Skip to main content

Stephen Morris Publications

Publish Date
Discussion Paper
Abstract

We consider a nonlinear pricing environment with private information. We provide profit guarantees (and associated mechanisms) that the seller can achieve across all possible distributions of willingness to pay of the buyers. With a constant elasticity cost function, constant markup pricing provides the optimal revenue guarantee across all possible distributions of willingness to pay and the lower bound is attained under a Pareto distribution. We characterize how profits and consumer surplus vary with the distribution of values and show that Pareto distributions are extremal. We also provide a revenue guarantee for general cost functions. We establish equivalent results for optimal procurement policies that support maximal surplus guarantees for the buyer given all possible cost distributions of the sellers.

American Economic Review
Abstract

We characterize the revenue-maximizing information structure in the second-price auction. The seller faces a trade-off: more information improves the efficiency of the allocation but creates higher information rents for bidders. The information disclosure policy that maximizes the revenue of the seller is to fully reveal low values (where competition is high) but to pool high values (where competition is low). The size of the pool is determined by a critical quantile that is independent of the distribution of values and only dependent on the number of bidders. We discuss how this policy provides a rationale for conflation in digital advertising.

Discussion Paper
Abstract

We consider a general nonlinear pricing environment with private information. We characterize the information structure that maximizes the sellerís profits. The seller who cannot observe the buyerís willingness to pay can control both the signal that a buyer receives about his value and the selling mechanism. The optimal screening mechanism has finitely many items even with a continuum of types. We identify sufficient conditions under which the optimal mechanism has a single item. Thus, the socially efficient variety of items is decreased drastically at the expense of higher revenue and lower information rents.

Discussion Paper
Abstract

We consider a general nonlinear pricing environment with private information. The seller can control both the signal that the buyers receive about their value and the selling mechanism. We characterize the optimal menu and information structure that jointly maximize the seller's profits. The optimal screening mechanism has finitely many items even with a continuum of values. We identify sufficient conditions under which the optimal mechanism has a single item. Thus the seller decreases the variety of items below the efficient level as a by-product of reducing the information rents of the buyer.

Discussion Paper
Abstract

We characterize the revenue-maximizing information structure in the second price auction. The seller faces a classic economic trade-o¤: providing more information improves the efficiency of the allocation but also creates higher information rents for bidders. The information disclosure policy that maximizes the revenue of the seller is to fully reveal low values (where competition will be high) but to pool high values (where competition will be low). The size of the pool is determined by a critical quantile that is independent of the distribution of values and only dependent on the number of bidders. We discuss how this policy provides a rationale for conflation in digital advertising.

Discussion Paper
Abstract

In digital advertising, a publisher selling impressions faces a trade-off in deciding how precisely to match advertisers with viewers. A more precise match generates efficiency gains that the publisher can hope to exploit. A coarser match will generate a thicker market and thus more competition. The publisher can control the precision of the match by controlling the amount of information that advertisers have about viewers. We characterize the optimal trade-off when impressions are sold by auction. The publisher pools premium matches for advertisers (when there will be less competition on average) but gives advertisers full information about lower quality matches.

Discussion Paper
Abstract

In digital advertising, a publisher selling impressions faces a trade-o¤ in deciding how precisely to match advertisers with viewers. A more precise match generates efficiency gains that the publisher can hope to exploit. A coarser match will generate a thicker market and thus more competition. The publisher can control the precision of the match by controlling the amount of information that advertisers have about viewers. We characterize the optimal trade-off when impressions are sold by auction. The publisher pools premium matches for advertisers (when there will be less competition on average) but gives advertisers full information about lower quality matches.

Discussion Paper
Abstract

We study price discrimination in a market in which two firms engage in Bertrand competition. Some consumers are contested by both firms, and other consumers are “captive” to one of the firms. The market can be divided into segments, which have different relative shares of captive and contested consumers. It is shown that the revenue-maximizing segmentation involves dividing the market into “nested” markets, where exactly one firm may have captive consumers.

Discussion Paper
Abstract

Consider a market with identical firms offering a homogeneous good. A consumer obtains price quotes from a subset of firms and buys from the firm offering the lowest price. The “price count” is the number of firms from which the consumer obtains a quote. For any given ex ante distribution of the price count, we obtain a tight upper bound (under first-order stochastic dominance) on the equilibrium distribution of sale prices. The bound holds across all models of firms’ common-prior higher-order beliefs about the price count, including the extreme cases of full information ( firms know the price count) and no information (firms only know the ex-ante distribution of the price count). A qualitative implication of our results is that a small ex ante probability that the price count is one can lead to a large increase in the expected price. The bound also applies in a wide class of models where the price count distribution is endogenized, including models of simultaneous and sequential consumer search.

Discussion Paper
Abstract

Consider a market with many identical firms offering a homogeneous good. A consumer obtains price quotes from a subset of firms and buys from the firm offering the lowest price. The “price count” is the number of firms from which the consumer obtains a quote. For any given ex ante distribution of the price count, we obtain a tight upper bound (under first-order stochastic dominance) on the equilibrium distribution of sale prices. The bound holds across all models of firms’ common-prior higher-order beliefs about the price count, including the extreme cases of complete information ( firms know the price count exactly) and no information ( firms only know the ex ante distribution of the price count). A qualitative implication of our results is that even a small ex ante probability that the price count is one can lead to dramatic increases in the expected price. The bound also applies in a wide class of models where the price count distribution is endogenized, including models of simultaneous and sequential consumer search.

Discussion Paper
Abstract

Consider a market with identical firms offering a homogeneous good. A consumer obtains price quotes from a subset of firms and buys from the firm offering the lowest price. The “price count” is the number of firms from which the consumer obtains a quote. For any given ex ante distribution of the price count, we derive a tight upper bound (under first-order stochastic dominance) on the equilibrium distribution of sales prices. The bound holds across all models of firms’ common-prior higher-order beliefs about the price count, including the extreme cases of full information (firms know the price count) and no information (firms only know the ex ante distribution of the price count). A qualitative implication of our results is that a small ex ante probability that the price count is equal to one can lead to a large increase in the expected price. The bound also applies in a large class of models where the price count distribution is endogenously determined, including models of simultaneous and sequential consumer search.

Discussion Paper
Abstract

We consider demand function competition with a finite number of agents and private information. We show that any degree of market power can arise in the unique equilibrium under an information structure that is arbitrarily close to complete information. In particular, regardless of the number of agents and the correlation of payoff shocks, market power may be arbitrarily close to zero (so we obtain the competitive outcome) or arbitrarily large (so there is no trade in equilibrium). By contrast, price volatility is always less than the variance of the aggregate shock across all information structures.