Firm Heterogeneity and Imperfect Competition in Global Production Networks

Hanwei Huanga Kalina Manovab Frank Pischc

aCity University of Hong Kong, CEP
bUCL, CEPR, CEP
cUniversity of St. Gallen, SIAW, CEP

June 2021
Motivation: Two phenomena

1. Global value chains have transformed international trade and firm operations in recent decades

2. Rise of firm heterogeneity and superstar firms has ushered in higher mark-ups and industry concentration

- Interaction of these phenomena raises important policy questions
 - optimal trade and industrial policy
 - micro and macro effects of globalization

- This paper: role of firm heterogeneity and imperfect competition for global production networks and gains from trade
Contribution I: Theory

Quantifiable GE model of global sourcing with (i) two-sided firm heterogeneity, (ii) buyer-supplier matching frictions, (iii) oligopolistic competition upstream and monopolistic competition downstream

- Matching with more suppliers is more costly, but reduces input prices via greater variety, better matches and lower mark-ups

- More productive firms source higher quantities, from more suppliers, at lower prices

- Lower entry barriers upstream improve sourcing outcomes downstream, esp. for most productive firms

- Lower trade or matching costs also benefit downstream buyers, esp. mid-productivity firms
Contribution II: Empirics

Consistent evidence for causal impact of upstream market structure in China on downstream sourcing behavior in France

- Model-based measures of upstream market structure (number of actual and potential suppliers, export reform IV) and buyer/seller heterogeneity (productivity, size)
- Entry upstream increases import quantities and purchases and reduces import prices within downstream firms over time
- Bigger effects for more productive firms downstream and when more heterogeneous firms upstream
Contribution III: Quantification (in progress)

Quantify impact of industrial policy, trade policy and network technology on sourcing behavior and gains from trade

- Solution method for GE model with high-dimensional, discrete-choice optimization problem
- Parameters tractably estimated from trade gravity expressions
- Lower entry barriers upstream, trade costs and matching costs increase firm productivity, size dispersion and welfare downstream
- Non-trivial contribution of (i) two-sided firm heterogeneity, (ii) matching frictions, (iii) imperfect competition

Literature

- **Global value chains**
 - This paper: (i) two-sided firm heterogeneity and (iii) imperfect competition

- **Trade with imperfect competition**
 - This paper: (ii) matching frictions

- **Production networks**
 - This paper: amplification due to (i)-(iii)
Data

- Chinese CCTS customs data, 2000-2006
- Chinese ASIE industrial survey, 2000-2006
- French customs data, 2000-2006
- French FICUS administrative survey, 2000-2006

summary statistics
Stylized Fact I: Two-sided firm heterogeneity

- Significant dispersion in size and productivity across French firms importing a given HS6 product from China (or ROW)

(a) $\ln(\text{sales})$ French importers

(b) $\ln(\text{VA per worker})$ French importers
Stylized Fact I: Two-sided firm heterogeneity

- Significant dispersion in size and productivity across Chinese firms exporting a given HS6 product to France (or ROW)

(c) \(\ln(\text{sales}) \) Chinese exporters

(d) \(\ln(\text{VA per worker}) \) Chinese exporters
Stylized Fact 2: Imperfect competition upstream

- Market concentration among Chinese exporters of a given HS6 product to France (or ROW)

(e) number of sellers

(f) C4
Stylized Fact 3: Matching frictions

- Skewed distribution of transactions across French importers and across Chinese exporters of a given HS6 product (bilateral or global)
Theoretical Framework

- Stylized facts motivate a quantifiable GE model of global sourcing

- Final demand in J countries:
 - nested Cobb-Douglas/CES preferences
 \[U_i = Q_i^{1-\alpha} \left[\int_{\omega \in \Omega_i} q(\omega) \frac{\sigma-1}{\sigma} d\omega \right]^{\frac{\alpha \sigma}{\sigma-1}}, \sigma > 1 \]
 - demand for variety \(\omega \):
 \[q_i(\omega) = E_i P_i^{\sigma-1} p_i(\omega)^{-\sigma} \]

- Heterogeneous final-good producers source from heterogeneous input suppliers
 - oligopolistic competition upstream, monopolistic competition downstream
 - matching frictions and endogenous production network

- Free entry conditions in industry and general equilibrium
Downstream Production

- Downstream firms assemble intermediates to manufacture final goods and engage in monopolistic competition

\[
\max_{p_i(\omega)} \ (p_i(\omega) - c_i(\omega))q_i(\omega) \Rightarrow p_i(\omega) = \frac{\sigma}{\sigma - 1}c_i(\omega)
\]

- Marginal production costs

\[
c_i(\varphi) = \frac{1}{\varphi} \left(\sum_{j=1}^{J} \sum_{k=1}^{K} l_{ijk}(\varphi)c_{ijk}(\varphi)^{1-\eta} \right)^{\frac{1}{1-\eta}}, \quad \eta > 1
\]

\(\varphi\): core productivity from distribution \(G_i(\varphi), [\varphi_i, \infty)\)

\(\eta\): elasticity of substitution across countries \(j \in J\) and sectors \(k \in K\)

\(l_{ijk}(\varphi) = 1\) if sourcing \(jk\) inputs

- Input cost index across varieties \(\nu\) of \(jk\) inputs for firm \(\varphi\)

\[
c_{ijk}(\varphi) = \left(\int_{0}^{1} z_{ijk}(\varphi, \nu)^{1-\lambda} \, d\nu \right)^{\frac{1}{1-\lambda}}, \quad \lambda > 1
\]

\(\lambda\): elasticity of substitution across \(jk\) input varieties
Downstream Input Prices

- Conditional on sourcing jk inputs, firm φ buys variety v from lowest-cost supplier it has matched with.
- Cost of input v depends on seller, buyer and match characteristics.

\[z_{ijk}(\varphi, v) = \min_{s \in S_{ijk}(\varphi)} \{ \tau_{ijk} p_{ijks}(S_{ijk}(\varphi)) \xi_{ijks}(\varphi, v) \} \]

- τ_{ijk}: iceberg trade cost
- $S_{ijk}(\varphi)$: set of discrete jk suppliers to firm φ
- $p_{ijks}(S_{ijk}(\varphi))$: price jk supplier s offers to firm φ
- $\xi_{ijks}(\varphi, v)$: Fréchet match-specific cost shock

\[\Pr(\xi_{ijks}(\varphi, v) \geq t) = e^{-t^\theta}, \quad \theta > 0 \]
Upstream Production

- Discrete number S_{jk} of upstream suppliers s produce differentiated inputs in country j and sector k at constant marginal cost c_{jks}
- Oligopolistic competition among suppliers $s \in S_{ijk}(\phi)$ matched to buyer ϕ from country i
- Suppliers set match-specific prices $p_{ijks}(\phi)$ to maximize profits

$$\max_{p_{ijks}(\phi)} \pi^{U}_{ijks}(\phi) = Q_{ijks}(\phi)(p_{ijks}(\phi) - c_{jks})$$

$Q_{ijks}(\phi)$: residual demand by buyers in country i with productivity ϕ
Buyer-Supplier Matching

- Buyers and suppliers meet in bidding rooms of varying sizes at a trade fair between countries i and j
- Upstream suppliers must pay fixed cost $w_j f_{ijk}^U$ to attend the trade fair
 ▶ e.g. registration fee
- Downstream buyers must pay higher fixed cost $w_i f_{ijk}^D(S_{ijk})$ to hold a bidding game in a room with more suppliers
 ▶ e.g. registration fee + sourcing managers
- Sellers enter a room sequentially in increasing order of marginal cost (Eaton et al 2012, Gaubert & Itskhoiki 2016)
- Buyers choose (1) set $I_i(\phi)$ of jk country-sectors, (2) set $S_i(\phi)$ of suppliers in each jk, (3) sourcing across suppliers $S_{ijk}(\phi)$ in each jk
Oligopolistic Pricing Upstream

Proposition 1

There exists a unique Nash Equilibrium with supplier s prices

\[p_{ijks}(\varphi) = \frac{\varepsilon_{ijks}(\varphi)}{\varepsilon_{ijks}(\varphi) - 1} c_{jks}, \]

where \(\varepsilon_{ijks}(\varphi) = [\sigma \delta_{ijk}(\varphi) + \eta (1 - \delta_{ijk}(\varphi))] \chi_{ijks}(\varphi) + \theta [1 - \chi_{ijks}(\varphi)] \) is the elasticity of residual demand, and \(\delta_{ijk}(\varphi) \) is the share of country-j sector-k inputs in buyer \(\varphi \)'s input purchases.

Higher mark-ups if:

- supplier has bigger market share \(\chi_{ijks}(\varphi) \) and
 \[\rho_{ijs}(\varphi) \equiv \theta - \eta + (\eta - \sigma) \delta_{ijs}(\varphi) > 0 \] (Kikkawa et al 2019)
- buyer has less diversified sourcing (higher avg \(\chi_{ijks} \)) and less elastic final demand (lower \(\sigma \))
- inputs are less substitutable across and within country-sectors (lower \(\eta \) and \(\theta \))
Pro-Competitive Effect

Proposition 2

An increase in number of country-j sector-k suppliers to a buyer $S_{ijk}(\varphi)$

(a) reduces the market shares $\chi_{ijks}(\varphi)$, mark-ups $\mu_{ijks}(\varphi)$ and prices $p_{ijks}(\varphi)$ of all inframarginal jk suppliers to the buyer;

(b) lowers the buyer’s input cost index across jk inputs $c_{ijk}(\varphi)$.

\[
\log \hat{c}_{ijk}(\varphi)^{-\theta} = \log \left(\sum_{s=1}^{S_{ijk}(\varphi)} \chi_{ijks}(\varphi)\hat{\mu}_{ijks}(\varphi)^{-\theta} \right) - \log \left(1 - \sum_{s=S_{ijk}(\varphi)+1}^{\infty} \chi_{ijks}(\varphi)^{'} \right).
\]

- extensive margin: + variety gains, + better matches, - less productive marginal suppliers
- intensive margin: + lower mark-ups
Proposition 3

Downstream buyers’ optimal sourcing strategy is such that:

(a) set of input suppliers $l_{ijk}(\varphi)$ and $S_{ijk}(\varphi)$ is non-contracting in φ under sourcing complementarity $\sigma > \eta$ and $\rho_{ijk}(\varphi) > 0$;

(b) sourcing capability $\Theta_i(\varphi)$ is non-decreasing in φ.

- $\sigma > \eta$: sourcing complementarity (Antràs et al 2017)
- $\rho_{ijk}(\varphi) > 0$: new pro-competitive effect (strategic complementarity among suppliers, Amiti et al 2019)
- pecking order of country-sectors and suppliers \Rightarrow negative degree assortativity along extensive margin (Bernard & Moxnes 2018)
- endogenous sourcing amplifies downstream firm’s productivity advantage (Bernard et al 2019)
Impact of Market Structure

Proposition 4

Under sourcing complementarity, a rise in the number of country-j sector-k suppliers \(S_{ijk} \)

(a) weakly increases the number of jk suppliers to a buyer;

(b) weakly reduces buyers’ input cost index \(c_{ijk}(\phi) \) and weakly increases input quantities \(Q_{ijk}(\phi) \) and purchases \(X_{ijk}(\phi) \) of jk inputs;

(c) exerts bigger effects on more productive buyers.

- positive input variety and pro-competitive mark-up effects dominate negative supplier selection effect

- more productive downstream firms more likely to enter a bigger bidding room and expand supplier set
Input Sourcing with Concentrated Market Upstream

$S_{ijk}(\varphi)$

S_{ijk}
Impact of Entry Upstream on Sourcing Downstream

\[S_{ijk}(\varphi) \]

\[S'_{ijk} \]

\[S_{ijk} \]
Impact of Trade Policy and Matching Technology

Proposition 5

Under sourcing complementarity and fixed final demand B_i, a fall in trade costs τ_{ijk} or matching costs $f_{ijk}^D(S_{ijk})$

(a) weakly expands buyers’ sourcing strategy $I_i(\phi)$ and $S_i(\phi)$;

(b) weakly reduces buyers’ input cost index $c_{ijk}(\phi)$ and weakly increases input purchases $X_{ijk}(\phi)$ of jk inputs.

(c) exerts bigger effects on mid-productivity firms

- trade liberalization and technological progress improve countries’ supply potential $\phi_{ijk}(\phi) = \tau_{ijk}^{1-\eta} \left[\sum_{s=1}^{S_{ijk}(\phi)} p_{ijks}(\phi)^{-\theta} \right]^{-\frac{1-\eta}{\theta}}$

- lower input costs $c_{ijk}(\phi)$ translate into lower marginal cost $c_i(\phi)$ for downstream firms
Impact of Lower Trade and Matching Costs on Sourcing Downstream

\[S_{ijk}(\varphi) \]

\[S_{ijk} \]
Impact of Lower Trade and Matching Costs on Sourcing Downstream

\[S_{ijk}(\varphi) \]

\[S_{ijk} \]
Empirical Design

Impact of upstream market structure in China on downstream sourcing behavior in France, 2000-2006

- Two large open economies at different GVC segments
- China experienced dramatic export growth after joining WTO in 2001
 - relaxation of barriers to entry, development of trade-oriented SEZs, expansion of physical and institutional infrastructure
- Large, exogenous upstream supply shock to downstream firms
 - China an important input supplier to France (3.2% → 5.7%)
 - France not a key export market for China (1.5% → 1.4%)
Chinese Market Structure Over Time

truncated CDF of firm number across HS6

Cumulative Probability

Firm Number

c.d.f. of 2000 c.d.f. of 2006

[Graph showing cumulative distribution functions for firm numbers in 2000 and 2006]
Empirical Specification

\[
\{\ln X_{fpt}, \ln Q_{fpt}, \ln c_{fpt}\} = \alpha + \beta \ln S_{CHN\rightarrow ROW, pt} + \Gamma \Omega_{CHN, pt} + \\
+ \delta_f + \delta_p + \delta_t + t \delta_p + \varepsilon_{fpt}
\]

- \(\{\ln X_{fpt}, \ln Q_{fpt}, \ln c_{fpt}\}\): Chinese import activity by French firm \(f\), HS-6 product \(p\), year \(t\)
- \(\ln S_{CHN\rightarrow ROW, pt}\): Chinese exporters to ROW by product, year
- \(\Omega_{CHN, pt}\): controls by product, year
- \(\delta_f, \delta_p, \delta_t, t \delta_p\): firm, product, year FE; product time trends
Identification Strategy

- **Reverse causality**
 - Market structure in China arguably does not respond to sourcing behavior of individual French firms
 - $\ln S_{CHN\rightarrow ROW, pt}$: potential suppliers, not firms’ endogenous supplier set
 - Robust to $\ln S_{CHN\rightarrow FRA, pt}$, IV reforms to Chinese export restrictions

- **Omitted variable bias, common trends, spurious correlation**
 - δ_f: unobserved buyer heterogeneity
 - $\delta_p, \delta_t, t\delta_p$: aggregate policy, technology, supply, demand shocks
 - $\Omega_{CHN, pt}$: EU import tariffs, # FRA importers from ROW; avg productivity, st dev productivity, avg quality of CHN exporters; CHN export share of processing, intermediaries, multinationals, multi-product
Instrumental Variables

- Direct export restrictions (DER) (Bai, Krishna, and Ma, 2017)
 - size restriction that varies across industries, regions, ownership
 - gradually eliminated by 2004 as part of WTO accession

More about the DER IV
Baseline Results

<table>
<thead>
<tr>
<th>Panel</th>
<th>(log) Import Value (fpt)</th>
<th>(log) # CHN → ROW Exporters (pt)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. (log) Import Value (fpt)</td>
<td>(log) # CHN → ROW Exporters (pt)</td>
<td>0.085***</td>
<td>0.118**</td>
<td>0.206***</td>
<td>0.220***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.024)</td>
<td>(0.058)</td>
<td>(0.036)</td>
<td>(0.039)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>897,091</td>
<td>897,091</td>
<td>897,091</td>
<td>897,091</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>0.008</td>
<td>0.163</td>
<td>0.585</td>
<td>0.585</td>
<td></td>
</tr>
<tr>
<td>Panel B. (log) Import Quantity (fpt)</td>
<td>(log) # CHN → ROW Exporters (pt)</td>
<td>0.141***</td>
<td>0.233***</td>
<td>0.269***</td>
<td>0.274***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.030)</td>
<td>(0.063)</td>
<td>(0.040)</td>
<td>(0.043)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>897,091</td>
<td>897,091</td>
<td>897,091</td>
<td>897,091</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>0.006</td>
<td>0.170</td>
<td>0.605</td>
<td>0.605</td>
<td></td>
</tr>
<tr>
<td>Panel C. (log) Import Unit Value (fpt)</td>
<td>(log) # CHN → ROW Exporters (pt)</td>
<td>-0.056**</td>
<td>-0.115***</td>
<td>-0.063***</td>
<td>-0.055***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.025)</td>
<td>(0.022)</td>
<td>(0.018)</td>
<td>(0.019)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>897,091</td>
<td>897,091</td>
<td>897,091</td>
<td>897,091</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R2</td>
<td>0.005</td>
<td>0.505</td>
<td>0.714</td>
<td>0.714</td>
<td></td>
</tr>
<tr>
<td>Year FE</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>HS-6 Product FE</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>HS-6 Product Trend</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Firm FE</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Product × Year Controls</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>
Robustness

<table>
<thead>
<tr>
<th></th>
<th>Balanced Sample</th>
<th>No Wholesalers</th>
<th>CES Import Price Index (4)</th>
<th>Natural Quantity Units (5)</th>
<th>CHN→FRA Exporters OLS (6)</th>
<th>IV: Export Restrictions (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. (log) Import Value<sub>fpt</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(log) # CHN→ROW Exporters<sub>pt</sub></td>
<td>0.152*** (0.041)</td>
<td>0.123*** (0.029)</td>
<td>0.115 (0.072)</td>
<td>0.281*** (0.054)</td>
<td>0.195*** (0.017)</td>
<td>0.271 (0.226)</td>
</tr>
<tr>
<td>N</td>
<td>486,849</td>
<td>897,091</td>
<td>134,482</td>
<td>308,718</td>
<td>811,958</td>
<td>811,958</td>
</tr>
<tr>
<td>R2</td>
<td>0.481</td>
<td>0.585</td>
<td>0.446</td>
<td>0.592</td>
<td>0.581</td>
<td>0.580</td>
</tr>
<tr>
<td>Panel B. (log) Import Quantity<sub>fpt</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(log) # CHN→ROW Exporters<sub>pt</sub></td>
<td>0.196*** (0.046)</td>
<td>0.112*** (0.034)</td>
<td>0.159** (0.079)</td>
<td>0.285*** (0.044)</td>
<td>0.359*** (0.062)</td>
<td>0.212*** (0.019)</td>
</tr>
<tr>
<td>N</td>
<td>486,849</td>
<td>897,091</td>
<td>134,482</td>
<td>897,091</td>
<td>308,718</td>
<td>811,958</td>
</tr>
<tr>
<td>R2</td>
<td>0.525</td>
<td>0.605</td>
<td>0.534</td>
<td>0.596</td>
<td>0.635</td>
<td>0.600</td>
</tr>
<tr>
<td>Panel C. (log) Import Unit Value<sub>fpt</sub></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(log) # CHN→ROW Exporters<sub>pt</sub></td>
<td>-0.043** (0.020)</td>
<td>0.011 (0.015)</td>
<td>-0.041 (0.032)</td>
<td>-0.072*** (0.020)</td>
<td>-0.078*** (0.029)</td>
<td>-0.017** (0.008)</td>
</tr>
<tr>
<td>N</td>
<td>486,849</td>
<td>897,091</td>
<td>134,482</td>
<td>897,091</td>
<td>308,718</td>
<td>811,958</td>
</tr>
<tr>
<td>R2</td>
<td>0.696</td>
<td>0.714</td>
<td>0.740</td>
<td>0.694</td>
<td>0.791</td>
<td>0.707</td>
</tr>
<tr>
<td>KP Stage 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm, Year, HS-6 Product FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>HS-6 Product Trend</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Product × Year Controls</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Firm, Year, HS-6 Product FE: YES, YES, YES, YES, YES, YES, YES
HS-6 Product Trend: YES, YES, YES, YES, YES, YES, YES
Product × Year Controls: YES, YES, YES, YES, YES, YES, YES
Downstream Heterogeneity

<table>
<thead>
<tr>
<th>Importer Size Measure</th>
<th>Employment</th>
<th>Sales</th>
<th>Total Imports</th>
<th>Baseline</th>
<th>CES Index</th>
<th>Interacted Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>Panel A. (log) Import Value(f_{p,t})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(log) # CHN→ROW Exporters(_{p,t})</td>
<td>0.206***</td>
<td>0.205***</td>
<td>0.131***</td>
<td>0.123***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× 2nd Down Size Tercile Dummy</td>
<td>0.011</td>
<td>0.009</td>
<td>0.029***</td>
<td>0.035***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>× 3rd Down Size Tercile Dummy</td>
<td>0.033**</td>
<td>0.041**</td>
<td>0.110***</td>
<td>0.122***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>811,373</td>
<td>811,373</td>
<td>811,373</td>
<td>811,373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>0.589</td>
<td>0.589</td>
<td>0.594</td>
<td>0.594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel B. (log) Import Quantity(f_{p,t})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(log) # CHN→ROW Exporters(_{p,t})</td>
<td>0.272***</td>
<td>0.267***</td>
<td>0.179***</td>
<td>0.175***</td>
<td>0.170***</td>
<td></td>
</tr>
<tr>
<td>× 2nd Down Size Tercile Dummy</td>
<td>0.010</td>
<td>0.005</td>
<td>0.039***</td>
<td>0.048***</td>
<td>0.047***</td>
<td></td>
</tr>
<tr>
<td>× 3rd Down Size Tercile Dummy</td>
<td>0.033**</td>
<td>0.039**</td>
<td>0.124***</td>
<td>0.142***</td>
<td>0.135***</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>811,373</td>
<td>811,373</td>
<td>811,373</td>
<td>811,373</td>
<td>811,373</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>0.607</td>
<td>0.607</td>
<td>0.610</td>
<td>0.602</td>
<td>0.611</td>
<td></td>
</tr>
<tr>
<td>Panel C. (log) Import Unit Value(f_{p,t})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(log) # CHN→ROW Exporters(_{p,t})</td>
<td>-0.060***</td>
<td>-0.062***</td>
<td>-0.048**</td>
<td>-0.043**</td>
<td>-0.047**</td>
<td></td>
</tr>
<tr>
<td>× 2nd Down Size Tercile Dummy</td>
<td>0.001</td>
<td>0.004</td>
<td>-0.010**</td>
<td>-0.022***</td>
<td>-0.013***</td>
<td></td>
</tr>
<tr>
<td>× 3rd Down Size Tercile Dummy</td>
<td>0.001</td>
<td>0.002</td>
<td>-0.013**</td>
<td>-0.040***</td>
<td>-0.013**</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>811,373</td>
<td>811,373</td>
<td>811,373</td>
<td>811,373</td>
<td>811,373</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>0.713</td>
<td>0.713</td>
<td>0.713</td>
<td>0.693</td>
<td>0.713</td>
<td></td>
</tr>
<tr>
<td>Firm, Year, HS-6 Product FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>HS-6 Product Trend</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Product × Year Controls</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>
Counterfactual Analysis (in progress)

Goals:

▶ assess impact of industrial policy, trade policy and technological progress on global sourcing and gains from trade

▶ evaluate role of (i) two-sided firm heterogeneity, (ii) matching frictions, (iii) imperfect competition

Preliminary results

▶ lower entry barriers upstream, trade costs and matching costs increase firm productivity, size dispersion and welfare downstream

▶ no (i): identical suppliers \Rightarrow gains from trade smaller and more unequal across firms

▶ no (ii): ubiquitous sourcing \Rightarrow no pro-competitive effects or unequal gains across firms

▶ no (iii): monopolistically or perfectly competitive suppliers \Rightarrow no pro-competitive effects, but still unequal gains across firms
Conclusion

- Two phenomena: global value chains, superstar firms

- Theoretical rational and empirical evidence that market structure upstream importantly affects sourcing downstream
 - two-sided firm heterogeneity and endogenous matching
 - oligopolistic competition and pro-competitive gains

- Open questions
 - optimal trade and industrial policy
 - cross-border policy spillovers
 - dynamic gains from global sourcing
Summary Statistics

Panel A. Importer Characteristics (Firm)

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th></th>
<th>2006</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>St Dev</td>
<td>Median</td>
</tr>
<tr>
<td>employment</td>
<td>10,691</td>
<td>210</td>
<td>2,673</td>
<td>19</td>
</tr>
<tr>
<td>sales (EUR 1,000)</td>
<td>11,319</td>
<td>59,600</td>
<td>609,900</td>
<td>4,000</td>
</tr>
<tr>
<td>sales / worker (EUR 1,000)</td>
<td>10,679</td>
<td>460</td>
<td>2,854</td>
<td>215</td>
</tr>
<tr>
<td>VA / worker (EUR 1,000)</td>
<td>10,634</td>
<td>63</td>
<td>477</td>
<td>44</td>
</tr>
<tr>
<td>total imports (EUR 1,000)</td>
<td>12,571</td>
<td>785</td>
<td>7,088</td>
<td>43</td>
</tr>
</tbody>
</table>

Panel B. Market Structure (HS-6 product)

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th></th>
<th>2006</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>St Dev</td>
<td>Median</td>
</tr>
<tr>
<td># CHN exporters to FRA</td>
<td>2,139</td>
<td>16.9</td>
<td>38.3</td>
<td>5</td>
</tr>
<tr>
<td>C4 CHN exporters to FRA</td>
<td>2,139</td>
<td>0.87</td>
<td>0.19</td>
<td>0.99</td>
</tr>
<tr>
<td>HHI CHN exporters to FRA</td>
<td>2,139</td>
<td>0.52</td>
<td>0.34</td>
<td>0.46</td>
</tr>
<tr>
<td># CHN exporters to ROW w/o FRA</td>
<td>2,865</td>
<td>272</td>
<td>426</td>
<td>124</td>
</tr>
<tr>
<td>C4 CHN exporters to ROW w/o FRA</td>
<td>2,865</td>
<td>0.53</td>
<td>0.25</td>
<td>0.51</td>
</tr>
<tr>
<td>HHI CHN exporters to ROW w/o FRA</td>
<td>2,865</td>
<td>0.16</td>
<td>0.19</td>
<td>0.09</td>
</tr>
<tr>
<td># FRA importers from CHN</td>
<td>2,863</td>
<td>28.6</td>
<td>72.1</td>
<td>6</td>
</tr>
<tr>
<td># FRA importers from ROW w/o CHN</td>
<td>2,903</td>
<td>374.1</td>
<td>652.8</td>
<td>195</td>
</tr>
</tbody>
</table>

Number of observations vary due to missing values.
Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th></th>
<th></th>
<th></th>
<th>2006</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>St Dev</td>
<td>Median</td>
<td>N</td>
<td>Mean</td>
<td>St Dev</td>
<td>Median</td>
</tr>
<tr>
<td>applied EU import tariff (%)</td>
<td>2,899</td>
<td>3.9</td>
<td>7.5</td>
<td>1.5</td>
<td>3,600</td>
<td>2.8</td>
<td>7.1</td>
<td>0</td>
</tr>
<tr>
<td>mean VA / worker CHN exporters (log)</td>
<td>2,699</td>
<td>4.16</td>
<td>0.82</td>
<td>4.09</td>
<td>3,576</td>
<td>5.01</td>
<td>0.88</td>
<td>4.94</td>
</tr>
<tr>
<td>variance VA / worker CHN exporters (log)</td>
<td>2,546</td>
<td>7.23</td>
<td>2.23</td>
<td>7.31</td>
<td>3,454</td>
<td>9.30</td>
<td>2.27</td>
<td>9.35</td>
</tr>
<tr>
<td>mean TFP CHN exporters (log)</td>
<td>2,699</td>
<td>6.93</td>
<td>0.89</td>
<td>6.85</td>
<td>3,576</td>
<td>7.57</td>
<td>0.97</td>
<td>7.50</td>
</tr>
<tr>
<td>variance TFP CHN exporters (log)</td>
<td>2,546</td>
<td>13</td>
<td>2.22</td>
<td>13.2</td>
<td>3,454</td>
<td>14.7</td>
<td>2.25</td>
<td>14.7</td>
</tr>
<tr>
<td>mean input unit value CHN exporters (log)</td>
<td>2,863</td>
<td>1.6</td>
<td>1.1</td>
<td>1.46</td>
<td>3,689</td>
<td>1.69</td>
<td>1.25</td>
<td>1.71</td>
</tr>
<tr>
<td>mean input unit value CHN exporters (log), de-meaned</td>
<td>2,863</td>
<td>4.17</td>
<td>1.4</td>
<td>4.22</td>
<td>3,689</td>
<td>4.29</td>
<td>1.48</td>
<td>4.30</td>
</tr>
<tr>
<td>share CHN processing trade</td>
<td>2,865</td>
<td>0.36</td>
<td>0.32</td>
<td>0.29</td>
<td>3,695</td>
<td>0.26</td>
<td>0.27</td>
<td>0.16</td>
</tr>
<tr>
<td>share CHN trade intermediaries</td>
<td>2,865</td>
<td>0.41</td>
<td>0.24</td>
<td>0.40</td>
<td>3,695</td>
<td>0.43</td>
<td>0.22</td>
<td>0.44</td>
</tr>
<tr>
<td>share CHN foreign-owned exporters</td>
<td>2,865</td>
<td>0.17</td>
<td>0.12</td>
<td>0.15</td>
<td>3,695</td>
<td>0.17</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>share CHN multi-product exporters</td>
<td>2,865</td>
<td>0.95</td>
<td>0.11</td>
<td>0.99</td>
<td>3,695</td>
<td>0.94</td>
<td>0.11</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Number of observations vary due to missing values.
Instrumental Variables

- Direct export restrictions (DER): the right to trade was restricted to certain types of Chinese firms (Bai, Krishna, and Ma, 2017)
 - It is mostly a size restriction which varies with industries, regions & ownership

- China gradually eliminated DER and totally abandoned it in 2004 as part of the WTO accession agreement

- We instrument the number of firms that actually export a HS6 product with the potential number of firms that can in principle export given the DER in place
 - Match each HS6 product to a CIC industry and count the number of firms in Chinese customs data that export a product \(p \) in \(t_0 = 2000, N_{EXP_{p,t_0}} \)
 - Infer the potential number of firms that could have exported product \(p \) at time \(t_0 \) if there had been no DERs at the time as \(N_{p,t_0} = N_{EXP_{p,t_0}} / DER_{s,t_0} \) where \(p \) belongs to sector \(s \).
 - Infer the potential number of firms that could export product \(p \) at time \(t \) as \(N_{IV_{p,t}} = N_{p,t_0} DER_{st} \) where \(p \) belongs to sector \(s \).
Instrumental Variables

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SEZ</td>
<td>•Reg. K ≥ 2M</td>
<td>•Reg. K ≥ 2M</td>
<td>•Reg. K ≥ 2M</td>
<td>•Reg. K ≥ 2M</td>
<td>•Reg. K ≥ 0.5M</td>
</tr>
<tr>
<td></td>
<td>•Register</td>
<td>•Register</td>
<td>Reg. K ≥ 1M if M&E</td>
<td>Reg. K ≥ 1M if M&E</td>
<td>Register</td>
</tr>
<tr>
<td>Pudong New Area</td>
<td>No difference from the rest of China</td>
<td>No difference from the rest of China</td>
<td>No difference from the rest of China</td>
<td>•Reg. K ≥ 0.5M</td>
<td>•Reg. K ≥ 0.5M</td>
</tr>
<tr>
<td>State or Public Owned</td>
<td>•Reg. K ≥ 5M</td>
<td>•Reg. K ≥ 5M</td>
<td>•Reg. K ≥ 3M</td>
<td>•Reg. K ≥ 3M</td>
<td>•Reg. K ≥ 0.5M</td>
</tr>
<tr>
<td>Domestic Firm</td>
<td>•Reg. K ≥ 2M if Inst.</td>
<td>•Reg. K ≥ 0.5M</td>
</tr>
<tr>
<td></td>
<td>•Register</td>
<td>•Register</td>
<td>•Register</td>
<td>•Register</td>
<td>•Register</td>
</tr>
<tr>
<td>Private Owned Domestic Firm</td>
<td>•Reg. K ≥ 8.5M</td>
<td>•Reg. K ≥ 5M</td>
<td>•Reg. K ≥ 3M</td>
<td>•Reg. K ≥ 3M</td>
<td>•Reg. K ≥ 0.5M</td>
</tr>
<tr>
<td></td>
<td>Export ≥ 1M USD</td>
<td>•Apply for Approval</td>
<td>•Register</td>
<td>•Register</td>
<td>•Register</td>
</tr>
<tr>
<td></td>
<td>Sales ≥ 30M if M&E</td>
<td>•Apply for Approval</td>
<td>•Register</td>
<td>•Register</td>
<td>•Register</td>
</tr>
</tbody>
</table>

Source: Ministry of Commerce of China;
M: Million Chinese Yuan; SEZ: Special Economic Zones; Reg. K: Registered Capital; M&E: Mechanical and Electrical products; MW: Midwest; Inst.: Research Institution;

Figure source: Bai et al. (2017)

[back](#)