 209 BEL 1Y)

where ((q}j)) = Qﬁl. Substituting (7) and (8) into (6) gives the

Bayes decision function

N3 . Kj .
P B8\ Uy) - %;3 G %q G, YN

i CA AR SN DRI b (N DR

e

Let Si = B( Qi”ﬁ' 4)» and let D be the diagonal matrix with diagonal

elements T then the Bayes decision function can be written:

i~

(9) o= §o7t+ B(OIV)e? - 07



CHAPTYR 11E

Quadrabic Tesi with Constant Coefficients
of the Quedratic Terms

1. Intrcduciion.

It will now be assumed that Lio matrix Q is independent of x,
i.c., 1s constant and kncun, A numbor of detailed resulis can be derived
in this case, bub the reader should keep in wind that this assumption
reprooants on important loss of penerality. o8 thuz for discussed, the
gener:) guadratic payoff might be thougﬁt of as an approximction, for
cachi x, to o smooth payoff functicr in the neighborhood of tue best team
setion  f{x) corresponding to x. If « is constant, thic meznz that
the payoff funeticn in thﬁ n?ighborhood cf Tf(x) 4is tue sone for cach
i, vtibeir 1o clearly a most sg%cial cirowsstance.

Thjé ciarter is devoted moinly to an exploration ¢ tlie rolc of
line.r ducision functicns in thdis setup. The topics discussed are: (1)
noralito and the linearity of Bayes decision functions; {2) ".arkoff™n
gecision functions, i.e., tean anulorues of miniﬁum varianéu linear
anbiose. cotizabers; (3) minirax properties of Markeff decision functions;
and {4} tuo exanples cf no interaction between subfields.

1t w11 be rwore conveniont te use the transfornellon, as orrosed

£o the onifield, terminolepy throurh nost of the chapter.

\:‘;
|



2. rrobability Vcetor Spacos.

This section will sot up a linesr space fraz.eworh for the torics
discussed in the following sections. The first three parts of thls section
contain a slipht elaborution of .alerial presented by L. J. Savage in
recent lecbures on the theery of repgression and analysis of variance. The
fourth part contains a renerslization of a knoun resuit about the Hadacard
product of twe non-negative sai-definite natrices.

Yost of the section will read like s surnary; tlicse statenents that
are nct clearly definitions, or for which no proef is given, can easily be

rroved by & reader fa.iilar ith ststract vector sraces

2.1, The Structure cof a irouiﬁliltf Vector Space,
\.
et V be a resl, finite-Cimensional vecher spaee, witi: dual space
2 &

V. The valwe of a lincer funeticnz:l v  ia V' gt o roint v in ¥
will be dencloc by v v. Furthermore, let theore be u fixec prosabllity

e . . 1/
mensure cefined on Liuc Borel subsets of Y~ such that

P(v i, vy <
o~
for all vi and vé in V. (¥ denctes the variable o integraticn in

Define 1T to be tiwt eleneat of ¥ fcr.wnjcﬁ

i/ Tha class

‘ :
cluss of sely ol the Jurne §v§yu
ane o is ony resl nusber.

(u

of lorel ﬁniluté ¢V is the ficlt poneroted by the

ci o, wuere v is any elemont of ¥
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for all v in V.
- o 3 -
Define a non-negative product { , } on V. by

e oo e

(vl; vz) = r{v.,

i

- 8 V) vy (V= BV

- VR
< RN

be the set of a1l v in V¥  such that (v ,v ) =G, N 1is

A

Let W

a0
¢

]

o ox % 3 3
a linesr subspacc, and {n ,v ) = C forall n in K and v in V.

* it 3
Let ¥ bve any linear subspace of V  sugh that V  is the direct sum

A
i ~

is rogitive-definite on L

s

s #
of N and M ; then (

Define a linear traonsfeormation € from V. te V, as usual, by:

e -, .,
Fe T

for all % and w in V. N is the null space of € and (U

the range of C in V. In particuler, $ 1is non-singulor if snc only 1if

A
7

( , )} is positive definitec,
o g . o
For uny subspacce 35 of ¥ ; define S~ to be thic set of 2l ¥

A
]

in V sueh that v v =0 for all v in S5. 8

KO = o(r) .

o . .
is & subsrace of V.

a # S 5
FProof. v is in C(V )} =%§v = 0w for some Vv in V =5 for every

T

¥

5 30 3 -3 g 3t N . N 3
A in N, n ve=nov =(n,v) =0=dv isin N . Hence

X i ] )
C(v )< H O; alsc, these two subspaces nave the sawe dimension.

ae e o

Since V. =N ®N , it follows that V=N°@O¥° = c(v )BE°,

Define an inrer product { . ) on V as follows:



funelionsis

4]

if vy and  w. oare in o{v ), let Fi and ué b

. s ) # b i )
in ¥V such tiwt v, = 0wy, v, - C‘vz, nt let

i
(vl;wz} z,(vi,v;) (this value is inderendent of the

. " . . s . 0
rarticulor chelice of ¥, and v,i. If vy dsin ¥

and v, is in 7, let (vl‘vgj = U,

With this definition,

(v

= E(v W r}“ (vn,lf -t

1975

Hote tiat the inner product { , ) ds inderendent of the particuinr
choice of L . It is positive definite on C(V ), and, in perticul.r,

is wnerefore rositive defihL.Q en Vo Oif o oonl- if . iz

34
£y

nesitive definite on ¥V
The spacce V, tegenter with tin weinure, will bo callod o

prebabtility veetor epice, ond the inner proedect {0, ) will Le eulled

its covarionee structure. If ( , ; is rocitive cofinite, then it is

natural to tdentify V  und its du.l groce by meuns of Lhe doosorphion,

Fal

v - 0w, Iothis e.on Vo owill be calicn non-sinpulyr,

"

Aoprobabllity veetor sruec s calico nopval if for cevery v in

Yo, v 1 is noreolly distribulco.

2.4, Uireet Suus of }rubaullit” Joctor Spaces.

let V  po oo probability vegtor siace, ond suprose Lhat ¥ iy

o

P RN 3 . PR X Yo sk e e vw . . - . .
vhieg wxbernul dirceb sue of Lue vecbor spuces u};un,vn, i.e , every w  in

V iu an HN-tuple (vl,df,vﬁ;, wite vy dn Vo, for ever; . The reusure

3



on V naturally induces & nezsure on cuch V.. Suppose that the covarisnce
4

structure ( )ii in eack ?i is resitive definite. For every i

and j define a bilinear foru { . )

Ch Vi and ¥ by

v, v_ .. =y 1.~
( i* 3113 o tg

and define a non-negative inner rroduct ( , ) on V by

_— ‘
(v,w) = § \ (vi,w Je. -

This inmer product necd not Le definitc, Purtherwore, it is not true that

iy YR W), V- BYY = (v,w). llowever, ( , ) does exrress thoe coveriance
structure in V  in the fellouing way. Uince eseh ( }ii is definite,

hS

any linear function.l on V tun be reyresented by some L in V, according

to

Ry N
fovep (v, ). .
AN £

With this particular reprcsentation of linear functionals on V, it is

clear that

Ef"('vq Erbﬂ) {-_’,"(’zh— E?ﬂ) = (f:g) -

s C s e bt 14 . : I B
For esch 1 ond 3 define tiie linear transforration K J from

/ v,
\j to 5 by

lote thut B is the ident

forvootion on Viﬁ For every i and
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[
(1]

3, the adjoint T" of a linear trunsformation T from Vj to ¥,
A

the linear transforuation from Vi to V. defined by

o~
o~
=3
L
it
o~
-3
o
«
—

for 11 v, dn V. =nd v, in Vjﬂ It iz cleqr tuat the adjoint of

For any given orthaon: rwal courdiarte sysiecis in Vi ARG Uj’ the
matrix repressnting the transformotion Riq is the motrix of correlastions
betueen the ceoruinates of ’Hﬁi wid i cocrdinibus of RIS

An equivalent, glternative, Tromevork coula huave been set up in
terms of ilnternal Subsraces*\vl,.¢,vn, but thils would not be us convenient
Cor tic *purposes of lbe folleowing sectlons, in wnien different Vi"s

corresyond to different fean rembers.

2.3. Conditionil I'xpectation in Direct s of Hormal Prolability Veclor

Spaces.

Let the normal probability veectoer spac: Vo be the external direct
sum of the normal probability veclor sreces Vl”"’vﬁg For eichi 1 define
7 wm VOt . j
i from ¥V to Vl by

I4 by
shere ¥ = (T, 4000 3Vi/-
Wwile T ( 1 2 N)/

For cach § and each v, in ij there 1s & bona fide conditional
norzel rrobability meisure on ¥, given P .V = v . lience fer cuch | wnd

i omd ewcn v, in Vj Lhiere is o concitionnl norwni rroebubllity e s e

!
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for 211 v, in V.. Then
. i i

. B 8 4
(vi’wj>ij = (Ti viﬁTj wﬁ) .

For any v in V,

H(v,v) = EE:: Q. (v, ,v. ).,
7 H T

.

¥

rs i ] ]
w2 qe. (TL vy, TL v,)
13 qij i i3 3

i
L

fT T a1 v, em) (T) v em) 2 0,
w13 i

Furtiermore,
H{v,v) = ¢ =é> for cvery m and every i, (Ti vi,e(m)j =
= 1, Y 12 < (1 v, ) Vi
for every 1, 2 5 vi,e(m) - (’I‘i vioTy Vi

v, )., = L

- (vif 1741

:Q}for every i, v, = C

:@}'v =C ,

which proves the lemua.

The form 6 , ) will be called Lhe Hadamard inner rroduct on V induced
by @ ang ( , .

A speeisl case of the lem.o is the known result that tne Hacemord
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Nygher
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4

preduct of two positive definite matrices is positive definite., (See

Halmos [7], Theorem 2, Section 69.)
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bl

The conditiocnal expectaticn B § j( R Ki} 15 a linear functional
il . .

on X,
73

o

anc can therefore be represented as (dj’xj)jj’ for some sultable
d.s i-et d = -
P {dysnes,dy)s

et S pe the linear traensformation from the external direct
i |

sum Y = 2. X

. into itself defincd by

) = \ji
LS x]j Z{_l qij R X -

. A A A - a
Theoren 1. The Bayes team decision function o = (q’l,.e,,a{N) is piven

by
- n, ES e
q‘i(gi) :\ (aiSf Si)ii 2
A -
where a = (2123“ ”g}ﬂ_) =5 1a,

Proof. Surpose for the moment that S“l exists; then it is sufficient to

Al
show that o as defind above is stationary, i.e., that

xyf e e§8ela

R ~
E‘%%’* a5 855 5445

for 21l §J un¢ x.. (See Sectionli 3.) Applying Sectionlll.Z.), this beccmes

PN

i

ALY 0y g :
qij (ain xj;ii (djyxjf ¥

or (Zog . m 2 oy w(d.x.). for all i, x.
i ng lgg-f‘jz’jj ( jy.j)_’ d -19 .) h



2

N 'ji ’A = b
or Zj_?_, qy B8 s d, forall 3,
or S g =d ,

which is sou.
It therefore remains to show that S 1is non-singular.

For any y = (xi,.;.,xﬂ) in Y, define the quadratic form,
i
Hy,y) & E?JJ qla *y 13 2;_ (x S 1S le)ll .

5 is non-singular if and dn}y if H is positive definite; but H 1is the

Hadamard inner product on Y induced by @ and the imner product (on Y):

Gy r 57 G s

i,j=1

since ( , )4y is positive-definite, it follows from the lemma of
Section III, 2.4 that H is positive definite, which complctes the proof.
One way in hich a normol distributiocn on X con arise is as
follous. let Z be a normal probability vecter space that is a direct
sum of N non-singular normal probability wector spaces Zl’"”’ZN’ with
known cévariance structure, buﬁ with unknown mean. Hoﬁever, for each i
let X, be a linear subsrace of Z,, and suppose that E 3.1 is lmown
to lie in Mi; i.e., the set P «o¢f probability mcasurcs p on 2 1is

the set of all normal distributions on Z that have glven covariance

structure and such that & g 5 is in Hi for each i. The set P



can therefore be represcuted by the direet sum M = E:i:&i, and X can
1
be represented by the direct sum ¥ ® Z. If the a priori distribution

on } is itself normal, this induces a normal distribution on X,

Exauple. Suppose that the tea. s a2 whole has available te it a randon
sanple of K observations from an WN-variate normal distribution with
unknown mean and knovm covariances 'Crijs but that for every 1, member
th

i knows only the samplg values of the 1 coordinate, and on the
basis of those values wants tco estinmate the corresponding mean Ay
Suppesce further thot the a priori distribation specifies that ,Lil,_“.%g(ﬁ
are independent and normally distributed with means all zerc and variances.

2 2 - .
Bj},;@, ¢y y resvectively,

In the notation of Theorem III,1 this situation can be represcnied

as follows:

1. X {1 =1,...,l) is o K-dimeusional Cartesisn spuce with points

2, Xo is an Nedimensional Cartesizn space with points

m = (mljuvu,mﬂ) .

3. X = L. 1is 2z normal prebability vector space such that for



(where Shk is the Kronecker delta) .

Biy fy= 2’12 Sij .
b, Ti'(x) =my,. 1= Tyene,l o
It follows immediately that
S
551 §) - 53y S T By
2 ) }‘j‘; zp &y -

A sliput calculation yields, for i, j = 1,.. oy |

K 1 h -y h = - -
(eg 575 )53 Ti3 % ?:h (g = XMy - 730 v ey % 930
- _ 1 h
where s % X Z; xi
c, ® A 3
i 3 3
L K¢S
G353
X ¢ N

2Ssy At h oyob = R
(Kisxj)ij < ¢ LK XE (x; - xi)(x_j - X) v ey €y Xy Xyl
i * 33

{for i ¥ i)

«

3



. 0, .
R x E-—]“'-'ILX
¢

w (1l =c. c 0% f for i i)
. (1 -cy J) 5t (for 1 # 3);

3

where £ = (1,...,1) im 23 .

According to Theorem III1.1, the Bayes decisicn function 2 is the

solution of the linear system:
Z:: 1§ . .
- qijﬂ'ja.gci. ,}”'"'1,.3..,3-:;
i

)

q , &
L Lop) 5=1,... 0.

{1-c
.,wl_ _ - 3
33 a‘} + 51#3 q:Lj 5, La (1 c; © )a £} = ¥ CJ

A : 0 o
Hence every aj has the form aj f, where aj is a scalar, and

a’ = (aigma,a§) is the solution of

o q..0 .. (1=c,)
o L 0 33731 0703 .
I s A R .
qJJ J iﬁé:]:-l ql.] fii cl ji ch > d PR
o Ke,
Let bj —d 5% , then
33
Q Q =
S fx.).. = b, x,
(as 235733 737

. . . ‘s 0 CRU
and the corresponding linear system determining b~ = (bgp,,,bm) is:

o 2 O
Q.. & 42 b. * e~ b= o, {1 - } § = I S
I 733 3 3 1#5A qla i3 717 Y33 érﬁs ( “3/ 0 9 beoeests



2+, 0 o _
T ayy 3 Aoy 2l ay g b < gy 6y (o)

Letting F = ((qij oy

j))’ D = the diagonal matrix with diagonal entries

q the last

Jd
system of eguations becomes

, and C = the diagonal matrix with diagonal entries

Cj,

bO[FC? + D(I-C3)] = £ D(1 - C) ,
where f now denotes (1,...,1) in RN » Hence the Bayes decision
function is

Qi(gi) O

where v = - eI+ L e? Pyt
Wihat happens if the a priori information is fvague®, i,e., if

’a’i,“., Z’E all become indefinitely large® In that case €y 50005y all
o
approach zero, and therefore b  approaches f, that is, the best decision

-~

function for member 1 approaches the sample mean g i of the values of
the corresponding ccordinate. (See also Examrle 3 of the next section,)
A similar effect is produced when tihe sample size K becones large.

It should not be inferrcd fro. this particular example that, in
general, as the a priori infomation becoiies more and more vague, the
Bayes team decision function tends to a functi.on thiat is independent of
Q. The next twc sections discuss an important ¢lass of decision functions

that arc linits of Bayes decision functions {see Lemsa 2 of Section III.5),
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L. Xarkoff Decision Functions.

This section and thie next deal with a problem that is the team
analogue of the one~porson problem of ninimum-mean-square-error linear
unbiased estimation, or the "Markoff problem.® In the situation to be
considered, each tean member observes the valuc of a different random
vector. The covariance étructure in each vector space is known, as are
thc.covariances between the vecters of different members, but the mean of
the N-turle of vectors is kno'm only to be in a certain linear subspracc of
the direct sum of the N wvector sypacces. Each team member wants to
estimite 2 given linear functicnal of the mean of his vector, the loss
funetion for the team as.a whole being a given quadratic form (determined
by Q) in the errers of the estimatos. Suppose further that the team wants
to uée cnly estiﬁators for which the risk is bounded as a function of the
mean, and finally, supposc that tie team members want to keep their
estinators simple and therefore restrict thomselves to linear estimators.
A Larkoff estimator for thé tean is one that miniwdizes the risk for all
possible values of the mean, subject to the two conditions of bounded
risk end linearity. One result of this section is that the Markoff
problen for the tear is, in a certain sense, equivalent to an ordinary,
one-persoil, Karkoff problem, involving all the vectors together, in
which the covariances betweén the vectors are weighted by the corresponding
elements of the matrix .

The requirement of bounded risk is close to the minimox principle
in spirit, and, in fact, the next section shows that lLarkoff estimators

are zctually minimsy under certain conditions.



whife

let the space Z of randon events {see Section 1.1) be an
external direct sum of N real, finite-dimensional vector spaces
Zlgqg.jzﬂg and let & be a subsrace of Z. Let P be a set of

probability measures p on Z  such that:

1. For every p in P, Z is a probability vector space under p,

such that each sumnand Zi is non-singular.

2. iny two p's in I inducc the same inner product on Z.

3. For any p in P, E(gip) is-in L. For amy m in i there

exists 2 p in P such that E(glp) = m,

The assumgtion of non-singularity cf every Zi does not entail
any loss of generality, as will be shown later.

The set | A of allowable decisicn functions is the sebt of all
 such that each « ; isa (possibly non-hoiogenecus) linear functional
on Z_ . The function ¥ is assumed to have the form of an Nw‘buplé of
flinea;: functionals Ti of E 3 5 {2 slightly different formulation
will be considered rlatar.,) Sincc each Zi is non-singular, ~fiiE gi)
can be represented as (gi’Egi)ii’ and feor any decision function § in
A, C(i(zi) can be represented as (ai’zi)ii + a;, for some &, in Z,

0
and real ai .

The risk for c{ is

ol

N : i
T - iy - - iy 3
%:f Gy Hags 8§50+ a5, - (ggf §1130L(azs §50 7 a5 (gyoF 537351

F =

[3
i + i {a, - ; ' jia, - Lg.) a, ]
g % (agagls g % Gy blag = geB §5)55 0 e Jilay- g B8 0 e ]
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The funetion c{ will be calied a bounded-rigk decision function

if the above risk is bounded as E % varies in M, The Markoff problem

is to choosc a bounded=risk funetion that minimizes the risk for all

)

EE in K ¥/

For every i, let mi be the set of all 2z in Zi such that
for some m = (ml,a,.,mﬂ) in M, Z; =m . It is clear that L; is a

L .
linear subspace of Z.. Let Ei dencte the orthogenal complement of
Mi in Zi; then ‘& is a bounded risk function if and only if, for cvery
i,
x x ‘.L
(ai - gi) is in hi .

as will now be shown.

Suppose, on the contrary, that for some i, there exists an my
in B, such that (a; - gi,mi) %G, For every m = {my,een,my) din ¥

let vim) = (vl(m),,g,,vu(m)) be defined by

vj(m) s (aj ~ 850y

J)jj, SIE SOPIIN

then there exists an m  in K such that v{n®) # 0. Furthermore, for
all real r, rm° is in K, and w{m®) = rv{n’). Now observe that the
first term in the last expression for the risk does not depend upon K g s

and the secend term, with F.g = m, is equal to

Y The idea of replacing the fardilisr constraint of unblasedness
with the equivalent but intuitively wore reasonsble constraint of
bounded risk seems to be due to L. J, Savage.



?
(v(m) + a%) a (w(w) + &%) ,

and hence, for m = rm® the second term is equal to
(v(m®) + a% @ (v(rn®) » a°)

§ ¥
= rzv{mo) Grm®) + 2rv(e®) wa® + 2% @°

o . - . . .. i
where a° a.(aigu,.,am}, Since { is positive defirite, v(@®) w(m®) >0

e

therefore, the above expression is unbounded {from above) in r, and hence
the risk is unbounded on M. |

With this established,it is evident that no bounded risk'function
is adrdissible unless a;ﬂ='0 for all i; and whenever a bounded risk
function is referred to from now on, it is to be understood that a;|$ 0

for all i. The risk for such a decision function is therefore

T ha H{a,a)

o q;. (a,,a,)
3 ij “itj

where U( , ). denotes the Hadamard imner product on 2 induced by
@ oand ( , ). (See 3ection III,2,4.)

let T be the interval direct sum Ei T, ond et g = (g, .m);

then a i3 2 solution of bhe Lorkoff problem if and only if it minimizes

H(a,a) subject to {(a-~g) in N,

v
T 2

Let i be the orthogonal cemplement of N in 4, relative to
the ianer product H{ , ). Then it is clear that a 1is also the
seclution of the crdinary iarkofi problem of estimating the linear

functional H(g,F §), with Z° a covariance space with imner product



H{ , ;, and

with E§ koo L

s

E"‘ Fad
FLE

. i
is well kncum ,~

sclution of this last problem s

£y N o f P
Hia,w) = tig,Pz)

P is the H=orthogonadl px

b oawedbivlying either. 2 or H{ o,

Az in Secbion IIX.2, For esach 1, defince the lincar transformaiions
T. ot T,
i, on . oyl
i i 7
] ir B w. ) o =
L. if = le,”,z?‘,}s Lo T T
i :
= K = {{; s Y
Lo rli?rj (L,.c,Oszi_@\;; ERFRre ES
Eal W) . f‘ (LY ' 1 o -
Than for tho sclution o of the Larkefl rroblem,
N : A B v
(1) a8, = Tis,g_
. i e . £
= QP Lo TET g,
i1 .s. :’-‘5,‘-{}, b R N |
= 8, .0
o
nlobhouch reeudt is stated in mabtrdx notablon,

i/ . . N
“ See aitken (1]
gan be brunslatoed inhe tho

e
o

=y
(v 3
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where U;i denctes the adjoint of U (in Zi} .
For a given 1, when will it be true that there exists a trans-
formation Si from Zi into itself such thut, for all g in Z, the

best decision function for member i is {gi, Si gi)ii? 4fecording to

equation (1) this will be true if and only if,

(T, Pg}zi)ii = (g, o35 zi)j for 21l g and @ ,
or Ti Pg = Si g: for all g,
t 3%
or ‘I’i sz . ij gj = 3, Eio for all g3

- - i
in other words, if and only if P is complebely recueced by Ti(zi) ang

5 ! / . s
2 T.(Z.). {See Halmos [7), Section 28.)
R

In particular, the lalier is trus if K equals the direct sum
’ . L, widch can be seen as follows. For any = in Z, let 2 =x+ ¥,
it - -
whore x dis im L and y is in ¥y x is the Heorthogonal projection
At 4

of z onto I, sirce ¥ is by definition.the Heorthogonal complegent of

L) * ’ '-é:; H 3 1uy s 4 T TP Y . 5 = ~rry e
R%,}is hia Un the other hand, for every 1, 2, = O * 0, where i,

' 4
ig in Y, and zy s in : bulb n o= (“1?“°’nﬂ) is in E : Lis and,
i

~ Ev
gince L = §;““Ei’ n = (mlgﬁc,mi} is in 1., Hence x =m, i.e., the

-

projection Pz of 7 opte & counls (Plzl"'3FNZN>’ where Fi iz the
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projection, in Zi, onto Liia,

Pxamrle 1. If the random vectors g'i are uncorrelated, i.c., if for all

i # j, and all 25 and Zj’

o ) =
(egmylsy = O

s
then it is clear that L= ﬁ:: I'.Ei.,
_ i

Exanple 2. If the motrix ( is diagonal, then H(z,z) = ) :qii(zi”z‘i)ii’
i

and it is therefore clear that x,arZEizagf
3

Fxemple 3. Suppose thub oll the spzees &, have the sawe dimension, that
11 the subspaces hi have the saxe dimension, and let "71 J E be o

family of lincar transformetions such that for cvery 1, j, and X,

1. Iij is non-singular from é.j onto  Z.

2, 13 gk . gk

. . 5
3. M, f(xj)c

Suppese further that there exists a symmetric non-negative semi-definite

N x B matrix ((G’“ii)) such thosn, for every 1 and J,

- ' ) . 43
{For such 2 matrix, bii. nocossa~ily egual 1 for a1l i, sinee bothh R

g I ars the identity tronsfommation on Zif,) It follows thab

Voo 7Y
wl GBS N
} TR

R S e b
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Freof. If x 1is in > (M, , then for every & in S VH,

4{x,2) - Z 9 5 (xlg,z‘] i3
- L%J " x;, j)jj

i1
- .. 1 ..
% %3 631 ( xi’zj)sa

because Ijl xi is in M 37 for every 1 and J.
~t
On the other hand, x in M dmplics:

>
For every z in Zal, %j,qu (x 0% )ij
or ‘ri_,(z.xz). =0,
_ e B TR
- g e I
Hence, for overy Jj, and zy in hj, (?qu xi,zj) = 0,
1§
%:qi (K:. Rzz}u 2
- S
z;j’ %y %43 Gy, T Byrgg =V

Hence, for cvery J, k, and z in B



By the lomma of Sectlon IIL.2.4, the iabrix ((qij Gij)) is positive
definite, and hence for everw i, k. and gz  in .Mk-L,

:“]{
22k
(2,77 2,

}.“1‘ = O +

Hence, for every 1 and every Zy in M

(gemdsg =0 s

i.e., x is in S:::E%} which cemplotes the proof,

Two extreme special cases .. thio example are obtained if cither
{1} the vectors Si Care uneorrcelated ((q’ij}) is the identity matrix),
{see also Fxample 1) or (2) the vectors fi are perfectly correlated
( ;5= 1 for al;' i and . . T stbter case is, of course, essentially
equivalent to the situztion in whick 211 the beoum members observe the sauc
r#ndom vector,

A third speclal caz of th.a exarple is obtained if the team as
a whole has-available to it a random sanple of cbservations from an N-variate
distribution with unknown meu. and Xnoom covariances ng; but, for every
i, member % knows only the zuple - .lues of the 1% coordinate. Thig

is the same setup as that or cae e ie of Section I1l.4, and if, for

examrle, each member wants - estimove the mean of his corresponding



2, e

coordinate, ther he would uge tae sanple mean for Lis coordinate, as in

that example in the case of infi W ely “ogue' a priori information.
R A
The following example describes o situation in which ¥ is

S . . . ) ' ' ,
net equal to 2y H‘ij“ The sitvobicn is oloo an example of “sharing

independent data’ (see Section I7. 3).

¥xanple 4, Suppese there are only wwe tc i members. Iet §l’ §? s anc

§ 3 be independent and identical.y dist. buted random variables vwith

enknowr mean, and vardance 1, and wppose that member 1 observes

%'J
e

ey ] I ot o LR A Tras
matrix of §1 and §2 topother is the:ofore

o
4

§‘1 = (%P %2), and membor twe ntsarve

1 ¢ 1 90 i
¢ 1 ¢ ¢ |
]
1 ¢ 1 ¢ %
t
O ¢ ¢ L | .
hem et
1 q
Suprose that G = , and onr ear s rsmber wants to estimate E T e
\q l g

Harked! decision function a = (a.; 112; e 9a22) therefore m.nimizes
O - e

aa) = 8
Hlaa) = o a5, 7 29 8y ay
sulriect to the constraints:
Qo ¥ BT o, ®= 1,
13 1z "zl .

The sclution is easily found to bhe:

(i 1363}‘, The sowarianece

The



for merber 1 is his samplo

i

Nebe thut i o

L

mean § . If g >0, then the loss is greater the higher the

i
{positive) correlation between the errors of the twe members; hence

less weight is given to tiue variabls that is cbhserved by both.

The Case of 5,'s with lion-Definite Covarisnce Structurco.

bute

inv eass in which some of ithe sumuands 4, have covariance

: N . marineror e i TR A R P
structures that are nob definiic con bo reduceu %O the definite cas

T

»
o

‘x 3 i veri
4% XAOLLOWS .

. i o [ 3 Ly T RN,
qobe thob the Marioff problen, stabed in the dual spaces

4=
e
ry
)
or
w3

T SN B
avbjeot o &

e i

PRS2 e

LSALANRE

\E

. W (v} . o .
in (gi+Mi) for ail i,v

. * . &
where the bilinear forms L, ;. are defined by:

~ 5 amsl S et e ol 2w 70 and w. 3 Z'.g and vhiere
for every 1 ant J fend every #1509y anc Ej iu 3% and vhere
T Wilator (3 A
i, iz the amiudbilater (in 4,0 of oy .
1 i - 1
. e e GRS 211 =. zuch tho
Sov every 1, leh N, e the subspzee of asl @, sueh thot
. ~ , poag SN, T ek Q—‘: R ey e sunshans
in Sectlon ologe.diyp 200 24 be any obhel subspace
w 0L @50 L. be tiie projaction onbe
3 h i i’ i



4o Then it can easily be verified that, for every i and
j. ané svery zi and z

b

J}

B ST 3 3L
. .. = (K, z., K. 2.0.. .
( i? Zg)lj (\1 i* vy gjlg

It follows that any solution of the following probler will also be a

solution of the asbove Harkoff yroblem:

) 5 DI N ' W 3 o
1343 M 3 i
"Hinimize %j 9 5 (bi, bj)ij subject to bi in (Ki gi+Ki(Mi)) for all 3.t

Therefore, according to the discussion of Section I1I.2.1, sach Zi can

y oy I
573 where Gy

2 yanlac %0 1 ; - AY ® -
be replaced by N, M, by Ci(li Hggg and g, by Cifhi £

is as defined in that section.

The Case of ¥ Defined in Terms of a Parameter Space.

In many problems the set of possible values of the mcan ES§

is
defined ss the imags, under a linear transformation, of a “parameter spece.!

Thus, let V be a vector space; for each 1, let Bi bz g linear trans-

formation from V to Zi’ and suppose that for every possible valuc of
E& there ds 2 v in VYV such that
o

Egi = B,v.

Suprose, further, that each 'Eﬁ is a linear functional on V. The
risk for bthe ldnear decision function @ , given that

( - \:Mﬁg,n ‘J\j}

.
g
4
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i3

Hence there will exist a linear bounded-risk decision function if and

only if, for each i, there exists a linear functional o’y on Z;

such that, fop all v in V,

«; (Bv) = %0,

or
(Bic(i) (v) = &(v) ,

* L] L) 2
where B, is the adjoint of By Hence a linear bounded-risk decision
function exists if and only if

By = By
has a solution, for every 1. Note, however, that if the latter is true;

then for every { there exists a g5 in Zi’ such that

(g0 By Vg5 = ¥

for_al]_v in vy, Representing ¥; by C\li(ﬂi) = (a;,7;)55s 1t

follaws that 4 = (g )} is a bounded-risk gecision function if and

19 L1 ,a}I

only if, for every i,

(85 - &> By V)33 = O
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for every v in V, i.e., if and -only 1f, for every i, a; - g is in
M:‘ , vhere Mi = Bi(V). Note that the set X of possible values of
E€ is a linear subspace of Z, and that the definition of the subspaces

Hi Just given coincides with the earlier definition,
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5, M¥inimax Properties of Markoff Decision Functions.,

In the decision situation described in the previous section, it
can be shown that the Markoff decision function is minimax in the set of
all teom deeision functions, More generally, suppose‘that théfinner
product expressing the covariance structure is. knovm only to be one of
a class of such inner products; then for certain such classes there |
exists a Morkoff decision function, relative to one of the inner products
in the class, that is minimax in the set of al¥ team decision functions.
Three ecases of this kind will be considered.in this section. Theorem 7
contains, as a special.casg; new results for the one~person Markoff
problenm, \‘ .

As in thé prew;*ious 'seétion, let Z2 = ZN;\' Zi be the ext-erné.l

. =
direct sum of N real, finitecdimﬁnsiona; vector spaces Zi’ and let
H bea subspéCelof Z., let é%a be a set of non-negative inner products

# ’ .
R on the dual space Z , and for each R let § Rijz be. the corresponding

set of bilinear functionals such that
* S
R(X FYa ) = z Rij(xi’ y-) o
13 -

The statement that Z  is a dircet sum of prqbability vector spaces 'with

¥ on '
inner product B on Z will meaw that

% ® o . S CE
By gl wy) = Blag(§ g = BE000y(5 5 = BEIT

Given é? , let P be a sel of probability measures p on Z

suchk thab:



1. For every p in P, there exists an R in @.7 and an w im ¥
such that Z 1is a direct sum of probability vector spaces under p, with

#*
immer product R on Z°  and mean E(§1P)"“m,

2, Forevery R in ge.nd m in M, there exists a p in P
such that Z is a direct sum of normal probability vector spaces under

#
P, with imner preduct R on Z and mean E( S\P) = m,

For any R, let H, denote the Hadamard inner product induced
by R and @ E.((qij)), For every i, define Ei as in the previous
sections, and let B = 2;2 Mg {recall that E; is the annihilator of

i
M. ). For each i let gix“bg.a fixed linear functicnal on Zy (wherg
Vil ) = g m ). ‘Then accordiﬁg to the result of the previous‘section,
here repnrased in terms of the dual space, & is Varkoff relative to
R if and only if it minimizes Hﬁ(a,a) subject to {a - g) in N,
Reeall that multiplying R by a po%itive constant does not result in a
changs in the co?responding 3,

The main tool of this section is Lémma 3 below, which is an
immediate consequence of tho following two lemmas. The first of these

is a trivial result which- bolds for general risk functions.

Lemma 1. If the risk %’(cy,p) sk forall p in P, and ¢ is
g
minimax in a subset P of P on which sup ghy ,P) = k, then 4 is
D
minimsx in 7,
The next lemmo is a generalization of the well-known result that

the minimax estimate {from a randon sample) of the nmean of a normal
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H

distributicon with known variance is the sample mean. (See Wald {15], p. 142,

Hedges and Lehmamn {16], Theorem 6.5, and Girshick and Savage {6].)

lemma 2. If (Q? consists of a singlc non-negative imner product R such
that Rii is positive dafinite for every i, and if P contains énly
normal distributions, then the Karkoff docision function relative to R

is minimax in the set of all decision functions.,

Froof: The Larkoff decision function bas constant risk; therefore, to
show tiat it is minimex it is sufficient to show that it is Bayes against
a sequence of a priori distributicns on P,

Adepbing the “parémcter space™ formulation (see the end of the
previous scetion), let V 5; a\vector space and, for every i. let Bi

be a linear transformation from V . to Zi such that the linear subspace

of points (Bl Vyeesly v) in Z, as ¥ ranges over V, is the set of all
possible values of E1§ . It is clear that F can be represented by V;
therefore, let Roo be any positive definite inner product on V*, the
dual spacc of V, let r be any positive real number, and suppose that

thie a priori distribution on F 1is represented by a normal distribution

on V, with mean zero and covariance structure determined by:

3 3 ' * oz
Blv »)(w ) = ¢ Roo(v W),

>

for all v and w in V. This distribution, togcthier with the
relations

5 Qg vevlen, v

¥ * Nt %
y e — =73 = ?
E ?zi{ gi Bi V)yj {gj Bj V,Ji Jj VE Lij(zi,yj) 3



b

* #* %, * ] :
for all i and j, and 2ll z; in Zi and T in Zj’ deternmine a

normal distribution on the direct sum X = V® Z, such that

B §i a« O,
3 e TN * % ¥ %
E(zigi)(ngj) = Rij(zi’yj) +r ROO(Bi zi.l.Bj y,j) L]
* 3 PRI
E(zi gi)(v V) =r Rb'o(Bi 2o 4V ) s

for all 1i,3, z; in Zys Yy in Zj and v in V , where B, 1is the

adjoint of Bi'
For every i, et - ’6\‘1 be the linear functional g; in V;re

ky

™
According to Theorem III.1, the Baycs decision function is linear. The
Bayes risk for any linear decision function a = (al,.“,aw), with a;
. *
in 4., is
i

B 320 ley §5 - 60 8- g

= ? qi,jLRij{ai’aj) *r Roo(Bi ai’Bj aj) - Roo(Bi ai,gj)

= T B'oo(gi&Bj aj) +r ROG(gig’gj)]
T Y+ r $q, . R_(B B 5. - g.)
-+ 5 Byylagang) o r X S0 Root\Py 85 < BysTy B3 7 8y0 ¢

Hence minimur Bayes risk is the miniwur of the above expresslon with

respect to a, As r dincrcases without limit, the minimum Bayes risk



therefore approaches as a limit the minimnm of E : qij Rij(ai-’aj)

subject to the constraint:

5 5 :
2;3: 9 5 Roo(Bi a; - gi’Bj ag = gj) =0 .
By the lema on Hadamard inner products of Seetion I1I,2.4, the constraint

is satisfied if and only if
‘* -
B, a, =g, =0, 1=1,,.,,HN

This is the condition for a linear bounded risk fnnciion; hence as r
increases without limit, tﬁe‘Bayes risk approaches the Markoff risk as
a lirit, which coupletes the proof.

For any’(homogeneéus) bounded-risk linear decision function a (and
therefore, for any Markoff decision function);the risk function depends
upon p in P only through the corresponding R in 52?‘, and is in
fac£ equal to Hp(a,a); because of this the risk for‘a bounded-risk linear
. decision function a will be denoted by ¢(a,R).

Lexmas 1 and 2 result immediately in:

P Fa)
Lemma 3. If & is Larkoff relative to R, and if P(&,R) < ¢(4,R) for

all R in éﬁ?, then A is minimax among all team decision functions.
A
If & is minimax, and Markoff relative to R, as in Lemma 3,
then although there may be no least favorable a priori distribution,
A

B is, in a sense, a least favorable covariance structure. In the

following three theorems three different classes Cﬁ? are considered; in
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each ease there is some karkoff decision function; relative to a least
favorable R, that is minimax.
The next theorem is the tean analogue of a theorem of Hodges

and Lehmann ({16], Theorem 6.5).

?heorgm 5. Let B be a fixed non-negative inner product on Z% such
that R, is definite for every i; let k be a fixed positive mumber;
and let é?? be the set of all c¢R such that O <c¢ < k. Then the
Markoff decision function a relative to kR is minimax. (Note that

a does not depend upon the value of k.)
Proof: For-any ¢ <k,

f’(agcR)‘* ¢ Hyla,a) = k Hyla,2) = @la, kR)

" 50 that Lemma 3 applies.

The next theorem déals with the situation irn which the eovariance
structure ﬁf the random vector cbserved by each team member is known, but
the covariances between the vectors observed by different tean members

are unknown.

Theoren 6. For each i, let Rgi be a fixed positive definite inner
product on Zz, and let é?' be the set of éli ucn-negative inner products_
R on 2" such tﬁat Rii = Rzi for all 1. Then there exists ﬁ in

(;@ such that the Markoff decision function 2 relative to '% is

minimax,
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Proof: Accordlng to Lemma 3, the theorem will be proved if it can be
shown that the function s’(a,R) has a saddle polnt (minimax) for a
in (g + W) andR:mgﬁ ‘ |
et “A be the set. of all By such that 'R is in &, and

:1et CZ be the smallest closed convex setb contalnlng all a -such that
'a is I.Earkoff relat:.ve to R for-”some R 111 @ : It lS clear that
it is sufflclent to prove that the functlon H(a,a) 'has a:saddle point
for & in A and_ H in ﬂ}( : Accord:l.ng to a paper of Kakuﬁanl {103,
such a -saé_idle pomtm.ll exist if fo:f some topalogies on' (L and ‘;1'{_ N

1. H(d,a) is-éontifimus o 4 XK. |

2. A and 7{ are each \égnvex and .compact.
3. For every a° in a the set of all H that maximize
IH'(ac.’,ao) on 7{ is convgx.
For evéry H® in % , the set of all a that miniwize
#°(a,a) on A is #on‘qex.y |

Let R° be the irmner product on Z  defined by

r'RO(aJa) “Z .Rii(_aj_sai) .
. i

—/ Although the conditions given here are not explicitly written out
:m the paper cited, they are implicit in thé proof of Theorem 3. Kakutani's
result is not the most ‘general saddle-point theorem available, but is
sufficient for this proof. For references to other literature on the
subject see Debrue (&].
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note that R® is positive definite. Relative to Bo, one can define, as
usual, a self-adjoint transfcrmation H, from Z" into itself, corresponding
to e_a(_}h_ H{ , ) ‘ia’ 7{’ by

| H(—a.;b)-..v R‘-’.(a, Hb) s
for aJ.'L a. and b in. Z Ha'v:t.ng made th:.s :Ldentiflcatlon between 1nner'_
'Products and tranoforqaatloas it will be ca__ve:'."ent to _sbhink of '?-{ as
a set oi‘ ‘c.r:w::.nsforma‘lr.:lﬂcmlrls° Cons1der dH as, embedded in a vector space,
in the usua.l way , and define the ,pos:ntlve dei‘l_nl‘be :l;nnep p;*oduct

HeK = trace (HE);
thé"-re'shiting topology on aﬂ is the one ‘that will be used-in this proof
' It is easlly verlfled that’ 7-( is convex and closed* furthemore, aH is

. bounded because for any H in 7{ (recall 't.hat H . is positive definite),
| trace (Hg) < [trace (H)}‘?' s

an_d-_thé- trace of H eq\ml_s' t = E , Qs By where - n, is the dimension

.

of Z.. Hence GH is compact.

T

The topology to be used on d is the one induced by R - For

any H in Y let r(H) denote the smallest characterlst:.c root of H
_with respect to _Ro.. Let a° be some fixed element of ﬂ then for

any He=H, in Y , and for 2 Karkoff relative to R,

R%(a,a) o(H) 5R°(a,lla) 5_.R°(a.°,lla ) < R °(a° ,a °Y trace (H) .

On the one hand, trace (II) has the same value, t, for all H in ¥ (see
~above), On the other hand, |
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ing r(H) zr >0,
H :Ln
which follows from the, cqntindity of- r(H) on Y , the compactness of

‘H 5 and the fact that r(H) >0 forall H in Y . It follows that

;:-,.,:}' (_a ’a )

for a]l a that ére Harkoff re]atlve to sc;me R in Cﬁ..ﬁ_—;},";h‘erefax.'e :

a :|.s bounded and hence compact

For any f:uced ao‘ in d_ the function tR (a JHa ) is llnear

on - 7-{ » ‘which is convex; hﬂnce the set of Il's that maxjmize' this
functlon on GH is convex. \For any f:.xed H® in 7{ there is only
one a in GL that mnm:.zes\ﬂ (a,H a). Hence condltlon 3 is satisfied.

r° (a Ha) is clearly cont:tnuous on Gl X ‘H s whlch complet.es the

-

.px_'oof of the t.heoren.i._ N ‘ . _
If not.hiia'g.'at allls known about 'R, that is, if (2 is taken

to .be the class of “all,_possible inner products . on Z*., then the risk

for every decision fungtion_ is unbg)u_nded 6:1 (”? '.,. "To gét. a finite
minimax valuc, the. class é’\/ must be "bounded" in some sense. O_né such
sense is bro’vided by the coné_ept‘ of phe norm of one quaﬁratic'f.‘o'nn with
respect to another. Let R® be a given pésit,ivg- definit.e inner producf _
on Z', and for ary inner product ﬁ, define the nomm of R (ﬁﬁh

respect to R°) by

O

'uﬁ\g s ma.x R(a,a) .
) R (a,a) =1

Theorem 7. Let (%;be the set of 811 R such that [{RI < k, where
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k is a given positive numbﬂr, and the norm is with resps.ct to a given

; then the Markoff decn.slon i‘unctlon a relative to KR is minimax.
Kotgj that a does noﬁ depend upon the value gf k, but @ oe$ depend upon
o . : _ _ _

_  (This last fac‘.t mlght cause some uneasmess about the applz;cata_on
of the nu.nmax prlnclple in thls 51tuat10*1. In practlce’ o thlcally _
is WJ_]J.lng to. grant that - 4 is bounded’ somehow but does not have 8 -
jxie;:-j pieéig'é idea about ‘e nature of the bound’ Whereas this fheorem3
shoxs t_hét_ the i nimax déc'ision‘ functibﬁ is. qui_te-'sen'.si't';;re to .t'he‘.

_nature of the bound.)

?roof: Since. Q¢ 1is pesitive definite s there .e;d§t iqi(n)-‘i ,i=1 '

LA |

such that |

qij - ?%(n) qj(n)

for &1 i and j. For a Markoff relative to XR®, and for any R in"

£,
g’(a R) = qu Ri-j(éi_’aj)
= E:Z'f Ru(qi(n) 1:9(n) a,)

n ij

< Z’\ml\ E:’R (ql(n)a ,qj(n)a

= WRH 2’3 qu(n)q (2)R] 13(23525)



1

. NRH S ° .
. “R“ gj: Q 4 Rij(ai’-'aj) ‘

A

< kilﬂo (s,8)

R

wa 3 apBlieh to prdve the tHeoreim: |
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WO Eién_lples '63&‘ no Interaet)iOn betieen Subfields

‘ As was, poln‘bed out in Section 1.2 _, it is only under sPeéig_
c1rcumstances t.hat the mninmm Bayes risk, as a functlon of %"“’%E’
can be expf-essed as a sum of i'unctlons {?l,...,vm, such that each vi‘
depends upon - % alone, in particular thls can be done if the payoff

' funct.io an. be expressed as a sum of funct:.ons \.11,....,.1.1%‘I such that for

s X each ui 5 J,S a funct:n.on of ai alone. In the general quadratlc
. case tfus means that Q{x) is dz.ag;onal a.€, ' |

In th:l.s sect:l.on two other examples of lack of mteraction between,
_ 'sub.t':.elds m.l be given, both of‘ thenm depenaent on the assmnptlon that

T Q is constant,

6,1. Independent Subfields.
Sﬁppos'e that there is soime fixed a priori distribution on P.
For each i let Szf be a i‘amly oi‘ subfields of . ¥, and let k? be the

Cartesmn product -ﬁ rfi, . ASoUme that. evexgg ?* (Qj,l,..ﬂglﬂ
o i“‘i

: m Xf 13 a s'tat,lutlc 3_.;: :r.ndependent ..:et of subflelds. Under this assumptlon,

for any ‘ij m z? the cond:.tlon of stationarlty becomes (see Section 11.3):

qiict/if %’ ql Eq/ = EF[& “%’l], for every i,

(where S = \KQ);'or‘

chf-'-(';; %Eigil 7’313" %5‘313 E“\}jg',for.every i

, _ | A
Tnerefore, the Bayes decision function &/ has the form:



(g'“ c) Dbl. 2

where gi = Bf 51 | i'h J5; D is the diagonal matrix with diagonal entries
%y and ¢ is some constant vector. It is easily verified that ¢

must equal E§(I -==-Q"1D)', so that

:_{'

‘P = 6D” -l E.S(D‘l 'w'ge-*lf)
- gnl..n St e 7.

Note that B« = E Y. & slight calculation shows that the Bayes risk
A . : :
for o is

V(BL) B(S - m\g(o( 0
nuzf -a - ;]1 vy

T %

Thus the statistical independence of ‘7?/1,..., ?ﬁ}’n' has the effect of

splitting the team into N independent one-person teams, the it'h person ‘

having & payoff function \ |
| o \ s

Silx) ~ED,

. : 4 . p A .

w(ag,x) = {a; - <, EYs

. 1

The generalization to the ease in viich the team mexbers can be partitioned

into groups, with statistical independence ‘between groups, is obvious.,

6.2. BSharing Independent Data,

‘Consider the example of Section I1I.3, with the sut:.f:telds'."ul,,.,;l(N



~Fhm

fixed; let 4,,,,/ be the set of all fields of. the form F(Vl onetl) EVN)%/
such that for each i, "-‘k/i is a s'ubfielcllof ‘Z{i; and let pf be thc set of
all 521 = ('q?h, ....,’%) such that for some o in éf = F('zz( u 0\‘/)
for .every i. ' |

Let W 1,-...,”% be a fixed, statistically independent N-tuple
of subfields of # such that ‘?(i C W), for every i, and make the |

assumption: -

Si is - -’Wi—measurable, for every i. -

It will now be shown that within Qf there is no interaction between the
subfields ?/1 . .
For every é;{, in X?\, and for every i, it follows from the

asSumpt.J. ons that:

RIS SR AN

1

",‘S:i = E(Sil"]/i) .
By Section II.3, the Bayes decision function is

« = o607t + S@r-oty,

where D is the ulagonal matrlx with diagonul entries q:L and henco '

(recall that S¢t= ¥,

l" Ir :( is a collection of oubseto of X, tnen F(’j) denoves Lhe s:‘.alles’f_,:,.,’
field containing ™ . . .



==($==S)<°’1-cu1)+ (§- sm
Under the assumption of this section for, all i¢j,
and for all i and j,
E(Si °’ Si)( Sj - Sj) = 0 °V
. ; ~ ) ‘ -
The Bayes risk for G( is_therefore

v(’ij)r. %i ~\—1—~>Nar(s|‘v’>+q v (51 D]

where ((qu*)_) = Q_'l'. -Hence, within rj s _t,here"i_s no interactioﬁ between

. the subfields ‘7,3 i |
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