Imperfect Competition and Rents in Labor and Product Markets: The Case of the Construction Industry*

Kory Kroft†  Yao Luo‡  Magne Mogstad§  Bradley Setzler¶

May 2021

Abstract

We quantify the importance of imperfect competition in the US construction industry by estimating the size of rents earned by American firms and workers. To obtain a comprehensive measure of the total rents and to understand its sources, we take into account that rents may arise due to markdown of wages in the labor market, or markup of prices in the product market, or both. Our analyses combine the universe of US business and worker tax records with newly collected records from US procurement auctions. We use this data to identify and estimate a model where construction firms compete with one another for projects in the product market and for workers in the labor market. The firms may participate both in the private market and in government projects procured through auctions. We find evidence of considerable wage- and price-setting power. This imperfect competition creates sizable rents, three-fourths of which is captured by the firms. The incentives of firms to mark down wages and reduce employment due to wage-setting power are attenuated by their price-setting power in the product market.

Keywords: imperfect competition; monopsony; market power; rents; rent sharing; auction; procurement

*The opinions expressed in this paper are those of the authors alone and do not reflect the views of the Internal Revenue Service or the US Treasury Department. This work is a component of a larger project on income risk in the United States, conducted through the SOI Joint Statistical Research Program. We thank Aviv Nevo, four anonymous referees, Victor Aguirregabiria, El Hadi Caoui, Lancelot de Frahan, Sabrina Howell, Larry Katz, Peter Kuhn, Tom Meling, Matt Notowidigdo, Juan Carlos Suarez Serrato, John van Reenen, Owen Zidar, and participants at NBER Summer Institute, Rice, SITE Labor Markets, SITE IO, SUFE IO, Toronto, and UCL for valuable comments. We thank Tommaso Alba, Huishi Chen, JoonHwan Cho, Cheok In Fok, Yingcheng Luo, Eric Mackay, Chester Madrazo, Marc-Antoine Schmidt, and Stephen Tino for valuable research assistance. Kroft and Luo acknowledge funding from the SSHRC Insight Grant. Mogstad and Setzler acknowledge funding from NSF Grant SES-1851808 and the Norwegian Research Council.

†Department of Economics, University of Toronto; NBER. E-mail: kory.kroft@utoronto.ca.
‡Department of Economics, University of Toronto. E-mail: yao.luo@utoronto.ca.
§Department of Economics, University of Chicago; Statistics Norway; NBER; IFS. E-mail:magne.mogstad@gmail.com.
¶Becker Friedman Institute for Economics, University of Chicago. E-mail: bradley.setzler@gmail.com.
1 Introduction

Researchers and policymakers are keenly interested in measuring the degree of imperfect competition in the US economy and in understanding how it affects the outcomes of workers and firms. In the labor market, firms may exploit their market power to mark down the wages of workers below their marginal products, with important implications for earnings inequality, employment, and the labor share of gross domestic product. In the product market, firms may use their market power to mark up prices above costs, thereby increasing profits while reducing output. To draw inferences about imperfect competition in these two markets, it is natural to measure the size of rents earned by employers and workers, where rents refer to the excess return over that required to change a decision, as in Rosen (1986). Because reservation wages and productivity are unobserved, rents are not directly observed and recovering them from data has proved elusive.

The primary contribution of our paper is to address these and other empirical challenges to accurately measure, and to understand the mechanisms behind, the size and sharing of the rents earned by firms and workers in the context of the American construction industry. To obtain a comprehensive measure of the total rents and to understand its sources, we take into account that rents may arise due to the mark down of wages in the labor market, or the mark up of prices in the product market, or both. Analyzing imperfect competition in both markets jointly could be important as the incentives of firms to mark down wages and reduce employment due to wage-setting power depend on whether, and the degree to which, they have price-setting power. In contrast to our paper, existing work on imperfect competition typically focuses on either the labor market or the product market in isolation. This may result in a limited or misleading picture of the total rents earned by firms and workers and of the consequences of market power for employment, wages, and output.

In Section 2, we present the theoretical model where construction firms compete with one another for projects in the product market and for workers in the labor market. The labor market side of the model builds on work by Rosen (1986), Boal and Ransom (1997), Bhaskar et al. (2002), Manning (2003), Card et al. (2018), and Lamadon et al. (2021). Competitive labor market theory requires firms to be wage-
takers so that labor supply facing a given firm is perfectly elastic. To allow the firm-specific labor supply curve to be imperfectly elastic so that the firm may have wage-setting power, we let workers have heterogeneous preferences over the non-wage job characteristics or amenities that firms offer.\footnote{Since we allow amenities to be unobserved to the analyst, they can include a wide range of characteristics, such as distance of the firm from the worker’s home, flexibility in the work schedules, the type of tasks performed, the effort required to perform these tasks, the social environment in the workplace, and so on.} We assume that firms do not observe the idiosyncratic taste for amenities of any given worker. This information asymmetry implies that employers cannot price discriminate with respect to workers’ reservation wages. Instead, if a firm faces higher demand for its products and wants to hire more labor, it needs to offer higher wages to all workers. As a result, the equilibrium allocation of workers to firms creates rents to inframarginal workers.

The firm side of the model consists of two types of product markets in which the construction firms may participate: private market projects and government projects, the latter of which are procured through auctions. Incorporating both types of product markets not only gives a more accurate representation of firms’ production choices in the construction industry, but also facilitates identification of key model parameters. The firm’s behavior is specified as a two-stage problem, which we solve backwards. In the first stage, firms bid for a government project procured through a first-price sealed-bid auction. The project specifies the amount of output that must be produced. At the end of the first stage, firms learn the outcome of the auction. If a firm wins the auction, it receives the winning bid amount as revenue and commences production. In the second stage, the firm chooses inputs to maximize profit from total production. A firm may earn rents in the private market due to price-setting power and in the government projects because of a limited number of bidders in the auction.

After presenting the theoretical model, we describe the data. As explained in Section 3, our analyses are based on a matched employer-employee panel data set, which is constructed by combining the universe of US business and worker tax records for the period 2001-2015. Firm data contain information on sales, profits, intermediate inputs, and industry. Worker data contain information on the number of (new and incumbent) workers and their earnings. We merge the employer-employee panel data...
set with a new data set on US procurement auctions that we constructed primarily by scraping bidding websites. The resulting data set covers billions of dollars in procurement contracts awarded to thousands of firms. Importantly, we observe the bid of each firm in an auction, not only that of the winner.

In Section 4, we demonstrate how the model parameters are identified from the data. The primary challenge to identify the firm-specific labor supply curve is changes over time in firm-specific amenities, which are unobserved correlates of both employment and wages. We consider several empirical strategies to overcome this identification challenge, including restrictions on the timing of the firm’s decisions, comparisons between winners and losers (with close bids) in the (price-only) auctions, or a restriction on the firm-specific amenities to be fixed over the estimation window. The primary challenge to identify technology and product demand is changes over time in firm-specific productivity, which are unobserved correlates of both inputs and output. We overcome this identification strategy by inverting the bidding function of the firms in procurement auctions, which allows us to control for firm-specific productivity. We also show that the model is over-identified, and we use the additional moment condition to assess the model.

In Sections 5 and 6, we present the estimates, which yield four key findings. First, firms have significant wage-setting power with an estimated firm-specific labor supply elasticity of about 4.1. The estimate indicates that, if an American construction firm aims to increase the number of employees by 10 percent, it needs to increase wages by around 2.4 percent. This implies wages are marked down 20 percent relative to the marginal revenue product of labor. Second, firms have significant price-setting power in the private product market with an estimated product demand elasticity of 7.3. The estimate suggests that, in order for a firm to increase output by 10 percent, it needs to increase prices by 7.3 percent. Third, firms have significant product differentiation, with an estimated product differentiation elasticity of 3.4. Fourth, firms have significant technological progress, with an estimated technological progress elasticity of 2.6.

---

2Similar timing assumptions are used in the large literature on production function estimation (see the discussions by Ackerberg et al. 2015 and Gandhi et al. 2020). Lamadon et al. (2021) assume that firm-specific amenities are constant within the estimation window in their identification of firm-specific labor supply curves. A small number of papers have used research designs comparing winners and losers of procurement auctions. They estimate how government purchases affect employment during an economic crisis (Gugler et al., 2020) and firm dynamics and growth (Ferraz et al., 2015, Hvide and Meling, 2020). None of these studies use these comparisons to draw inference about imperfect competition or rents, nor do they use these comparisons to identify and estimate an economic model of firm and worker behavior.
percent in the private market, it must reduce the price of its product by about 1.4 percent. This implies prices are marked up 14 percent relative to the marginal cost of production. Third, we find that worker rents are about $11,600 per worker (20 percent of the average wage), while firm rents (i.e. profits) amount to about $43,100 per worker. Comparing worker rents to firm rents, we see that more than three-fourths of total rents are captured by firms. We also find that firm rents increase much more than worker rents as productivity increases. As a result, the share of rents captured by workers is decreasing in the firm’s productivity.\(^3\) Fourth, although winning a procurement contract crowds out some private market production, it increases total output, employment and rents. We find that 40 percent of these additional rents are captured by workers. Thus, the marginal rent sharing induced by a procurement contract is greater than average rent sharing.

In Section 7, we use our estimated model to perform counterfactuals which quantify how labor market power interacts with product market power to shape the outcomes and behavior of workers and firms in the American construction industry. It is widely appreciated that greater labor market power induces lower wages and employment, whereas greater product market power induces higher prices and lower output. While these qualitative implications of market power in one market do not depend on the degree of market power in the other market, the quantitative impacts do. In particular, as our counterfactuals show, labor market power is an empirically important counterbalance to the incentives to exploit product market power, and vice versa. Thus, we conclude that an analysis of imperfect competition that focuses on either the labor market or the product market in isolation may result in a limited or misleading picture of the total rents earned by firms and workers and of the consequences of market power for employment, wages, and output.

Our paper is primarily related to a large literature on imperfect competition, rents, and inequality in the labor market, reviewed by Manning (2011), Card et al. (2018), and Lamadon et al. (2021). Much of this existing work is trying to measure imperfect competition in the entire labor market, paying little attention to the large

\(^3\)This result complements the recent literature on product market competition which has found that more productive firms have higher markups and lower labor shares (Autor et al., 2020; De Loecker et al., 2020).
heterogeneity in technology and market structure across industries.\(^4\) In contrast, we
focus on the construction industry, paying closer attention to the structure and the
functioning of the relevant markets. For example, many construction firms partici-
pate simultaneously in the private market, where output and prices are endogenously
chosen by firms, and in government projects, which are procured through auctions
where firms choose how much to bid but not how much to produce. This institutional
feature is essential for our identification arguments, for understanding and modeling
the behavior of firms in the construction industry, and for accurately predicting the
profits the firms make if they win a procurement auction.

Our paper also differs from much of the existing empirical work on imperfect
competition in that we fully specify the equilibrium model and identify and estimate
the model parameters. This allows us to not only measure the current size and share
of the rents earned by firms and workers, but also to understand the underlying
mechanisms and to quantify how the rents and rent sharing would change if market
power changed. The closest study to ours in this regard is Lamadon et al. (2021), who
also identify and estimate the model parameters to draw inference about imperfect
competition and rents. Our paper complements this analysis in several important
ways, including that we focus on a specific industry and explicitly incorporate how
rents may also arise from price-setting power in the product market.

Our paper also relates and contributes to the empirical literature on auctions,
reviewed by Athey and Haile (2007). Our modeling of auctions differs in that we
consider incomplete information in unobserved productivity rather than costs, which
allows for a flexible relationship between the probability of winning the auction and
other firm outcomes that depend on productivity, such as employment and output.
Our paper also contributes by quantifying how winning a procurement auction affects
the firm’s total production and whether it crowds-in or crowds-out activity in the
private market. In addition, our work complements existing papers on auctions by
taking into account how bidding behavior depends on market power, both in the labor
market and in the private product market.

\(^4\)Notable exceptions include Azar et al. (2021) and Lamadon et al. (2021). They study imperfect
competition in the entire US labor market, but account for imperfect substitutability across markets
using a nested-logit structure on preferences.
Lastly, our paper relates a growing body of work that estimates the pass-through and incidence of firm-specific shocks, reviewed by Card et al. (2018). An early example is Van Reenen (1996), who studies how innovation affects firms’ profits and workers’ wages. He also investigates patents as a source of variation, but finds them to be weakly correlated with profits. Building on this insight, Kline et al. (2019) study the incidence of patents that are predicted to be valuable and Howell and Brown (2020) study the incidence of R&D grants. A related literature on skill-biased technical change has examined the wage and productivity effects of the adoption of new technology in firms (see Akerman et al., 2015, and the references therein).

2 A Model of the Construction Industry

In this section, we develop a model where construction firms compete with one another for projects in the product market and for workers in the labor market. The model incorporates two types of product markets in which the construction firms may participate: the private market and the government market, where government projects are procured through auctions. It is important to account for the government market for two reasons. First, more than 10 percent of all revenues in the construction industry are due to government procurement projects. By accounting for the government market, we provide a more accurate representation of firms’ production choices and can draw policy implications regarding the incidence of government expenditure on construction projects. Second, as shown in Section 4, variation in government demand for procurement projects can be leveraged to identify key model parameters governing the labor market, private product market, and firm technology.

2.1 Worker Preferences and Labor Supply

Worker $i$ in year $t$ has the following preferences over being employed at a firm $j$:

$$u_{it}(j, W_{jt}) = \log W_{jt} + g_{jt} + \eta_{ijt},$$

where $W_{jt}$ represents earnings, $g_{jt}$ represents the average value of firm-specific amenities, and $\eta_{ijt}$ captures worker $i$’s idiosyncratic tastes for the amenities of firm $j$. Since
we allow amenities to be unobserved to the analyst, they can include a wide range of characteristics, such as distance of the firm from the worker’s home, flexibility in the work schedules, effort required, and so on.

Our specification of preferences allows for the possibility that workers view firms as imperfect substitutes. The term \( g_{jt} \) gives rise to vertical employer differentiation: some employers offer good amenities while other employers offer bad amenities. The term \( \eta_{ijt} \) gives rise to horizontal employer differentiation: workers are heterogeneous in their preferences over the same firm. The importance of horizontal differentiation is governed by the variability across workers in their idiosyncratic taste for a given firm. We parameterize the distribution of \( \eta_{ijt} \) as i.i.d. Type-1 Extreme Value (T1EV) with dispersion \( \theta \).\(^5\) When \( \theta \) is larger, horizontal employer differentiation becomes relatively more important, as \( \eta_{ijt} \) has greater variability.

We consider an environment where labor is hired in a spot market. We make two additional assumptions on the supply of labor. First, firms do not observe the idiosyncratic taste for amenities of any given worker \( \eta_{ijt} \). This information asymmetry implies that employers cannot price discriminate with respect to workers’ reservation wages. Instead, if a firm wants to hire more labor, it needs to offer higher wages to both marginal and inframarginal workers. Second, since we find no evidence of changes in worker quality in response to winning a procurement auction, we assume all workers are homogenous in skill. It is possible to extend the model and the empirical analysis to allow for differences in worker quality (see Lamadon et al., 2021).

Given these assumptions, the number of workers who accept a job at firm \( j \) at time \( t \) for a posted wage offer \( W_{jt} \) is \( L_{jt} = \left( W_{jt} / (A_{jt} \Xi_t) \right)^{1/\theta} \), where \( A_{jt} \equiv g_{jt}^{1/\theta} \) captures the vertical differentiation due to firm-specific amenities and \( \Xi_t \) captures aggregate labor supply factors in the relevant market.\(^6\) In the baseline analysis, we consider the entire construction industry to be the relevant market. We also perform several specification checks to show that our findings are robust to alternative market definitions.

Our empirical analysis focuses on the inverse labor supply curve facing firm \( j \) at

\(^5\)We only require that \( \eta_{ijt} \) is independently distributed across firms and workers within each cross-section \( t \); \( \eta_{ijt} \) may be arbitrarily persistent within a worker-firm pair over time.

\(^6\)Formally, \( \Xi_t \equiv \left( \frac{W_t}{L_t} \right)^{\theta} \), where \( L_t \) is the total number of workers in the market and \( W_t \equiv \sum_{j'} W_{j't}^{1/\theta} g_{j't}^{1/\theta} \) is the price index of labor.
time $t$, which is given by

$$W_{jt} = L_{jt}^\theta U_{jt},$$

(2)

where $U_{jt} \equiv A_{jt} \Xi_t$. The labor supply elasticity facing the firm is $1/\theta$, so labor supply becomes more inelastic when idiosyncratic tastes are more dispersed. We assume firms are “strategically small” in the sense that $\frac{\partial \Xi_t}{\partial W_{jt}} \approx 0$, so marginal wage changes at one firm do not impact aggregate labor supply factors.\(^7\)

For the empirical analysis, it is useful to decompose the firm-specific amenity term into a fixed component and a time-varying component. Denoting $a_{jt} \equiv \log A_{jt}$, we can write firm-specific amenities available to workers at firm $j$ at time $t$ as $a_{jt} \equiv \psi_j + \nu_{jt}$, which is without loss of generality since we can simply define $\psi_j \equiv \mathbb{E}[a_{jt}|j]$ and $\nu_{jt} \equiv a_{jt} - \psi_j$. Then, denoting $w_{jt} \equiv \log W_{jt}$, $\ell_{jt} \equiv \log L_{jt}$, $\xi_t \equiv \log \Xi_t$, and $u_{jt} \equiv \log U_{jt}$, log wages are given by

$$w_{jt} = \theta \ell_{jt} + u_{jt} = \theta \ell_{jt} + \psi_j + \nu_{jt} + \xi_t.$$  

(3)

Letting $\Delta$ indicate differences over time, changes in log wages are thus

$$\Delta w_{jt} = \theta \Delta \ell_{jt} + \Delta \nu_{jt} + \Delta \xi_t,$$  

(4)

where the time-invariant firm-specific amenity term $\psi_j$ does not appear in differences over time. Equation (4) shows that wages change over time for three reasons. All else equal, the firm needs to pay higher wages to hire more workers, as captured by $\theta \Delta \ell_{jt}$; the firm must pay higher wages to keep the same number of workers if its amenities get worse, as captured by $\Delta \nu_{jt}$; and the firm needs to pay more to keep the same number of workers if aggregate labor supply declines or the price index of labor rises, as captured by $\Delta \xi_t$.

\(^7\)See Berger et al. (2019), Chan et al. (2019), and Jarosch et al. (2019) for models of the labor market in which this assumption is relaxed. Identification of such models is challenging, especially if one allows for two-sided heterogeneity.
2.2 Firm Technology and Product Demand

Firm technology

Following Ackerberg et al. (2015), the production function (in physical units) is

\[ Q_{jt} = \min\{\Omega_{jt}L_j^{\beta_L}K_j^{\beta_K}, \beta_M M_j\} \exp(e_{jt}), \quad (5) \]

where \( \Omega_{jt} \) denotes total factor productivity (TFP), \( K_{jt} \) denotes capital, \( M_{jt} \) denotes intermediate inputs, and \( e_{jt} \) represents measurement error. We assume that capital markets are perfect, so firms can rent capital at constant rate \( p_K \). While the assumption of a rental market for capital is standard in the literature, it may be a fairly good description of the construction industry, which heavily utilizes rental equipment and machinery. We also assume the market for intermediate inputs is competitive with constant price \( p_M \).

Our Leontief functional form in equation (5) imposes strong complementarity between labor and intermediate inputs, while allowing for substitutability between labor and capital. This assumption may be relatively reasonable for the construction industry, where greater capital expenditure (i.e., renting more efficient equipment and machinery) may substitute for labor, but labor cannot take the place of concrete, asphalt, wood, and other materials required to construct a bridge or road.\(^8\) This functional form implies a zero marginal rate of technical substitution between labor and intermediate inputs. While this functional restriction is motivated by institutional features of the construction industry, we may be concerned about misspecification. In Appendix C, we solve, identify, and estimate the model with a Cobb-Douglas production function, which has a marginal rate of technical substitution of unity and thus allows for substitutability between labor and intermediate inputs. We will later find that results are broadly similar when using the Cobb-Douglas production function, implying that the Leontief functional form is not crucial to our findings.

\(^8\)Indeed, the assumed functional form appears broadly consistent with the standard construction cost estimation handbook (RSMeans, 2008). This handbook provides task-specific construction cost estimates for the typical crew (labor and equipment needed) per unit of material. While crew choices may vary depending on the contractor, material input requirements are fixed for each task.
Product demand

We allow construction firms to choose to participate in two product markets. The first is the market for private projects, which we denote $H$. Specifically, firm $j$ at time $t$ posts a price $P_{jt}^H$ at which it is willing to produce in the market for private projects. Consumers have idiosyncratic preferences over producers. Consumer $i$’s utility from purchasing from firm $j$ at time $t$ is $u_{ijt}^H = -\log P_{jt}^H + \omega_{ijt}$. We parameterize the distribution of $\omega_{ijt}$ as i.i.d. T1EV with dispersion $\epsilon$. When $\epsilon$ is larger, horizontal producer differentiation becomes relatively more important, as $\omega_{ijt}$ has greater variability.

Given these assumptions, the quantity purchased from firm $j$ at $t$ for a posted price $P_{jt}^H$ can be expressed as $Q_{jt}^H = \left(P_{jt}^H\right)^{-1/\epsilon} / \aleph$, where $\aleph \equiv \sum_{j'} \left(P_{jt}^H\right)^{-1/\epsilon}$ is the aggregate price index. Rearranging, $P_{jt}^H = p_H \left(Q_{jt}^H\right)^{1-\epsilon}$, where $p_H \equiv \aleph^{-\epsilon}$. This implies private market revenues are

$$R_{jt}^H = P_{jt}^H Q_{jt}^H = p_H \left(Q_{jt}^H\right)^{1-\epsilon}.$$  

(6)

Denoting $r_{jt}^H \equiv \log R_{jt}^H$ and $q_{jt}^H \equiv \log Q_{jt}^H$, it follows that

$$r_{jt}^H = \log p_H + (1-\epsilon) q_{jt}^H,$$  

(7)

so $1 - \epsilon$ can be interpreted as the revenue elasticity of output in the private market.  

In addition to the private product market, firms may participate in the market for government projects, denoted by $G$. Output for the government market is denoted $Q_{jt}^G$. Firm $j$ produces total output $Q_{jt} = Q_{jt}^H + Q_{jt}^G$ simultaneously across both markets using the production function in equation (5). We denote $D_{jt} = 1$ if firm $j$ holds a procurement contract at $t$ and $D_{jt} = 0$ otherwise. If firm $j$ does not hold a procurement contract ($D_{jt} = 0$), it does not produce in the government market ($Q_{jt}^G = 0$). If firm $j$ receives a procurement contract ($D_{jt} = 1$), it must produce exactly $\overline{Q}^G$ in the government market ($Q_{jt}^G = \overline{Q}^G$), where $\overline{Q}^G$ is set by the government. The quantity produced by firm $j$ in the government market can then be expressed as $Q_{jt}^G = \overline{Q}^G D_{jt}$.

---

9In the private product market, we assume firms are “strategically small” in the sense that $\frac{\partial \aleph}{\partial P_{jt}^H} \approx 0$; that is, no firm can change the aggregate price index through its own marginal price changes. Thus, $\frac{\partial \log Q_{jt}^H}{\partial \log P_{jt}^H} = -1/\epsilon$, so $1/\epsilon$ is the price elasticity of demand.

10Our derivations in the text focus on $\epsilon > 0$. Appendix B provides derivations with perfect competition, $\epsilon = 0$. As discussed below, $\epsilon = 0$ is at odds with our findings.
The allocation of procurement contracts to firms as well as the revenues received from procurement projects are determined through first-price sealed-bid auctions, which we describe below.

2.3 Firm’s Problem and Behavior

We model firm behavior as a two-stage problem which we solve backwards. In the first stage, a firm submits a bid for a government project that is procured through a first-price sealed-bid auction. The project specifies the amount of output that must be produced within a given time frame. At the end of the first stage, the firm learns the auction outcome. If the firm wins the auction, it receives as revenue the winning bid amount. In the second stage, the firm chooses inputs to maximize profit from total production, taking as given the outcome of the procurement auction. Production in both private and government projects occurs simultaneously at the end of the second stage. We now present the firm’s problem and behavior in the private and government markets.

Private market

We now solve for the optimal private market behavior of firm \( j \) if it receives a procurement contract in the government market as well as if it does not.

Denote profit excluding procurement revenue by \( \pi_{1jt}^H \) if \( D_{jt} = 1 \) and \( \pi_{0jt}^H \) if \( D_{jt} = 0 \). In order to obtain a procurement contract, firms place bids in auctions. Denote firm \( j \)'s bid in year \( t \) by \( Z_{jt} \). Total profit is then \( \pi_{jt} = Z_{jt} + \pi_{1jt}^H \) if the firm receives a procurement contract, and \( \pi_{0jt} = \pi_{0jt}^H \) otherwise. Observed profit is \( \pi_{jt} = \pi_{1jt}D_{jt} + \pi_{0jt}(1 - D_{jt}) \). Given \( Q^G \) and \( D_{jt} = d \), the firm’s second stage problem is to hire labor \( L_{dj} \), purchase intermediate inputs \( M_{dj} \), and rent capital \( K_{dj} \) to maximize private market profits,

\[
\pi_{dj}^H = R_{dj} - W_{dj} L_{dj} - p_M M_{dj} - p_K K_{dj}, \quad (8)
\]

for \( d = 0, 1 \), subject to the labor supply curve (equation 2), the production function (equation 5), the private market revenue curve (equation 6), the price of intermediate
inputs \((p_M)\), the price of capital \((p_K)\), and that the government project is fulfilled by the procured firm \((Q_{1jt} \geq Q^G)\).

We now use the profit-maximizing first-order conditions to characterize the firm’s private market behavior. The first-order condition for capital implies a composite production function,

\[
Q_{jt} = \min \{ \Phi_{jt} L_{jt}^{\rho} \beta_M M_{jt} \} \exp(e_{jt}),
\]

where \(\Phi_{jt} \equiv \Omega_{jt} \left[ \frac{\beta_K}{\beta_L} \frac{(1+\theta)U_{jt}}{p_K} \right]^{\beta_K} \) is composite TFP and \(\rho \equiv (1+\theta)\beta_K + \beta_L\) is the composite returns to labor. We refer to Appendix A.1 for the derivation of the composite production function in equation (9).

Given the composite production function, the first-order condition for intermediate inputs implies

\[
X_{jt} = \frac{p_M}{\beta_M} Q_{jt} = \frac{p_M}{\beta_M} L_{jt}^{\rho} \Phi_{jt},
\]

where \(X_{jt} \equiv p_M M_{jt}\) denotes expenditure on intermediate inputs. Letting \(x_{jt} \equiv \log X_{jt}\) and \(\phi_{jt} \equiv \log \Phi_{jt}\), and defining \(\kappa_X \equiv \log \left( \frac{p_M}{\beta_M} \right)\), it follows that

\[
x_{jt} = \kappa_X + \rho \ell_{jt} + \phi_{jt}.
\]

Thus, our model implies a log-linear relationship between expenditure on intermediate inputs and labor, which will prove useful for identifying \(\rho\).

Combining the product demand curve in equation (7) with the first-order condition for intermediate inputs yields

\[
r_{jt} = \kappa_R + (1-\epsilon) x_{jt} + (1-\epsilon) e_{jt}\quad \text{if} \quad D_{jt} = 0,
\]

where \(\kappa_R \equiv \log p_H + (1-\epsilon) \log (\beta_M/p_M)\). There are two aspects of this equation that will be useful to identify \(\epsilon\). First, it shows that revenues are log-linear in intermediate input expenditures with coefficient \(1-\epsilon\) among firms that are only producing for

\[\text{This derivation of the demand for intermediate inputs relies on the Leontief production function. In Appendix C, we solve, identify, and estimate the model with a Cobb-Douglas production function. Results are broadly similar when using the Cobb-Douglas production function, implying that the Leontief functional form is not crucial to our findings.}\]
the private market \((D_{jt} = 0)\). Second, the only unobserved source of variation in log revenues is measurement error \(e_{jt}\) and not TFP \(\phi_{jt}\). Intuitively, both revenues and intermediate input expenditures are log-linear in TFP, so controlling for log intermediate inputs absorbs all of the variation in TFP. The same reasoning allows a related literature on production function estimation to control for TFP by controlling for intermediate inputs (see the discussions by Ackerberg et al. 2015 and Gandhi et al. 2020).

The first-order condition with respect to labor implies the following relationship between private market revenues and expenditures on labor and intermediate inputs:

\[
R^H_{dt}(1-\epsilon)\frac{Q_{dt}}{Q^H_{dt}} = \frac{1+\theta}{\beta_L}B_{dt} + X_{dt},
\]

(13)

where \(B_{jt} \equiv L_{jt}W_{jt}\) denotes the firm’s wage bill. This equation will prove useful for identifying \(\beta_L\). The derivation of this equation and several important implications of the first-order conditions for labor are reported in Appendix A.2; we briefly summarize implications here.

One implication of the first-order condition for labor is that both winners and losers of procurement contracts always produce strictly positive output for the private market \((Q^H_{dt} > 0, d = 0, 1)\). This follows from the fact that firms have market power \((\epsilon > 0)\), which implies that the marginal revenue in the private market is strictly greater than marginal cost as private market output approaches zero. For the same reason, total production is strictly greater if the firm receives a procurement contract versus if it does not \((Q_{1jt} > Q_{0jt})\). Another implication is that the government project crowds-out private projects for firm \(j\) \((Q^H_{1jt} < Q^H_{0jt})\) if \(1+\theta > \rho\), and conversely, crowds-in private projects \((Q^H_{1jt} > Q^H_{0jt})\) if \(1+\theta < \rho\). To see why this is the case, note that winning a government project increases the total output level. This requires more employment to achieve a greater level of production. Due to the upward-sloping labor supply curve, greater employment leads to higher costs of labor, determined by \(1+\theta\). On the other hand, greater scale induces greater private production under composite economies of scale, \(\rho > 1\). Thus, the magnitude of \(1+\theta\) relative to \(\rho\) determines if receiving a procurement contract leads to crowd-out or crowd-in of private market output for firm \(j\).
Government market

We now specify how procurement contracts are allocated to firms and the determination of procurement revenues.

Firms choose bids in consideration of their opportunity costs. The opportunity cost of receiving a procurement contract from the government is the difference in private market profits between holding no government contract and holding a government contract. Formally, denote the opportunity cost by

$$
\sigma_{ujt}(\phi_{jt}) \equiv \pi_{0jt}^H - \pi_{1jt}^H,
$$

where the notation emphasizes that firm productivity $\phi_{jt}$ is the only source of heterogeneity in the opportunity cost, conditional on amenities $u_{jt}$.\(^{12}\) The opportunity cost of winning a procurement contract is strictly positive, $\sigma_{ujt}(\phi_{jt}) > 0$, if the labor supply curve is upward-sloping, $\theta > 0$. Intuitively, if the firm has already allocated some labor to government projects, then the marginal cost of hiring labor for private market projects is greater due to the upward-sloping labor supply curve, resulting in a positive opportunity cost in the private product market of receiving a government contract.

In the procurement auction, bidders observe common information about the size of the project, $Q^G$, the number of bidders, $I$, and the amenities of each bidding firm, $u_{jt}$. The distribution of TFP conditional on amenities, $(\phi_{jt}|u_{jt} = u) \sim F_u(\cdot)$, is assumed to be i.i.d. and known by all firms, and induces an i.i.d. distribution of opportunity costs $\sigma_u(\phi_{jt}) \sim F_u(\cdot)$.\(^{13}\) Revenue from winning the auction is the winning bid, $Z_{jt}$. The difference between the benefit and the opportunity cost of winning an auction with bid $Z_{jt}$ is thus $Z_{jt} - \sigma_u(\phi_{jt})$. Conditional on amenities $u_{jt} = u$, a firm with TFP $\phi_{jt}$ chooses the optimal bid $Z_{jt}$ to solve

$$
\max_{Z_{jt}} \left( Z_{jt} - \sigma_u(\phi_{jt}) \right) \Pr(D_{jt} = 1|Z_{jt}).
$$

\(^{12}\) The profit function for auction winners depends also on the size of the government project $Q^G$, so the opportunity cost also depends on $Q^G$. For notational convenience, we suppress this dependence.

\(^{13}\) We require that TFP is i.i.d. across firms within each cross-section $t$, though TFP may be arbitrarily persistent within a firm over time.
Thus, the firm faces the usual trade-off in an auction between profits if one wins and the probability of winning.

The solution to the firm’s problem in the procurement auction is the optimal bidding strategy

\[ s_u(\phi_{jt}) = \sigma_u(\phi_{jt}) \delta_u(\phi_{jt}), \text{ where } \delta_u(\phi_{jt}) \equiv 1 + \frac{\int_{\sigma_u(\phi_{jt})}^{\sigma} [1 - F_u(\tilde{\sigma})]^{I-1} d\tilde{\sigma}}{\sigma_u(\phi_{jt}) [1 - F_u(\sigma_u(\phi_{jt}))]^{I-1}}. \] (14)

We can interpret \( \delta_u \geq 1 \) as the bid markup relative to the opportunity cost. When \( \delta_u = 1 \), each firm’s optimal bid equals its opportunity cost, so each firm makes zero economic profit from receiving a procurement contract. As the number of auction participants \( I \) declines, \( \delta_u \) rises, so firms that receive procurement contracts extract greater profits in the government market when there is less competition. Since \( Z_{jt} \) exceeds \( \sigma_u(\phi_{jt}) \) due to finite \( I \) and the bidding strategy \( s_u(\phi_{jt}) \) is strictly increasing in the opportunity cost \( \sigma_u(\phi_{jt}) \), equation (14) defines the unique symmetric equilibrium (Milgrom and Weber, 1982; Maskin and Riley, 1984).\(^{14}\) Finally, the winner of the auction is determined as

\[ D_{jt} = 1 \{ s_u(\phi_{jt}) < s_u(\phi_{j't}), \forall j' \neq j \text{ such that } j,j' \in J \}, \] (15)

where \( J_i \) is the set of firms participating in auction \( i \). This expression makes clear that the winner of a procurement contract is selected on TFP.

Before proceeding, it is useful to note that we have assumed auctions are symmetric. Though this assumption will not be crucial for our identification strategy discussed below, it is convenient for expositional and computational purposes, as symmetric auctions are easier to solve. Furthermore, symmetry is a standard assumption in the empirical auction literature (Athey and Haile, 2007). Nevertheless, in our empirical application, we provide a robustness check which relaxes this symmetry assumption.

\(^{14}\)One potential concern with our model of bids is that firms may collude to achieve bid revenues greater than those predicted by our first-price sealed-bid auction model. In Appendix Figure A.1, we apply the collusion test of Chassang et al. (2019) to each of the 28 states in our data separately, finding no evidence of collusion.
2.4 Worker and Firm Rents

Given the specification of the labor and product markets above, we can now define the surplus or rents that firms and their workers accrue. We focus both on the total rents from production for the private market (in the absence of procurement projects) and the additional rents generated from receiving a procurement contract or, equivalently, the incidence of government procurement.

Rents for workers

In our model, the employer may face an upward-sloping labor supply curve ($\theta > 0$), implying that the wage a firm pays may be an increasing function of its size. Since employers do not observe the idiosyncratic taste for amenities of any given worker, they cannot price discriminate with respect to workers’ reservation values. Instead, if a firm becomes more productive and thus wants to increase its size, the employer must offer higher wages to all workers. As a result, the equilibrium allocation of workers to firms creates surpluses or rents for inframarginal workers, defined as the excess return over that required to change the worker’s choice of employer, as in Rosen (1986).

To define additional rents to worker $i$ from an exogenous wage increase at firm $j$ from $W_{jt}$ to $\tilde{W}_{jt}$, we consider an equivalent variation (EV) representation. Denote worker $i$’s preferred firm at time $t$ excluding $j$ as $j^*_t$. The EV of worker $i$ for the wage increase at firm $j$, denoted $V_{ijt}$, is the solution to:

$$\max \left\{ \log \tilde{W}_{jt} + g_{jt} + \eta_{ijt}, \log W_{j^*_t} + g_{j^*_t} + \eta_{ij^*_t} \right\} = \max \left\{ \log (W_{jt} + V_{ijt}) + g_{jt} + \eta_{ijt}, \log (W_{j^*_t} + V_{ijt}) + g_{j^*_t} + \eta_{ij^*_t} \right\}.$$ 

The EV is the amount of compensation the worker would require at the initial choice of firm (right-hand side) to attain the same utility that the worker receives after the wage increase at firm $j$ (left-hand side). There are two cases. If $j$ is the worker’s initial choice of firm, then $V_{ijt} = \tilde{W}_{jt} - W_{jt}$. This is because the worker is an incumbent at firm $j$, so the wage gain at $j$ is the equivalent amount of compensation required. If $j^*_t \neq j$ is the worker’s initial choice of firm, $V_{ijt}$ is more complicated, as it must account for the differences in both wages and amenities between firms $j$ and $j^*_t$ at $t$. 
Letting $V_{jt} \equiv \sum_i V_{ijt}$ denote the total EV at firm $j$ in year $t$, it follows from Theorem 2 of Bhattacharya (2015) that

$$V_{jt} = \int_{W_{jt}}^{\tilde{W}_{jt}} L^*_j(W) dW,$$

where $L^*_j(\cdot)$ is firm $j$’s labor supply curve, which depends only on the wage at firm $j$ under the assumption that each firm is strategically small. From our labor supply curve in equation (2), we have

$$V_{jt} = \tilde{W}_{jt} \tilde{L}_{jt} - W_{jt} L_{jt} \frac{1}{1 + 1/\theta} = \tilde{B}_{jt} - B_{jt} \frac{1}{1 + 1/\theta},$$

where $L_{jt} = L^*_j(W_{jt})$ is the initial labor, $\tilde{L}_{jt} = L^*_j(\tilde{W}_{jt})$ is labor after the wage increase, $B_{jt} = W_{jt} L_{jt}$ is the initial wage bill, and $\tilde{B}_{jt} = \tilde{W}_{jt} \tilde{L}_{jt}$ is the wage bill after the wage increase. See Appendix A.3 for the derivation. These notions of rents coincide with the ones used in Lamadon et al. (2021). Intuitively, they can be interpreted as the willingness-to-pay to stay at the current firm, which is greater when horizontal employer differentiation is more important (i.e., when $\theta$ is greater).

It is useful to observe that the definition of total EV sheds light on two notions of rents. The first is the baseline worker rents if the firm does not receive a procurement contract. We define this quantity as $V_{0jt} \equiv \frac{B_{0jt}}{1 + 1/\theta}$. It can be obtained from equation (17) by setting $W_{jt} = 0$ (the wage at which firm $j$ shuts down production) and $\tilde{W}_{jt} = W_{0jt}$ (the wage at firm $j$ if it does not hold a procurement contract). The second is the additional rents captured by workers due to working at a firm that wins a procurement contract. We define these additional worker rents as $V_{\Delta jt} \equiv \frac{B_{1jt} - B_{0jt}}{1 + 1/\theta}$, where subscripts 1 and 0 denote holding and not holding procurement contracts, as above. This can be obtained from equation (17) by setting $W_{jt} = W_{0jt}$ (the wage at firm $j$ if it does not hold a procurement contract) and $\tilde{W}_{jt} = W_{1jt}$ (the wage at firm $j$ if it holds a procurement contract). For completeness, we also define the total rents to workers if the firm holds a procurement contract, which we denote $V_{1jt}$, so that

---

15 Note that $B_{jt}$ is a function of $1/\theta$, so these expressions do not imply that rents increase for workers as labor supply becomes more inelastic. In our counterfactual exercises below, we will show that worker rents decrease when labor supply becomes more inelastic due to the wage bill decrease.
worker rents can be decomposed as

\[
\begin{align*}
V_{1jt} &= V_{0jt} + V_{\Delta jt} = \frac{B_{0jt}}{1 + 1/\theta} + \frac{B_{1jt} - B_{0jt}}{1 + 1/\theta}.
\end{align*}
\]  

When using equation \( V_{\Delta jt} \) to analyze the incidence of procurement, it is useful to decompose it into the additional rents captured by incumbent workers and additional rents captured by new hires drawn into firm \( j \) by the wage increase.\(^\text{16}\) Expanding equation (16),

\[
\begin{align*}
V_{\Delta jt} &= L_{0jt} (W_{1jt} - W_{0jt}) + W_{1jt} (L_{1jt} - L_{0jt}) - \frac{B_{1jt} - B_{0jt}}{1 + \theta}.
\end{align*}
\]

The incidence for incumbents is simply the wage change multiplied by the number of incumbent workers. The incidence for new hires is the wage bill of new hires minus the wage bill required to make them indifferent between the new and initial firm choices. This expression allows us to directly evaluate the share of additional rents from procurement projects captured by incumbent workers relative to new hires.

**Rents for firms**

As our measure of firm rents, we use profits. There are three relevant measures of profits. First, \( \pi_{0jt} \) is the profit that the firm captures from production for the private market if it does not receive a procurement contract. Second, \( \pi_{1jt} \) is the profit the firm captures from joint production for the government and private markets if it receives the procurement contract. Third, \( \pi_{\Delta jt} \equiv \pi_{1jt} - \pi_{0jt} \) is the additional rents earned by the firm from receiving the procurement contract. They are related by

\[
\begin{align*}
\pi_{1jt} &= \pi_{0jt} + \pi_{\Delta jt}.
\end{align*}
\]

\(^\text{16}\)To clarify, an “incumbent” is a worker whose preferred firm is \( j \) even if \( j \) does not hold a procurement contract (i.e., a worker who accepts offered wage \( W_{0jt} \) by firm \( j \)). A “new hire” is a worker whose preferred firm is \( j^* \neq j \) if \( j \) does not hold a procurement contract and whose preferred firm is \( j \) if \( j \) holds a procurement contract (i.e., a worker who accepts offered wage \( W_{1jt} \) but rejects offered wage \( W_{0jt} \) by firm \( j \)).
It is important to observe that profits do not necessarily represent ex-ante rents for the employer. Suppose, for example, that each employer initially invests in amenities offered to the workers by deciding on the firm’s location or working conditions. Workers’ heterogeneous preferences over those amenities give rise to wage-setting power, which employers can use to extract additional profits or rents. Thus, the existence of such ex-post rents could simply be returns to costly ex-ante choices of amenities. Additionally, profits from procurement projects may in part reflect a fixed cost of entry to the auction, e.g., the cost of obtaining a license. While the presence of a fixed entry cost will affect the interpretation of profits, it will not affect identification of model parameters.

3 Data

Our empirical analyses are based on a matched employer-employee panel data set for the period 2001-2015. The data set is constructed by first linking business tax returns to worker-level tax returns, and then merging this linked data set with procurement auction records. In this section, we briefly describe data sources, sample selection, and key variables. Additional details are provided in Appendix E.

Our business tax return data include balance sheet and other information from Forms 1120 (C-corporations), 1120S (S-corporations), and 1065 (partnerships). We link the business tax returns to Form W-2 (direct employee) and 1099 (independent contractor) worker-level tax returns, defining the highest-paying firm in a given year as the worker’s primary employer. Our baseline set of workers consists of prime-aged W-2 employees who are full-time equivalent (FTE), by which we mean that their annual earnings from the primary employer are greater than the annualized full-time minimum wage in the year. Because firms sometimes use independent contractors, we also consider a broader measure of the workforce that includes any FTE independent contractors from Form 1099.

The key variables that we draw from the business tax returns are revenues, intermediate input expenditures, profits, and NAICS industry codes. Revenues include those from business operations, excluding non-business-operation revenues such as dividends and capital gains. We follow De Loecker et al. (2020) in measuring inter-
mediate input expenditures by the cost of goods sold, which includes variable costs associated with intermediate goods, transportation, and storage while excluding costs associated with overhead, durables, and labor.\textsuperscript{17} Our measure of profits is earnings before interest, taxes, and depreciation (EBITD), which we construct following Kline et al. (2019).

The key variables we draw from worker-level tax returns are the number of employees and their earnings for the primary sample of workers. We also consider the number of employees and earnings when including independent contractors in the sample. Using the panel structure of the employer-employee data, we define three measures of mean earnings: mean earnings among all workers; mean earnings among stayers, which we define as workers employed at the same firm consistently from \( n \) years prior to the procurement auction until \( n \) years after; and past earnings of new hires at their previous firm, which we define as mean earnings at \( t - 1 \) for workers who become employed by a new firm at \( t \).

We obtain the new data set on procurement auctions by scraping the website of Bid Express (BidX.com), a service that facilitates online bidding for a number of states; scraping state-specific Department of Transportation (DOT) websites; and submitting FOIA requests to state governments. The procurement projects broadly involve the construction and landscaping of local roads, bridges, and highways. Observations in this data set are at the auction-firm level, with variables on firm’s name and address as well as the firm’s bid and the auction date. In total, we recover the auction records from the DOTs of 28 states.\textsuperscript{18} Construction firms often bid in auctions in other states, so our auction sample includes construction firms from nearly every state.\textsuperscript{19} Our data show that these 28 DOTs allocated $383 billion through 155,768 distinct auctions involving 16,697 bidders in 2010. There are more auctions than firms, and

\textsuperscript{17}A potential concern is that firms in some industries (manufacturing and mining) include labor costs in the cost of goods sold. However, we consider firms in the construction industry, which do not (IRS Pub. 334).

\textsuperscript{18}Data Supplement \textsuperscript{S} provides step-by-step instructions on obtaining and preparing the auction records.

\textsuperscript{19}In our data from BidX, we observe the firm’s business address as well as the address of the procurement project. In the BidX data, we find that 80 percent of bids are placed in auctions in the firm’s home state and 21 percent of bids are placed in auctions in the firm’s home commuting zone. In the empirical analyses, we provide robustness checks in which we control for auction-specific effects or commuting zone-specific effects, finding little sensitivity of the estimates.
the same firms may face one another in multiple auctions. One potential concern is that, because firms face one another multiple times, they may collude to achieve bid revenues greater than those predicted by our first-price sealed-bid auction model. In Appendix Figure A.1, we apply the collusion test of Chassang et al. (2019) to each of the 28 states in our data separately, finding no evidence of collusion in any state.

The DOTs are responsible for determining the nature of the project, including the blueprints, a detailed list of tasks to be performed or items to be constructed, quality guidelines and standards, and expected or required time to completion. This information is publicly available in the solicitation for bidders posted by each DOT. The awarding of a contract has two steps. The first step is qualification. In order to submit a bid, a firm must be pre-qualified by the DOT to ensure sufficient experience, equipment, and competence to carry out the tasks involved. Once approved, the firm is awarded a license to bid. The second step is the auction. In the first-price sealed-bid auction, a qualified firm submits a bid without observing the bidding behavior of other firms, and the contract is awarded to the lowest bidder.

Importantly, we observe the bid of each firm for a given auction, not only the winner. In the empirical applications discussed below, we will focus on recipients of procurement contracts \((D_{jt} = 1)\) who win a procurement auction for the first time at \(t\). The mean procurement revenues for these first-time auction winners is $2.7 million. We compare them to non-recipients \((D_{jt} = 0)\) that had never won an auction before \(t\) and placed a bid at \(t\) but lost. These sample restrictions are useful as they ensure that neither type of firm experiences a procurement demand shock in the pre-period.

We consider a number of alternative choices in the empirical applications.

---

20 We find that, conditional on facing one another at least once, there is about a 50 percent chance that two firms face one another again in the future.

21 The DOT may choose to further restrict bidder participation. For example, in California, projects labeled “business development initiatives” can only be bid on by small or disadvantaged local contractors.

22 In the event that the firm that wins the procurement contract hires a contractor to complete the work, this will be captured in our measure of labor that includes contractors from Form 1099. In the event that the firm that wins the procurement contract passes the contract to a subcontractor, the completed work is sold to the primary contractor as intermediate inputs and thus captured in our intermediate inputs measure.

23 Some possibilities are to restrict the \(D_{jt} = 0\) sample to firms that had never bid in an auction prior to \(t\) (“first-timers”) or firms that would not go on to win an auction in the future (“never-winners”). In Figure 1, we will show that the labor supply elasticity estimates are nearly the same.
### Table 1: Sample Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Sample Size</th>
<th>Share of the Construction Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Firms</td>
<td>7,876</td>
<td>0.9%</td>
</tr>
<tr>
<td>Workers per Firm</td>
<td>46</td>
<td>11.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value Per Firm ($ millions)</th>
<th>Mean of the Log</th>
<th>Share of the Construction Sector (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>19.927</td>
<td>15.061</td>
</tr>
<tr>
<td>EBITD</td>
<td>9.159</td>
<td>14.075</td>
</tr>
<tr>
<td>Intermediate Costs</td>
<td>14.661</td>
<td>14.719</td>
</tr>
<tr>
<td>Wage bill</td>
<td>2.737</td>
<td>13.549</td>
</tr>
</tbody>
</table>

Notes: This table displays descriptive statistics for the sample of firms that place bids in the year 2010. The third column compares aggregates for this sample to all firms observed in the construction sector in the 2010 tax records.

To merge the auction data to the tax records, we use a fuzzy matching approach based on the firm’s name and location. For six states, we were able to not only obtain the name and address but also the federal Employer Identification Number (EIN) of the firm, allowing us to perform an exact match to tax records. We trained the algorithm on these six states before applying it to the other 22 states. We also provide an out-of-sample validation analysis in which we test the performance of the matching algorithm on publicly available pension data tax filings, finding that it performs well. Furthermore, we verify that our labor supply elasticity estimate does not change materially if we restrict the sample to the six states matched on EIN.

Table 1 displays the sample sizes of firms and workers that participate in auctions in the year 2010. In 2010, our sample includes almost 8,000 unique firms that generate over $150 billion in annual revenues and employ about 360,000 full-time workers. Nearly all the firms are recorded as being in the construction industry (i.e., the firms have NAICS codes beginning with 23). As a share of the national construction sector (as recorded in the 2010 tax records), our sample of 8,000 firms accounts for 12 percent when using these comparison samples. Several other comparison sample choices are discussed in the text.

\(^{24}\)Data Supplement S explains how we trained and validated the linking algorithm used to merge the auction records to the tax returns.
of sales, 12 percent of employment, 10 percent of EBITD, 12 percent of intermediate input expenditures, and 13 percent of wage payments. The state-specific sample size and share of the local economy represented by auction participants linked to tax records are displayed in Appendix Table A.1. California, Michigan, and Texas are the states with the most bidding firms, while Iowa, Kansas, and Montana are the states in which bidders employ the greatest share of workers in the construction sector.

4 Identification of Model Parameters

4.1 Labor Supply Elasticity

In this subsection, our goal is to identify the labor supply elasticity, $1/\theta$. From equation (3), $w_{jt} = \theta \ell_{jt} + u_{jt}$. Consider identifying $1/\theta$ for the sample of firms that do not hold procurement contracts, $D_{jt} = 0$. As shown in Appendix A.2, $\ell_{jt}$ varies across firms only due to amenities $u_{jt}$ and composite TFP $\phi_{jt}$ among $D_{jt} = 0$ firms. Thus, a regression of $w_{jt}$ on $\ell_{jt}$ will give a biased estimate of $\theta$ due to the dependence of both $\ell_{jt}$ and $w_{jt}$ on the unobserved factor $u_{jt}$.

To address this omitted variable bias, we might consider using differences over time, denoted $\Delta$, in labor and wages. We showed in Subsection 2.1 that amenities can be decomposed as $u_{jt} = \psi_j + \nu_{jt} + \xi_t$, where $\psi_j$ is the time-invariant firm-specific amenity factor, $\nu_{jt}$ is the time-varying firm-specific amenity factor, and $\xi_t$ is the aggregate wage index factor. Much of the existing literature assumes that $\text{Var} [\Delta \nu_{jt}] = 0$, i.e., there are no firm-specific amenity shocks (see the discussion by Lamadon et al. 2021). If $\text{Var} [\Delta \nu_{jt}] = 0$, we have $\Delta w_{jt} = \theta \Delta \ell_{jt} + \Delta \xi_t$, where the time-invariant firm-specific amenity $\psi_j$ is removed by differencing over time. Since the only unobserved labor supply shock $\Delta \xi_t$ is common to all firms at $t$, a simple regression of $\Delta w_{jt}$ on $\Delta \ell_{jt}$ controlling for year fixed effects identifies $\theta$. This is a useful result, as it shows we can identify the labor supply elasticity even with unrestricted correlation between time-invariant amenities and labor. For example, we could still identify the labor supply elasticity if the location and office quality of the workplace varied across firms but did not change over time. However, one may worry that important amenities associated with the job vary over time, e.g., construction jobs are often on-site and
change locations frequently. Thus, we seek to identify the labor supply elasticity when allowing for firm-specific amenity shocks, \( \text{Var} [\Delta \nu_{jt}] > 0. \)

**Baseline identification strategy**

We now show how we can leverage the government market for procurement projects to identify the labor supply elasticity. Intuitively, we will use that the assignment of procurement contracts, \( D_{jt} \), is an observable shifter of product demand, allowing us to trace out the labor supply curve. However, we must first clarify the conditions under which \( D_{jt} \) is not itself a function of firm-specific amenity shocks.

**Assumption 1.** Suppose the firm-specific amenity shock \( \Delta \nu_{jt} \) is not in the information set of the firm when bidding at the beginning of time period \( t \), and \( \Delta \nu_{jt} \) is independent of the other determinants of bidding at \( t \), \( (\phi_{jt}, \psi_{j}, \xi_{t}) \).

Assumption 1 restricts the timing of information. This assumption implies firms place their bids \( Z_{jt} \) at the beginning of period \( t \), then learn the auction outcome \( D_{jt} \) and the firm-specific amenity shock \( \Delta \nu_{jt} \), and finally choose their quantity of labor. It also ensures that the current labor supply shock is not predictable from other information considered when selecting bids, \( (\phi_{jt}, \psi_{j}, \xi_{t}) \). Assumption 1 follows the large literature on production function estimation that achieves identification through restrictions on the timing of information (see the discussions by Ackerberg et al. 2015 and Gandhi et al. 2020). These restrictions imply independence between the bids \( Z_{jt} \) and the firm-specific amenity shocks \( \Delta \nu_{jt} \), allowing us to derive the following proposition:

**Proposition 1.** Consider an instrumental variables estimator of the form

\[
\theta_{IV} \equiv \frac{\text{Cov}[\Delta w_{jt}, D_{jt}]}{\text{Cov}[\Delta \ell_{jt}, D_{jt}]}.
\]

Under Assumption 1 and the rank condition \( \text{Cov}[\Delta \ell_{jt}, D_{jt}] \neq 0 \), \( \theta_{IV} \) recovers \( \theta \).
Proof. By equation (4),

$$\theta_{IV} = \frac{\text{Cov}[\theta \Delta \ell_{jt}, D_{jt}]}{\text{Cov}[\Delta \ell_{jt}, D_{jt}]} + \frac{\text{Cov}[\Delta \nu_{jt}, D_{jt}]}{\text{Cov}[\Delta \ell_{jt}, D_{jt}]} + \frac{\text{Cov}[\Delta \xi_{t}, D_{jt}]}{\text{Cov}[\Delta \ell_{jt}, D_{jt}]} = \theta,$$

where the second term is zero by Assumption 1 and the third term is zero because $\Delta \xi_{t}$ is the same for all firms in the market in each period $t$.

It is important to observe what is and is not restricted under Assumption 1. First, Assumption 1 does not impose any additional restrictions on the relationships among the variables $(Z_{jt}, D_{jt}, \phi_{jt}, \psi_{j}, \xi_{t})$. In other words, Assumption 1 does not restrict how bids, TFP, time-invariant firm-specific amenities, and market-wide labor supply shocks covary. Second, Assumption 1 permits $\text{Var}[\Delta \nu_{jt}] > 0$, so it allows for firm-specific amenities to vary over time. This is less restrictive than much of the existing literature on identifying the labor supply curve, which requires that firm-specific amenities are constant within the estimation window (see the discussion by Lamadon et al. 2021). Third, Assumption 1 does not impose that there is a time delay in the responses of $\Delta \ell_{jt}$ and $\Delta w_{jt}$ to $\Delta \nu_{jt}$, so that labor supply and wages may respond contemporaneously to firm-specific amenity shocks. However, it restricts the dependence of $Z_{jt}$ and thereby $D_{jt}$ on $\Delta \nu_{jt}$, which may be reasonable since there is typically a time delay between the procurement solicitation for bids and the commencement of production on the government project.

Alternative identification strategy

We have seen that $\theta_{IV}$ recovers $\theta$ if firm-specific amenity shocks are not known or predictable by the firm at the time it bids (see Assumption 1). To relax this assumption, we take advantage of the data on bids. For a firm $j$ that bids in auction $\iota$ at time $t$, define the loss margin as $\tau_{jt} \equiv \frac{Z_{jt} - Z_{jt}}{Z_{jt}^*}$, where $Z_{jt}^*$ is the winning bid in auction $\iota$. We have the following proposition:

**Proposition 2.** Consider an IV estimator of the form

$$\theta_\tau \equiv \frac{\mathbb{E}[\Delta w_{jt} | \tau_{jt} = 0] - \mathbb{E}[\Delta w_{jt} | 0 < \tau_{jt} \leq \tau]}{\mathbb{E}[\Delta \ell_{jt} | \tau_{jt} = 0] - \mathbb{E}[\Delta \ell_{jt} | 0 < \tau_{jt} \leq \tau]},$$

(21)
where $\tau$ is a proximity parameter and the conditioning on $\iota$ is implicit. Under the rank condition $\mathbb{E}[\Delta \ell_{jt}|\tau_{jt} = 0] \neq \lim_{\tau \to 0^+} \mathbb{E}[\Delta \ell_{jt}|0 < \tau_{jt} \leq \tau]$, $\lim_{\tau \to 0^+} \theta_{\tau}$ recovers $\theta$.

**Proof.** Since these are price-only auctions, winning the auction is fully determined by the observed bids $Z_{jt}$. Thus, $D_{jt}$ must be independent of $\Delta \nu_{jt}$ conditional on $Z_{jt}$, i.e., the amenity shocks cannot affect which firm wins an auction conditional on the bids. Since bids of winners and losers converge as $\tau \rightarrow 0^+$,

$$
\lim_{\tau \rightarrow 0^+} \theta_{\tau} = \theta + \lim_{\tau \rightarrow 0^+} \frac{\mathbb{E}[\Delta \nu_{jt}|\tau_{jt} = 0] - \mathbb{E}[\Delta \nu_{jt}|0 < \tau_{jt} \leq \tau]}{\mathbb{E}[\Delta \ell_{jt}|\tau_{jt} = 0] - \mathbb{E}[\Delta \ell_{jt}|0 < \tau_{jt} \leq \tau]} = \theta,
$$

where the second term is zero by $\mathbb{E}[\Delta \nu_{jt}|\tau_{jt} = 0] = \lim_{\tau \rightarrow 0^+} \mathbb{E}[\Delta \nu_{jt}|0 < \tau_{jt} \leq \tau]$. $\square$

The key identifying condition, that the amenity shocks cannot affect which firm wins an auction conditional on the bids, should be true in the price-only auctions we consider. An estimation challenge is that winners and losers of auctions do not have infinitesimally close bids, so we cannot find the perfect match using the limit as $\tau$ approaches zero. We consider two ways to take the identification approach of Proposition 2 to the data. The first estimation approach is effectively a nearest neighbors estimator in which we choose a small (but not infinitesimal) value of $\tau$, controlling for time-invariant auction and firm characteristics (by differencing over time). The choice of neighbor proximity $\tau$ faces the usual bias-variance trade-off, as smaller $\tau$ has less bias but more variance due to the loss in sample size. The second estimation approach uses a linear regression where we control flexibly for bids, while also controlling for time-invariant auction and firm characteristics. In this approach, we consider a third-order polynomial to control for $\tau_{jt}$. However, results are robust to the choice of polynomial order.

### 4.2 Product demand curve

Our goal in this subsection is to identify the private product market demand elasticity, $1/\epsilon$. We will rely on equation (12), which expresses private market log revenues $r_{jt}^H$ in terms of log intermediate input expenditures $x_{jt}$ and the output quantity shock $e_{jt}$ among firms that do not hold procurement contracts ($D_{jt} = 0$). Consider the following assumption:
Assumption 2. The output quantity shock is orthogonal to log intermediate input expenditures among firms without procurement contracts, \( \text{Cov}[e_{jt}, x_{jt}|D_{jt} = 0] = 0 \).

Assumption 2 is true under a standard timing assumption from the literature (Ackerberg et al., 2015): firms choose intermediate inputs in the middle of period \( t \) before they observe the idiosyncratic shock to output at the end of period \( t \) (see the more general discussion of timing assumptions by Gandhi et al. 2020). It can also be justified by the assumption that \( e_{jt} \) is measurement error: from the perspective of the firm, \( r_{jt}^H = \kappa_R + (1-\epsilon) x_{jt} \) does not have an error, but the error appears to the econometrician in equation (12) due to issues with measuring and reporting revenues in tax data, giving rise to \( e_{jt} \). This leads to the following proposition:

**Proposition 3.** Consider a regression of log revenues on log intermediate input expenditures among firms not holding procurement contracts, i.e.,

\[
\hat{1-\epsilon} \equiv \frac{\text{Cov}[r_{jt}, x_{jt}|D_{jt} = 0]}{\text{Var}[x_{jt}|D_{jt} = 0]}. \tag{22}
\]

Given Assumption 2 and the rank condition \( \text{Var}[x_{jt}|D_{jt} = 0] > 0 \), \( \hat{1-\epsilon} \) recovers \( 1-\epsilon \).

**Proof.** By equation (12),

\[
\hat{1-\epsilon} = \frac{\text{Cov}[(1-\epsilon) x_{jt}, x_{jt}|D_{jt} = 0]}{\text{Var}[x_{jt}|D_{jt} = 0]} + \frac{\text{Cov}[(1-\epsilon) e_{jt}, x_{jt}|D_{jt} = 0]}{\text{Var}[x_{jt}|D_{jt} = 0]} = 1-\epsilon,
\]

where the second term is zero by Assumption 2. \( \square \)

To complete the identification of the product demand curve, we now show how to recover \( p_H \). Rearranging equation (12), we have

\[
\log p_H = \mathbb{E}[r_{jt} - (1-\epsilon)x_{jt}|D_{jt} = 0] - (1-\epsilon) \log \left( \frac{\beta_M}{p_M} \right), \tag{23}
\]

where we normalize \( \mathbb{E}[e_{jt}|D_{jt} = 0] = 0 \) without loss of generality. Thus, we recover \( p_H \) given \( \epsilon \) and \( \beta_M/p_M \), the latter of which is recovered in the next subsection.
4.3 Firm Technology

In this subsection, our goal is to identify the composite returns to labor $\rho$, as well as the production parameters $\beta_L$, $\beta_K$, and $\beta_M/p_M$. The identification challenge is that log TFP, $\phi_{jt}$, is an unobserved determinant of intermediate input expenditures in equation (11), and $\ell_{jt}$ depends directly on TFP, as shown in Appendix A.2. Thus, a regression of $x_{jt}$ on $\ell_{jt}$ will fail to recover $\rho$ due to the correlated unobservable $\phi_{jt}$.

Instead, we propose to invert the bidding strategy to control for TFP. Given the equilibrium bidding strategy $Z_{jt} = s_{u_{jt}}(\phi_{jt})$ from equation (14), where $s$ is monotonic in $\phi_{jt}$ given $u_{jt}$, we can write the inverse equilibrium bidding strategy as $\phi_{jt} = s^{-1}_{u_{jt}}(Z_{jt})$. Monotonicity ensures that $s^{-1}$ is unique and $\phi_{jt}$ is pinned down by the bids $Z_{jt}$, conditional on the amenities $u_{jt}$. Given any consistent estimator $\hat{\theta}$ of $\theta$, an estimator for $u_{jt}$ is

$$\hat{u}_{jt} = w_{jt} - \hat{\theta}l_{jt}. \quad (24)$$

We have the following result:

**Proposition 4.** Consider a regression of $x_{jt}$ on $\ell_{jt}$ controlling for $(\hat{u}_{jt}, Z_{jt})$, i.e.,

$$\hat{\rho} \equiv \frac{\text{Cov}[x_{jt}, \ell_{jt} | \hat{u}_{jt}, Z_{jt}]}{\text{Var}[\ell_{jt} | \hat{u}_{jt}, Z_{jt}]} \quad (25)$$

*Given that $\hat{\theta}$ recovers $\theta$ and the rank condition $\text{Var}[\ell_{jt} | \hat{u}_{jt}, Z_{jt}] > 0$, $\hat{\rho}$ recovers $\rho$."

**Proof.** By equation (11),

$$\hat{\rho} = \frac{\text{Cov}[\rho \ell_{jt}, \ell_{jt} | \hat{u}_{jt}, Z_{jt}]}{\text{Var}[\ell_{jt} | \hat{u}_{jt}, Z_{jt}]} + \frac{\text{Cov}[\phi_{jt}, \ell_{jt} | \hat{u}_{jt}, Z_{jt}]}{\text{Var}[\ell_{jt} | \hat{u}_{jt}, Z_{jt}]} = \rho,$$

where the second term is zero because $\text{Cov}[\phi_{jt}, \ell_{jt} | \hat{u}_{jt}, Z_{jt}] = \text{Cov}[\phi_{jt}, \ell_{jt} | \phi_{jt}]$ by the uniqueness of $\phi_{jt} = s^{-1}_{u_{jt}}(Z_{jt})$ and that $u_{jt}$ recovers $\hat{u}_{jt}$ since $\hat{\theta}$ recovers $\theta$. \qed

In practice, we implement this control function approach by controlling for auction fixed effects as well as third-order polynomials in $\log Z_{jt}$ and $\hat{u}_{jt}$. The results do not change materially if we increase the polynomial order.

28
We now show how to recover $\beta_L$, $\beta_K$, and $\beta_M/p_M$ given $\theta$, $\rho$, and $\epsilon$. Rearranging equation (13) and using that $Q_{0jt} = Q_{0jt}^H$, we recover $\beta_L$ as

$$\beta_L = \mathbb{E}\left[\frac{(1 + \theta) B_{jt}}{(1-\epsilon) R_{jt} - X_{jt}} \middle| D_{jt} = 0\right].$$

From the definition of $\rho$, we recover $\beta_K$ as $\beta_K = (\rho - \beta_L) / (1 + \theta)$. From equation (11), we recover $\beta_M/p_M$ as

$$\log(\beta_M/p_M) = \mathbb{E}[\rho x_{jt} - \chi_{jt}],$$

where we normalize $\mathbb{E}[\phi_{jt}] = 0$ without loss of generality.

### 4.4 Over-identifying Restriction

We have demonstrated that $1/\epsilon$, $\rho$, and $\beta_L$ are identified under Assumptions 1-2. An additional moment will allow us to over-identify $(1/\epsilon, \rho, \beta_L)$ and thus directly examine the validity of the model.

Among firms that hold procurement contracts, the profit-maximizing first-order condition corresponding to equation (13) implies

$$\Lambda_{jt} = \kappa_{\Lambda} + \rho \ell_{jt} + \phi_{jt} + e_{jt} \quad \text{if} \quad D_{jt} = 1. \quad (28)$$

where $\Lambda_{jt} \equiv \frac{\epsilon}{1-\epsilon} \sum_{t}^{H} \log \left( \frac{1+\theta}{\beta_L} B_{jt} + X_{jt} \right)$ and $\kappa_{\Lambda} \equiv \log(1-\epsilon) + \frac{\log p_H}{1-\epsilon}$. The derivation is provided in Appendix A.4. Given $\theta$, for any candidate values of $(\epsilon, \beta_L)$, we can construct the left-hand side variable. Furthermore, note that for any candidate value of $\rho$, we can rearrange equation (11) to recover log TFP as

$$\tilde{\phi}_{jt}(\rho) \equiv x_{jt} - \kappa_{X} - \rho \ell_{jt}. \quad (29)$$

We can then construct the covariance between $\ell_{jt}$ and the left-hand side of equation (28), which is a moment equation that depends only on the unknown parameters

--The right-hand side of equation (26) can be interpreted as the labor share of value added adjusted for imperfect competition in the labor and product markets. As $\theta \to 0$ and $\epsilon \to 0$, the right-hand side of equation (26) simplifies to the labor share of value added.

29
the TFP estimates \( \tilde{\phi}_{jt}(\rho) \), and the data. Thus, in addition to equations (22), (25), and (26), equation (28) gives us a fourth equation that must be satisfied by the true values of \((\epsilon, \rho, \beta, \beta_L)\). In practice, we estimate \((\epsilon, \rho, \beta, \beta_L)\) simultaneously in equations (22), (25), (26), and (28) using the general method of moments (GMM).

### 4.5 Rents and Incidence

In this section, we focus on the sample of firms with procurement contracts \((D_{jt} = 1)\) and show how to recover their total rents, baseline rents, and the incidence of procurement on firms and workers. From equation (18) and given that we identified \(\theta\) above, we can characterize rents and incidence for workers if we recover \(B_{0jt}\) and \(B_{1jt}\) for each \((j,t)\). From equation (20), we can characterize rents and incidence for firms if we recover \(\pi_{0jt}\) and \(\pi_{1jt}\) for each \((j,t)\). For firms with \(D_{jt} = 1\), we observe \(B_{1jt}\) and \(\pi_{1jt}\), so the only remaining challenge is to recover \(B_{0jt}\) and \(\pi_{0jt}\).

To recover \(B_{0jt}\) and \(\pi_{0jt}\), we draw on the profit-maximizing first-order condition with respect to labor for the counterfactual in which the firm loses the procurement contract \((d = 0)\), which is

\[
\rho_p (1-\epsilon) \Phi_{jt} L_{0jt}^{(1-\epsilon)-1} = (1 + \theta) \kappa_U U_{jt} L_{0jt}^{\theta} + \rho \beta_M \Phi_{jt} L_{0jt}^{\rho-1},
\]

where \(\kappa_U \equiv \frac{\beta_K}{\beta_L} (1 + \theta) + 1\). The derivation of equation (30) is provided in Appendix A.2. We identify \((\theta, \rho, \epsilon, p_H, \beta_M/p_M)\) above, and recover \(U_{jt}\) from equation (24) and \(\Phi_{jt}\) from equation (29). Thus, we can numerically solve equation (30) to obtain \(L_{0jt}\) for each \((j,t)\). Given \(L_{0jt}\), it is then straightforward to recover \(B_{0jt}\) and \(\pi_{0jt}\) using the firm’s constraints. In particular, given \(L_{0jt}\), we can solve for \(B_{0jt}\) using that \(B_{0jt} = U_{jt} L_{0jt}^{(1+\theta)}\) (equation 2). Then, we can solve for \(\pi_{0jt}\) using that \(Q_{0jt} = \Phi_{jt} L_{0jt}^{\rho}\) (equation 9), \(X_{0jt} = \frac{p_M}{\beta_M} Q_{0jt}\) (equation 10), \(R_{0jt}^{H} = p_H (Q_{0jt}^{H})^{1-\epsilon}\) (equation 6), \(p_K K_{0jt} = \frac{\beta_K}{\beta_L} (1 + \theta) B_{0jt}\) (Appendix A.1), and \(\pi_{0jt}^{H} = R_{0jt}^{H} - B_{0jt} - X_{0jt} - p_K K_{0jt}\) (equation 8).

Thus, we have shown how to recover \((B_{0jt}, B_{1jt}, \pi_{0jt}, \pi_{1jt})\) for each firm with \(D_{jt} = 1\). Total rents for workers are \(B_{1jt}/(1+1/\theta)\) and total rents for firms are \(\pi_{1jt}\), while baseline rents are \(B_{0jt}/(1+1/\theta)\) for workers and \(\pi_{0jt}\) for firms. Incidence of procurement is \((B_{1jt} - B_{0jt})/(1+1/\theta)\) for workers and \(\pi_{1jt} - \pi_{0jt}\) for firms.
5 Estimates of Model Parameters and Rents

We now combine the identification strategies in Section 4 with the data described in Section 3 to estimate the parameters that govern labor supply, product demand, and firm technology.

5.1 Labor Supply Elasticity

Empirical implementation. We now implement the instrumental variables estimator \( \theta_{IV} \) described in Subsection 4.1 using the data described in Section 3. As shown in Proposition 1, \( \theta_{IV} \) recovers \( \theta \) if firms bid in procurement auctions prior to learning the firm-specific amenity shocks. The numerator of \( \theta_{IV} \) is \( \mathbb{E} \left[ \Delta w_{jt} | D_{jt} = 1 \right] - \mathbb{E} \left[ \Delta w_{jt} | D_{jt} = 0 \right] \) and the denominator is \( \mathbb{E} \left[ \Delta \ell_{jt} | D_{jt} = 1 \right] - \mathbb{E} \left[ \Delta \ell_{jt} | D_{jt} = 0 \right] \). Each of these is a difference-in-differences (DiD) estimand, so we borrow from the literature on DiD estimation to implement our approach.

Consider the cohort of firms that receive a procurement contract in year \( t \) (\( D_{jt} = 1 \)) and the set of comparison firms that bid for a procurement in year \( t \) but lose (\( D_{jt} = 0 \)). Let \( e \) denote an event time relative to \( t \). For each event time \( e = -4, ..., 4 \), our DiD estimation is implemented as

\[
\Delta w_{jt+e} = \sum \frac{1}{e' \neq \bar{e}} \{ e' = e \} \mu_{te'} + \sum \frac{1}{j'} \{ j' = j \} \psi_{jt'} + \sum \frac{1}{e' \neq \bar{e}} \{ e' = e \} D_{jt} \lambda_{te'} + \epsilon_{jte},
\]

where \( \lambda_{te} \) recovers the numerator of \( \theta_{IV} \) for a particular pair \((e, t)\) and \( \bar{e} = -2 \) is the omitted event time.\(^{26}\) The analogous regression in which \( \ell_{jt+e} \) is the outcome recovers the denominator of \( \theta_{IV} \). We average across event times \( e \) to form the main estimate. Based on the patterns observed at annual frequency across \( e \) (see Appendix Figure A.7), we choose event times \( e \in \{0, 1, 2 \} \) as the post-treatment period. We find very similar estimates of \( \theta_{IV} \) when considering alternative choices of event times (see

\(^{26}\) We estimate \( \lambda_{te} \) for all \( t \) and \( e \) and then average across \( t \), using the delta method to compute standard errors (which are clustered at the firm level \( j \) to account for serial correlation). By doing so, we avoid the problem pointed out by Callaway and Sant’Anna (2020) that cohorts can be negatively weighted in pooled cohort DiD estimators.
further discussion below). We can also use the pre-period event times in a falsification test. The model predicts that both DiD estimands are zero in the pre-period. We test this prediction in Appendix Figure A.2 for the baseline specification and alternative sample specifications. We fail to reject the null hypothesis in each case, consistent with the identifying assumption.

By differencing over time, our main specification controls for differences in the composition of treated and control firms. This removes any time-invariant characteristics of firms, such as the time-invariant firm-specific amenities \( \psi_j \) emphasized in Section 4.1, but also any other time-invariant characteristics of the firms, such as the identities of the auctions in which they participate. However, this only controls for time-invariant characteristics in an additive fashion. In a robustness check discussed further below, we re-estimate the DiD estimator separately for each auction using a fully-interacted specification, finding similar estimates.

**Baseline estimates.** The main estimate of the labor supply elasticity \( 1/\theta \) is displayed in the bar labeled “Baseline” in Figure 1. This estimate is based on Proposition 1 and is valid under the timing of firm-specific amenity shocks restriction in Assumption 1. The point estimate of the firm-specific labor supply elasticity is 4.08, which is statistically significant at the 0.01 level. This indicates that, if an American construction firm aims to increase the number of its employees by 10 percent, it needs to increase wages by around 2.4 percent. The wage markdown \( (1/\theta) / (1 + 1/\theta) \) is 0.80, as shown in Appendix Figure A.3. This implies wages are marked down 20 percent relative to the marginal revenue product of labor.

Our estimates are broadly comparable to existing work. Lamadon et al. (2021) estimate a labor supply elasticity of 4.6 using firm-level variation and Suárez Serrato and Zidar (2016) estimate a labor supply elasticity of 4.2 using state-level variation, while Card et al. (2018) pick 4.0 as the preferred value in their calibration exercise. A related literature using experimentally manipulated piece-rates for small tasks typically finds labor supply elasticities ranging from 3.0 to 5.0 (Caldwell and Oehlsen,
Figure 1: Labor Supply Elasticity: Baseline Estimate and Alternative Specifications

Notes: This figure presents the baseline estimate and sensitivity checks for the labor supply elasticity $1/\theta$. Specification details and sample definitions are provided in the text. Corresponding estimates of the wage markdown $(1/\theta)/(1 + 1/\theta)$ are provided in Appendix Figure A.3.

Sensitivity to adjustment costs. A possible threat to identification is adjustment costs: If labor enters the firm slowly over time rather than immediately when the new wage is posted, the short-run relation between wages and quantity of labor may underestimate the labor supply elasticity, resulting in downward-bias of $1/\theta$. While our “Baseline” specification averages estimates across three event years, the bars labeled “Timing: Year 0”, “Timing: Year 1”, and “Timing: Year 2” in Figure 1 provide estimates separately for the announcement event year ($e = 0$) as well as the subsequent two event years ($e = 1, 2$). We find approximately the same labor supply elasticity estimates. In fact, labor supply is most elastic in the onset year, which
suggests that adjustment costs are relatively unimportant in our setting.

**Sensitivity to worker composition changes.** Our identification of $1/\theta$ relies on the argument that receiving a procurement contract shifts the firm’s demand for labor along the labor supply curve. One potential reason this argument may fail is skill-upgrading: If earnings per worker increase for the winning firm in part because new hires are more productive, the estimator will include a bias related to the change in worker composition. To investigate this, we consider restricting worker mobility in two ways. First, the bar labeled “Workers: Stayers” in Figure 1 only considers earnings changes among workers who stay in the same firm before and after the auction announcement. Second, the bar labeled “Workers: Tenure” in Figure 1 only considers earnings changes among workers who had at least two years of tenure in the firm before the auction announcement. The estimates are nearly the same when imposing these worker restrictions, indicating that there is no skill-upgrading bias in our context. Another possibility is that firms disproportionately hire independent contractors in order to complete procurement contracts, and independent contractors may have a different labor supply elasticity from formal employees. We find in the bar labeled “Workers: Add Contractors” that the labor supply elasticity is quite similar when including independent contractors in the sample of workers.

**Sensitivity to local market shocks.** Our identification strategy controls for the aggregate labor supply shocks ($\Delta \xi_t$) using that the winners and the losers of the procurement auction experience the same aggregate shock. However, if more procurement contracts are awarded in local labor markets with worse labor supply shocks, this could induce correlation between local aggregate labor supply shocks and procurement contracts. We can address this issue by comparing procurement contract winners and losers in the same market, as firms in the same local market are by definition subject to the same local aggregate shocks. In the bars labeled “Sample:

---

29 In Appendix Figure A.4, we show that these results are insensitive to the number of years used in defining stayer or tenured worker samples.

30 As an alternative way of investigating this issue, we consider earnings at previous firms as a proxy for worker quality of new hires. We find that the average previous earnings of new hires does not experience a statistically significant change in response to winning a procurement auction ($p$-value about 0.5), which is again consistent with no skill-upgrading in our context.
Same Location” and “Sample: Same Auction” in Figure 1, we control for local labor supply shocks by only comparing firms in the same commuting zone or the same auction, respectively. We find nearly the same labor supply elasticity estimates under these restrictions on the comparison group, indicating local aggregate shocks do not confound our baseline estimates.

**Sensitivity to unionization and prevailing wage laws.** Another potential concern is that unions or prevailing wage laws confound the estimates of the labor supply elasticity. However, a prevailing wage law would only be expected to impact wage changes under an unusual set of circumstances. First, the firm must have initial wages below the prevailing wage, while our model predicts that procurement contracts are disproportionately won by high-productivity and high-wage firms. Second, even if the firm’s initial wage were below the prevailing wage, it could still be that the new wage after winning the procurement contract meets or exceeds the prevailing wage due to the upward-sloping labor supply curve (i.e., the prevailing wage may not bind for the wage increase). Third, the procurement contract must be funded by the federal government (to be covered by the federal Davis-Bacon Act) or by a state with its own prevailing wage laws. Even if a prevailing wage law applies, Duncan and Ormiston (2019) survey the empirical literature and find that prevailing wage laws have no impact on construction firms that win procurement contracts. To investigate this issue, we examine the sensitivity of our estimates to heterogeneity across states in coverage by prevailing wage and right-to-work laws. The results are displayed in Appendix Figure A.5. Wage bill and employment responses are nearly identical across these types of states, implying similar labor supply elasticities across state-level prevailing wage or right-to-work coverage.

**Comparison to IV estimators controlling for bids.** Assumption 1 imposes that firms do not observe the firm-specific amenity shock ($\Delta \nu_{jt}$) when bidding. To relax and critically examine this assumption, we can instead leverage the fact that procurement auction winners are determined solely by their bids. As a result, the firm-specific amenity shock is independent of the auction winner conditional on the bid (or, equivalently, conditional on the loss margin). We proved in Proposition 2
that the nearest neighbors IV estimator $\theta_\tau$ defined in equation (21) recovers $\theta$ by comparing procurement auction winners to losers that had small loss margins (by taking the parameter $\tau$ to be small) and controlling for time-invariant auction and firm characteristics (by differencing over time). In the bar labeled “Estimator: Nearest Bids” in Figure 1, we find for $\theta_\tau$ a labor supply elasticity estimate of 3.5 with corresponding markdown of 0.78, which are very similar to the baseline estimates. Appendix Figure A.8 shows that the labor supply elasticity and markdown are relatively robust to the choice of $\tau$. Note, however, that there are alternative approaches to implementing the IV estimator that conditions on bids. In the bars labeled “Estimator: Linear Bids” and “Estimator: Polynomial Bids” in Figure 1, we also consider estimators based on linear and third-order polynomial extrapolation of the loss margin of the bids, respectively, finding nearly identical estimates to the nearest bids estimator. Thus, we conclude that the estimator that relies on Assumption 1 yields similar results to the estimators from Proposition 2 that do not require this assumption.

**External sample validity using the LMS estimator.** The approaches we considered thus far have relied on procurement auctions to identify the labor supply elasticity. One potential concern is that firms that bid in auctions differ from the rest of the construction industry. In order to investigate this possibility, we consider the estimator of Lamadon et al. (2021, LMS), which uses lagged revenue changes as instruments. The LMS estimator can be justified either if firm-specific amenities are fixed over the estimation window or if TFP shocks are more persistent than firm-specific amenity shocks.31 Importantly, revenue shocks are defined for all firms in the construction industry, not only for firms that participate in auctions, so they can be used to assess the representativeness of the subsample of firms that participate in auctions. The bar labeled “Estimator: LMS” in Figure 1 shows that, when applying the LMS estimator to the entire construction industry, we find a labor supply elasticity of 4.0 and markdown of 0.80, which are nearly the same as the baseline estimates.

31Proposition 5 of Appendix D provides the formal conditions for identification using the LMS estimator.
Sensitivity to labor hours and full-time status. A potential concern is that we measure earnings changes rather than hourly wage changes. If part of the earnings change is due to an increase in hours, then we overstate the wage increase relative to the labor increase, leading to a downward-biased estimate of the labor supply elasticity, $1/\theta$. We now investigate this possibility.

One natural way to increase hours is to promote part-time workers to full-time status. However, part-time employment is rare in the construction industry: in 2015, 13.9 percent of all US private sector workers were part-time but only 4.6 percent of construction industry workers were part-time (BLS, 2021). To better understand the relationship between full-time employment status and annual earnings, we analyze CPS ASEC cross-sectional random samples of the US labor force, which include measures of hours worked and annual earnings. In the 2001-2015 ASEC samples, 6.4 percent of construction workers are part-time employed, compared to 11.9 percent across all industries. When imposing in the ASEC samples our FTE restriction that annual earnings from the primary employer are greater than the annualized full-time minimum wage, only 4.4 percent of the remaining construction sample is part-time employed, compared to 7.1 percent across all industries. Thus, the FTE restriction removes a substantial share of part-time employees from the ASEC samples.

Nevertheless, one may worry that promotions from part-time to full-time employment in response to winning a procurement contract explain our estimated increase in earnings per worker. To investigate this, we consider again the stayers sample described above. Since stayers are defined as workers who were already FTE before the procurement contract was received and remained FTE after, stayers could not have been promoted from non-FTE to FTE status in response to winning the procurement contract. We find almost the same estimates for the stayers sample as we do for the full sample of workers, suggesting that promotion from part-time to full-time status does not drive our results. However, it could be that our baseline FTE sample includes some part-time workers with relatively high hourly wages. In Appendix Figure A.6, we strengthen the FTE restriction up to 150 percent of the baseline definition. Transitions from part-time to full-time status should become less likely as the FTE restriction rises. We find that the estimate is insensitive to raising the FTE restriction, suggesting we have successfully ruled out part-time to full-time promotions with
the baseline FTE restriction. It is not surprising that part-time employment does not confound our estimates, given how rare part-time employment is in the construction industry.

The other natural way to increase hours is over-time pay for incumbent full-time workers. When thinking about the plausibility that our estimates are driven by over-time pay, it is useful to observe that the effects of receiving a procurement contract persist over several years. In Appendix Figure A.7, we find that the change in earnings due to receiving a procurement contract (which is the numerator of $\theta_{IV}$) is positive, statistically significant, and relatively stable over the four years after the firm wins the auction, whereas the typical procurement project lasts for less than one year. Thus, it is unlikely that over-time pay to meet a short-lived increase in product demand explains our estimated increase in earnings.

While the evidence from the US data indicate that the increase in earnings is not due to increased hours worked, the most compelling evidence would come from directly estimating annual earnings versus hourly wage responses in data with administrative measures of each worker’s labor hours. Labor hours data is not available from the IRS, nor is it available in other national employer-employee panel data from the US (e.g., LEHD). To overcome this challenge, we consider data from Norway. Norway provides a rare opportunity, as it is one of the few countries where the hours worked by a particular employee are reported to the government. We restrict the Norwegian sample to the construction sector and workers who satisfy the same FTE restriction as we impose in the US data. See Supplement S.3 for details on the Norwegian data sources and sample construction.

To determine whether or not labor hours responses confound wage responses to firm shocks in Norway, we apply the LMS estimator (discussed above) to recover the pass-through from revenue shocks to annual earnings and hourly wages. We find that the elasticity of annual earnings and hourly wages to revenue shocks are 0.092 and 0.091, respectively, while the elasticity of hours to revenue shocks is 0.001. Thus,

---

32 Only Minnesota, Oregon, Rhode Island, and Washington State collect labor hours data as part of their unemployment insurance records, representing a small fraction of the US workforce and a small fraction of states covered by our procurement auction records. This hourly wage data is not available through the IRS. See Bassier et al. (2020) and Lachowska et al. (2020) for recent work using hourly wage data from Oregon and Washington State, respectively.
the labor supply elasticity is nearly identical when estimated using annual earnings versus hourly wages.

5.2 Firm Technology and Product Demand Parameters

Given the estimate of $1/\theta$ above and the Ackerberg et al. (2015) timing restriction that the output quantity shock is not correlated with the choice of intermediate inputs (Assumption 2), equations (22), (25), (26), and (28) jointly identify the elasticity of demand for private market construction projects ($1/\epsilon$), the composite returns to labor ($\rho$), and the marginal returns to labor ($\beta_L$). We use the general method of moments (GMM) to jointly estimate ($1/\epsilon, \rho, \beta_L$) based on these four equations. Identifying equations, GMM estimates, and bootstrap standard errors are summarized in Panel A of Table 2. Sensitivity checks are discussed below.

Firm technology. We estimate $\beta_L$ to be 0.50 and $\rho$ to be 1.09. The value of $\beta_L$ implies that a 100 percent increase in a firm’s employment results in 50 percent more output, all else equal. The value of $\rho$ implies that, if a firm has 100 percent more labor than another firm, we expect it to produce 109 percent more output, not holding all else equal. The larger firm will optimally have greater utilization of capital and intermediate inputs. Since $\rho \equiv (1+\theta)\beta_K+\beta_L$, these estimates imply that $\beta_K$ is about 0.47 (see Panel B in Table 2). The returns to scale over labor and capital, $\beta_L+\beta_K$, is about 1.0, which is comparable to the range of estimates from 1.0 to 1.2 by Levinsohn and Petrin (2003).

Government crowd-out of the private market. As discussed in Subsection 2.3, the government project crowds-out private projects ($Q_{ijt}^H < Q_{0ijt}^H$) since we estimate that $1+\theta > \rho$. To see why this is the case, note that winning a government project increases the total output level. In turn, more employment is required to achieve a greater level of production. Due to the upward-sloping labor supply curve, greater employment leads to higher costs of labor, determined by $1+\theta$. On the other hand, greater scale induces greater private production under composite economies of scale, $\rho > 1$. Since we estimate $1+\theta > \rho$, it is optimal for a firm to cut its production for
### Panel A. Technology and Product Demand Parameters

#### Baseline Estimates using Over-identified GMM Parameters Data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 - \epsilon$</td>
<td>0.863 (0.015)</td>
</tr>
<tr>
<td>$\rho$</td>
<td>1.089 (0.017)</td>
</tr>
<tr>
<td>$\beta_L$</td>
<td>0.499 (0.192)</td>
</tr>
</tbody>
</table>

#### Alternative Estimates using Exactly-identified OLS Parameters Data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 - \epsilon$</td>
<td>0.863 (0.008)</td>
</tr>
<tr>
<td>$\rho$</td>
<td>1.057 (0.015)</td>
</tr>
<tr>
<td>$\beta_L$</td>
<td>0.514 (0.209)</td>
</tr>
</tbody>
</table>

### Panel B. Remaining Parameters for Price, Scale, and TFP

#### Parameter and Identifying Moments Data

<table>
<thead>
<tr>
<th>Parameter and Identifying Moments</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log \beta_H = \mathbb{E}[r_{jt} - (1 - \epsilon)\log \beta_H + x_{jt}]/D = 0]$</td>
<td>12.801 (0.053)</td>
</tr>
<tr>
<td>$\mathbb{E}[u_{jt}] = \mathbb{E}[b_{jt}] - (1 + \theta)\mathbb{E}[\ell_{jt}]$</td>
<td>10.075 (0.000)</td>
</tr>
<tr>
<td>$\log \beta_H = \rho\mathbb{E}[\ell_{jt}] - \mathbb{E}[x_{jt}]$</td>
<td>-11.722 (0.047)</td>
</tr>
<tr>
<td>$\beta_K = (\rho - \beta_L)/(1 + \theta)$</td>
<td>0.474 (0.161)</td>
</tr>
<tr>
<td>$\text{IQR}(\phi_{jt}) = \text{IQR}(x_{jt} - \rho\ell_{jt})$</td>
<td>0.918 (0.001)</td>
</tr>
</tbody>
</table>

Table 2: Firm Technology and Product Demand Parameters

Notes: This table summarizes identifying equations and provides estimates of several model parameters. GMM and OLS estimates of $(1 - \epsilon, \rho, \beta_L)$ are provided in Panel A, while estimates of the remaining parameters are provided in Panel B.

In the private market if it receives a procurement contract. We quantify the crowd-out effect in the next section.

### Product demand elasticity.

In the private product market, we estimate that the elasticity of revenue with respect to output $1 - \epsilon$ is 0.86, so the product demand elasticity $1/\epsilon$ is about 7.3. This implies that, in order for a firm to increase output by 10 percent, it must reduce its price by about 1.4 percent. The price markup, $(1 + 1/\epsilon)/(1/\epsilon)$, is about 1.14, so prices are 14 percent above the marginal cost of production. Appendix Figure A.10 estimates heterogeneity in $1 - \epsilon$ and the implied price markup across Census regions, finding that the price markup only varies from 1.11 to 1.17 across regions of the US. Though we do not find directly comparable estimates of the price elasticity of demand from the construction industry, some estimates from the literature suggest our estimate is within a reasonable range. Goldberg and Knetter (1999) estimate demand elasticities for German beer to be 2.3-15.4. Goldberg and Verboven (2001) estimate demand elasticities for foreign cars to be 4.5-6.5.
Sensitivity to the over-identifying restriction. In Panel A of Table 2, we provide baseline estimates from over-identified GMM in which we jointly estimate \((1/\epsilon, \rho, \beta_L)\). This requires fitting a system of non-linear equations using numerical methods. In order to directly examine the validity of the model, we can instead estimate the parameters using simple OLS estimation of the exactly-identified equations, dropping the over-identifying restriction discussed in Section 4.4. In particular, equation (22) provides an OLS estimate of \(1-\epsilon\), equation (25) provides an OLS estimate of \(\rho\), and equation (26) provides a plug-in estimate of \(\beta_L\) given the OLS estimates of \(1-\epsilon\) and \(\rho\). Using this approach, we estimate that \(1-\epsilon\) is 0.86, \(\rho\) is 1.06, and \(\beta_L\) is 0.51, which are nearly the same as the GMM estimates.

Sensitivity to time variation in the price parameters. Our baseline analyses have assumed that the price parameters \((p_{H}, p_{K}, p_{M})\) do not vary over time. While time-varying price parameters would lead to the same model equations in Section 2, the regression intercepts in equations (22), (25), and (28) would have year subscripts, which suggests controlling for year fixed effects in these regressions. When doing so, we find that the GMM estimates of \((1/\epsilon, \rho, \beta_L)\) remain identical to the second decimal place. Thus, accounting for time-variation in the price parameters does not affect our results.

Sensitivity to the Cobb-Douglas production function. The Leontief production function allows us to derive a linear relationship between \(x_{jt}\) and \(\ell_{jt}\) (equation 11). This functional form implies a zero marginal rate of technical substitution between labor and intermediate inputs. While this functional restriction is motivated by institutional features of the construction industry, we may be concerned about misspecification. Although misspecification in the production function would not affect the estimated labor supply elasticity or total rents, it could affect the estimates of \(\rho\) and \(1/\epsilon\) as well as counterfactual analyses like the incidence of procurement. In Appendix C, we solve, identify, and estimate the model with a Cobb-Douglas production function, which has marginal rate of technical substitution of unity and thus allows for substitutability between labor and intermediate inputs. When the production function is Cobb-Douglas, we estimate that \(\rho\) is 1.08 and \(1/\epsilon\) is 5.04, which
are similar to the estimates based on the Leontief production function. We also find similar estimates of the incidence of procurement on firms and workers. Thus, the functional form of the production function does not drive our results.

Sensitivity to auction symmetry. In Section 2.3, we discussed the assumption that auctions are symmetric, which leads to a closed-form expression for the optimal bidding strategy. While the identification strategies for \(1/\theta\), \(1/\epsilon\), and \(\beta_L\) do not rely on auction symmetry, we used symmetry to recover \(\rho\) in Proposition 4. If auctions were not symmetric, inverting the bidding function to control for TFP would require not only controlling for a firm’s own amenity term and bid but also the amenities of all other bidders in the auction. As a sensitivity check, we re-estimate \(\rho\) when controlling for a polynomial in the average amenities of all other firms in the same auction, finding a nearly identical estimate of \(\rho\). Thus, the assumption that auctions are symmetric does not drive our estimates of the key model parameters.

Remaining model parameters. For the few remaining model parameters, the identifying equations and estimates are provided in Panel B of Table 2. These include the private market price index parameter \(p_H\) (using equation 23), the scale of amenities (using equation 24), the returns to intermediate inputs relative to marginal cost \(\beta_M/p_M\) (using equation 27), the returns to capital (using the definition of \(\rho\)), and the interquartile range of TFP (using equation 29). Although the magnitudes of these parameters are perhaps not of interest on their own, they are needed to perform counterfactual simulations.\(^{33}\)

\(^{33}\)For example, the simulation exercises below use the TFP interquartile range when simulating optimal bids as a function of TFP dispersion from equation (14). One potential concern is that the distribution of TFP varies over time, so our interquartile range estimate may be overstated due to pooling across years. Appendix Figure A.9 estimates the TFP interquartile range separately by calendar year, finding little evidence of changes over time.
6 Rents and the Incidence of Government Procurement

We now use the approach described in Subsection 4.5 and the parameter estimates from Section 5 to recover the rents captured by firms and workers as well as the incidence of government procurement.

6.1 Rents and Rent Sharing

The first column of Table 3 provides our main estimates of firm and worker outcomes. We focus on firms that receive a procurement contract \((D_{jt} = 1)\) and provide estimates for the typical firm, by which we mean the median-TFP firm. The typical firm employs about 25 workers and pays them an annual wage of $59,100. This amounts to an annual wage bill of about $1.5 million. From equation (18), this implies that worker rents are about $11,600 per worker, which amounts to 20 percent of their average earnings. The typical firm spends about $4.7 million on intermediate inputs and $1.7 million on capital rental. It generates about $9.0 million in total revenues, of which $3.5 million is from the private market. Comparing revenues to expenditures on all inputs, firm rents (i.e. profits) amount to about $43,100 per worker. Comparing worker rents to firm rents, we see that 79 percent of total rents are captured by firms.

Figure 2 examines heterogeneity in outcomes across the TFP distribution. The x-axis displays the firm’s percentile in the TFP distribution. In Figure 2(a), the y-axis presents the firm’s labor, wage, wage bill, output, and profits, where each is normalized relative to the median-TFP firm. When a firm is more productive, it chooses to produce more output, which requires hiring more workers. Since the labor supply curve is upward-sloping, it must bid up wages to increase employment, which also increases the wage bill. Empirically, relative to the median-TFP firm, a firm at the 75th percentile of the TFP distribution employs 12 percent more labor, pays 3 percent higher wages, and spends 15 percent more on labor. It produces 65 percent more output and earns 74 percent more profits. By contrast, a firm at the 25th percentile of the TFP distribution produces 26 percent less output and earns 37 percent lower profits. Firms with low TFP employ more workers and pay greater
<table>
<thead>
<tr>
<th>Labor market</th>
<th>Actual outcomes</th>
<th>Counterfactual outcomes no procurements</th>
<th>Change due to procurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{jt}$ Employment (workers)</td>
<td>24.7</td>
<td>12.8</td>
<td>11.9</td>
</tr>
<tr>
<td>$W_{jt}$ Wage ($1,000)</td>
<td>59.1</td>
<td>50.4</td>
<td>8.8</td>
</tr>
<tr>
<td>$B_{jt}$ Wage bill ($1,000)</td>
<td>1,459.6</td>
<td>645.2</td>
<td>814.4</td>
</tr>
<tr>
<td>Intermediate markets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$X_{jt}$ Intermediate inputs ($1,000)</td>
<td>4,715.1</td>
<td>2,308.6</td>
<td>2,406.5</td>
</tr>
<tr>
<td>$p_{K}K_{jt}$ Capital rentals ($1,000)</td>
<td>1,724.7</td>
<td>762.4</td>
<td>962.3</td>
</tr>
<tr>
<td>Total production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_{jt}$ Output (quantity)</td>
<td>38.3</td>
<td>18.7</td>
<td>19.5</td>
</tr>
<tr>
<td>$R_{jt}$ Revenue ($1,000)</td>
<td>8,962.1</td>
<td>4,541.6</td>
<td>4,420.5</td>
</tr>
<tr>
<td>Private production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Q_{jt}^H$ Output (quantity)</td>
<td>13.7</td>
<td>18.7</td>
<td>-5.1</td>
</tr>
<tr>
<td>$R_{jt}^H$ Revenue ($1,000)</td>
<td>3,460.7</td>
<td>4,541.6</td>
<td>-1,080.9</td>
</tr>
<tr>
<td>Rents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{jt}$ Worker rents ($1,000/worker)</td>
<td>11.6</td>
<td>5.1</td>
<td>6.5</td>
</tr>
<tr>
<td>$\pi_{jt}$ Firm rents or Profits ($1,000/worker)</td>
<td>43.1</td>
<td>33.4</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Table 3: Outcomes of Firms and Workers and the Incidence of Procurement

Notes: For the median-TFP firm in the sample of firms that received procurement contracts ($D_{jt} = 1$), this table presents the observed values of various outcomes (column 1) as well as counterfactual outcomes that would have been experienced if the firm had not received a procurement contract (column 2) using the simulation approach of Subsection 4.5. It presents the differences between columns 1 and 2 in levels (column 3) and in percent changes (column 4).

wages than the median-TFP firm. This is because they need to produce the minimum output specified by the government, $Q^G$, and must compensate for low productivity by hiring more labor than the median-TFP firm.\(^{34}\)

In Figure 2(b), we compare the rents earned by firms and workers across the TFP distribution. Since firm rents increase much more than worker rents as TFP increases, the share of rents captured by workers is decreasing in TFP. This result complements the recent literature on product market competition which has found that more productive firms have higher markups and lower labor shares (Autor et al., 2020; De Loecker et al., 2020). We account for both labor and product market power

\(^{34}\)Appendix Figure A.11 provides the same figure but counterfactually shutting down the government market for procurements, as described in Appendix G. We find that wages, employment, the wage bill, and rents are monotonically increasing in TFP when shutting down the government market, confirming that the non-monotonicity in these outcomes in Figure 2 is due to the constraint that $Q_{jt} ≥ Q^G$. 

44
and find a lower rent share to workers at more productive firms.

6.2 Incidence of Government Procurement

The second column of Table 3 provides our estimates of the counterfactual outcomes that would have been experienced if the firm had not received a procurement contract using the simulation approach of Subsection 4.5. The difference between columns 1 and 2 is the incidence of procurement on the outcomes of firms and workers, which are both presented in absolute level changes (column 3) and changes relative to the case in which the firm does not receive a procurement contract (column 4). In the typical firm, we find that receiving a procurement contract induces it to hire 12 more workers (nearly doubling the firm’s workforce) and pay each of its workers about $8,800 more in wages (a 17 percent increase), increasing its wage bill by about $0.8 million. Worker rents increase by about $6,500 per worker (more than double the baseline rents). Using the decomposition in equation (19), we find that 70 percent of worker rents generated by the procurement contract accrue to incumbent workers rather than new hires.

In response to receiving the procurement contract, the median firm increases expenditure on intermediate inputs by $2.4 million (about double the baseline) and
capital rental by nearly $1.0 million (more than double the baseline). Total output approximately doubles. Government demand crowds out private market production, with private market output decreasing by about 27 percent. Total revenues increase by $4.4 million, while private market revenues decrease by about $1.0 million. Comparing revenues to expenditures on all inputs, firm rents (i.e. profits) increase by $9,600 per worker. Comparing incidence on worker rents to incidence on firm rents, we see that 40 percent of the incidence of government procurement is captured by workers. Thus, marginal rent sharing induced by a procurement contract is greater than average rent sharing.

7 How Labor Market Power Interacts with Product Market Power

While it is clear that greater labor market power induces lower employment and wages, there do not exist estimates of how the impacts of labor market power depend on the degree of product market power, and vice versa. In this section, we use our model to perform counterfactuals which show how labor market power interacts with product market power to shape the outcomes and behavior of workers and firms in the American construction industry.

Throughout this section, we follow the standard “compensated rotation” approach to characterize market power in industrial organization (Bresnahan, 1982). Firms have more labor market power when labor supply is more inelastic, i.e., $1/\theta$ is smaller. Lowering $1/\theta$ alone would raise the average cost of labor, so the firm’s initial choice of labor would become infeasible at the firm’s initial wage (i.e., the income effect would be negative). To compensate, we shift the intercept of the firms’ labor supply curve (by increasing amenities $g_{jt}$) until the initial equilibrium choice of labor and wage is feasible with the new labor supply elasticity (i.e., we remove the income effect). Similarly, firms have more product market power when product demand is more inelastic, i.e., $1/\epsilon$ is smaller. Lowering $1/\epsilon$ alone would lower the average revenue product, inducing a negative income effect. We compensate the firm by shifting the intercept of its average revenue curve (by increasing the price parameter $p_{H}$) until
the initial equilibrium choice of output and price is feasible.

7.1 Theoretical Predictions

We now perform comparative statics to illustrate how the impacts of labor market power depend on the degree of product market power. For simplicity, we impose that the composite returns to labor is unity ($\rho = 1$) and ignore the government market for procurements when deriving theoretical predictions, though we relax these restrictions when quantifying effects using the estimated model in the next subsection.

**How the impacts of labor market power depend on product market power.**

We start by reviewing the impacts of labor market power if firms have no product market power ($\epsilon = 0$). Figure 3(a) visualizes how labor market equilibrium is determined. It considers a fictional firm, with labor on the x-axis and wage on the y-axis. Since $\epsilon = 0$, output is priced at the constant rate $p_H$ (i.e., the firm is a price-taker in the product market), so the marginal revenue product of labor curve (MRPL) is constant. The initial average cost of labor curve (ACL, solid line) and its associated marginal cost of labor curve (MCL, dashed line) are in black. Note that MCL is upward-sloping due to $\theta > 0$. To determine the initial monopsonistic equilibrium (ME), the firm chooses labor to equate MCL and MRPL, then marks down the wage below the MRPL by choosing the lowest feasible wage at this quantity of labor, which is on ACL directly below the intersection of MCL and MRPL.

The red lines in Figure 3(a) present the “compensated rotation” exercise in which the labor supply curve is made less elastic by lowering $1/\theta$ to $1/\theta'$. The new marginal cost of labor (MCL’) is higher, so marginal costs are too high at the initial choice of labor (MCL’ is greater than MRPL at $L$ on the x-axis). This induces the firm to reduce labor along the MCL’ curve until it reaches the quantity of labor $L'$ at which MCL’ equals MRPL. Since $L'$ is less than $L$ and ACL’ is below ACL when labor is below $L$, it follows that the new equilibrium (ME’) must also have a lower wage than ME (W’ is less than W on the y-axis). Thus, we have the classical result that, if the firm gains labor market power, it reduces employment and wages. Since output is monotonic in employment, output is also lower when firms have more labor market power.
Figure 3: Impacts of Labor Market Power on Wages and Employment

Notes: This diagram visualizes how giving firms more labor market power would impact wages and employment. ACL denotes the average cost of labor, MCL denotes the marginal cost of labor, ME denotes the monopsonistic equilibrium, and MRPL denotes the marginal revenue product of labor. Black colors denote the initial economy, and red colors denote the new economy after the firm gains labor market power, which is achieved by making labor supply less elastic through a “compensated rotation” (Bresnahan, 1982). Subfigures (a) and (b) consider the cases in which the firm does not and does have product market power, respectively. The subfigures differ only by the rotation of the MRPL curve.

We now examine how labor market power interacts with product market power to determine employment and wages. In Figure 3(b), we repeat the exercise of Figure 3(a) except that we allow firms to have product market power ($\epsilon > 0$). The initial equilibrium and labor supply curve are the same in Figures 3(a-b), but the MRPL slopes differ, as MRPL is downward-sloping when $\epsilon > 0$. As before, when $1/\theta$ decreases to $1/\theta'$, MCL shifts higher to MCL', so MCL' is greater than MRPL at L, inducing the firm to reduce employment and thereby output. However, unlike in Figure 3(a), MRPL rises as employment is reduced in Figure 3(b). Since MRPL is the incentive to increase production, and it rises as employment is reduced, this counterbalances the incentive to reduce employment. It follows that L' and thereby W' and output are greater at the new equilibrium in Figure 3(b) than in Figure 3(a).
How the impacts of product market power depend on labor market power.

We start by reviewing the impacts of product market power if firms have no labor market power ($\theta = 0$). Figure 4(a) visualizes how product market equilibrium is determined. It considers a fictional firm, with output on the x-axis and price on the y-axis. Since $\theta = 0$, labor is priced at a constant wage rate (i.e., the firm is a price-taker in the labor market), so the marginal cost of production curve (MCP) is constant. The initial average revenue product (ARP, solid line) and its associated marginal revenue product (MRP, dashed line) are in black. Note that MRP is downward-sloping due to $\epsilon > 0$. To determine the initial monopolistic equilibrium (PE), the firm chooses output to equate MCP and MRP, and then marks up the price by choosing the highest feasible price at this quantity of output, which is on ARP directly above the intersection of MCP and MRP.

The red lines in Figure 4(a) present the “compensated rotation” exercise in which the product demand curve is made less elastic by lowering $1/\epsilon$ to $1/\epsilon'$. The new marginal revenue product curve (MRP') is lower, so marginal revenues are too low at the initial choice of output (MRP' is less than MCP at Q on the x-axis). This induces the firm to reduce output along the MRP' curve until it reaches the quantity of output Q' at which MRP' equals MCP. Since Q' is less than Q and ARP' is above ARP when quantity is below Q, it follows that PE' must also have a higher price than PE (P' is greater than P on the y-axis). Thus, we have the classical result that, if the firm gains product market power, it reduces output and increases prices. Since output is monotonic in employment, employment is also lower when firms have more product market power.

We now examine how product market power interacts with labor market power to determine output and price. In Figure 4(b), we repeat the exercise of Figure 4(a) except that we allow firms to have labor market power ($\theta > 0$). The initial equilibrium and product demand curve are the same in Figures 4(a-b), but the MCP slopes differ, as MCP is upward-sloping when $\theta > 0$. As before, when $1/\epsilon$ decreases to $1/\epsilon'$, MRP shifts lower to MRP', so MRP' is less than MCP at Q, inducing the firm to reduce output and thereby employment. However, unlike in Figure 4(a), MCP decreases as output is reduced in Figure 4(b). Since MCP is the incentive to cut production, and it declines as output is reduced, this counterbalances the incentive to reduce output.
MRP
MRP'
MCP
ARP'
ARP
PE
PE'
P
P'
QQ'
Quantity
Price

(a) No Labor Market Power ($\theta = 0$)

(b) With Labor Market Power ($\theta > 0$)

Figure 4: Impacts of Product Market Power on Prices and Output

Notes: This diagram visualizes how giving firms more private product market power would impact prices and output. MCP denotes the marginal cost of production, MRP denotes marginal revenue product, ARP denotes average revenue product, and PE denotes the monopolistic product market equilibrium. Black colors denote the initial economy, and red colors denote the new economy after the firm gains product market power, which is achieved by making product demand less elastic through a “compensated rotation” (Bresnahan, 1982). Subfigures (a) and (b) consider the cases in which the firm does not and does have labor market power, respectively. The subfigures differ only by the rotation of the MCP curve.

It follows that $Q'$ is greater and $P'$ is lower at the new equilibrium in Figure 4(b) than in Figure 4(a).

7.2 Quantifying the Impacts of Market Power

It is widely appreciated that greater labor market power induces lower wages and employment, whereas greater product market power induces higher prices and lower output. While these qualitative implications of market power in one market do not depend on the degree of market power in the other market, the quantitative impacts do. In particular, as we illustrated above, labor market power counterbalances the incentives to exploit product market power, and vice versa. We now quantifiy how the impacts of labor market power depend on the degree of product market power using the model from Section 2 evaluated at the parameter estimates from Section 5. In contrast to the simplified environment considered in the theoretical predictions
in Subsection 7.1, we solve the imperfectly competitive auctions for government procurements and evaluate the composite returns to labor at the estimated value. See Appendix H for details on how we computationally solve the model, including simulating equilibrium auction bidding. In Appendix G, we present a simplified model and counterfactual analyses in which we shut down the government market for procurement projects, finding qualitatively similar results.

**How the impacts of labor market power depend on product market power.**

We start by quantifying the impacts of labor market power if firms have no product market power. In Figure 5(a), we increase the degree of labor market power through a compensated decrease in the labor supply elasticity \( \frac{1}{\theta} \) (see the discussion in Subsection 7.1) while counterfactually shutting down product market power (\( \epsilon = 0 \)). We find that, as the firm gains labor market power, it employs fewer workers and pays a lower wage to each employee. By taking advantage of its market power to increasingly mark down wages, the firm earns higher profits. For each outcome, there is a monotonic relationship across values of the labor supply elasticity. Consider a comparison between the actual value of the labor supply elasticity and half of this amount. When the labor supply elasticity of a given firm is reduced by half, the firm employs 22 percent fewer workers, decreases wages by 11 percent, and decreases the wage bill by 31 percent. Output for the private market is reduced by 32 percent, private market prices are constant (since \( \epsilon = 0 \)), and capital rental falls by 17 percent. Despite these reductions in the firm’s activities, its profit rises 7 percent due to the increased exploitation of labor.

We now quantify the impacts of labor market power if firms have product market power. In Figure 5(b), we increase the degree of labor market power through a compensated decrease in the labor supply elasticity \( \frac{1}{\theta} \) while setting product market power to the estimated value (\( \frac{1}{\epsilon} = 7.28 \)). As before, outcomes are monotonic across values of the labor supply elasticity. When the labor supply elasticity of a given firm is reduced by half, the firm employs 12 percent fewer workers, decreases wages by 6 percent, and decreases the wage bill by 17 percent. Output for the private market decreases by 11 percent, private market prices rise by 2 percent, capital rental decreases by 1 percent, and profits rise by 3 percent. Thus, we see that the incentives
(a) No Product Market Power ($\epsilon = 0$)  
(b) With Product Market Power ($\epsilon > 0$)

Figure 5: Quantifying the Impacts of Labor Market Power

Notes: This figure presents our estimates of the degree to which various outcomes change when the firm gains labor market power, which is achieved by making labor supply less elastic through a “compensated rotation”. Subfigure (a) considers the counterfactual case in which the firm has no product market power, while subfigure (b) sets product market power to the estimated value. It expresses these values as percentage changes relative to the actual economy for the median-TFP firm.

to reduce wages per worker by lowering employment are attenuated by product market power. The reason is that a firm with product market power can charge a higher price as employment, and thus output, declines. At the level of employment that it would choose to produce if it were only exploiting its labor market power, the output price would be so high that marginal revenue would exceed the marginal cost, so firms choose to exploit labor market power to a lesser extent if they are also exploiting product market power.

How the impacts of product market power depend on labor market power. We start by quantifying the impacts of product market power if firms have no labor market power. In Figure 6(a), we increase the degree of product market power through a compensated decrease in the product demand elasticity $1/\epsilon$ (see the discussion in Subsection 7.1) while counterfactually shutting down labor market power ($\theta = 0$). We find that, as the firm gains product market power, it produces less output and receives a greater price. By taking advantage of its market power to increasingly
(a) No Labor Market Power ($\theta = 0$)  
(b) With Labor Market Power ($\theta > 0$)

Figure 6: Quantifying the Impacts of Product Market Power

Notes: This figure presents our estimates of the degree to which various outcomes change when the firm gains product market power, which is achieved by making product demand less elastic through a “compensated rotation”. Subfigure (a) considers the counterfactual case in which the firm has no labor market power, while subfigure (b) sets labor market power to the estimated value. It expresses these values as percentage changes relative to the actual economy for the median-TFP firm.

mark up prices, the firm earns higher profits. For each outcome, there is a monotonic relationship across values of the product demand elasticity. Consider a comparison between the actual value of the product demand elasticity and half of this amount. When the product demand elasticity of a given firm is reduced by half, the firm produces 46 percent less output for the private market and increases private market prices by 19 percent. Employment is reduced by 28 percent, wages are constant (since $\theta = 0$), and wage bill and capital rental fall by 30 percent. Despite these reductions in the firm’s activities, its profit rises 21 percent due to the increased exploitation of product market power.

We now quantify the impacts of product market power if firms have labor market power. In Figure 6(b), we increase the degree of product market power through a compensated decrease in the product demand elasticity $1/\epsilon$ while setting labor market power to the estimated value ($1/\theta = 4.08$). As before, outcomes are monotonic across values of the product demand elasticity. When the product demand elasticity of a given firm is reduced by half, the firm produces 43 percent less output for the private
market and increases private market prices by 17 percent. Employment is reduced by 26 percent, wages are reduced by 7 percent, and wage bill and capital rental fall by 30 percent. Profits increase by 14 percent. Thus, we see that the incentives to reduce prices for the private market by lowering output are somewhat attenuated by labor market power. The reason is that a firm with labor market power can pay a lower wage as output, and thus employment, declines. At the level of employment that it would choose to produce if it were only exploiting its product market power, the wage at its initial choice of employment level would be so low that the marginal cost of production would be less than the marginal revenue. Therefore, firms that are also exploiting labor market power would choose to exploit product market power to a lesser extent.

8 Conclusion

The primary goal of our paper was to quantify the importance of imperfect competition in the US construction industry by estimating the size of rents earned by American firms and workers. To obtain a comprehensive measure of the total rents and to understand its sources, we took into account that rents arise due to both wage markdowns and price markups. We found that American construction firms have significant wage-setting and price-setting power. Wages are marked down 20 percent relative to the marginal revenue product of labor while prices are marked up 14 percent relative to the marginal cost of production. This imperfect competition generates a considerable amount of rents, more than three-fourths of which is captured by the firms. We concluded our empirical analyses by using the estimated model to perform counterfactual analyses. These analyses showed that labor market power is an empirically important counterbalance to the incentives to exploit product market power, and vice versa. Thus, we conclude that an analysis of imperfect competition that focuses on either the labor market or the product market in isolation may result in a limited or misleading picture of the total rents earned by firms and workers and of the consequences of market power for employment, wages, and output.
References


A Model Derivations

A.1 The Composite Production Function

In this appendix, we derive equation (9). To do so, we express revenues and costs as functions of $Q_{jt}$ so as to separate the joint maximization into two steps: In the first step, we find the optimal combination $(K_{jt}, L_{jt})$ for each $Q_{jt}$. In the second step, we solve for the optimal $Q_{jt}$.

Recall that firms can rent capital at price $p_K$ and hire labor at price $W_{jt} = U_{jt} L_{jt}^\theta$. The production function (in physical units) satisfies

$$Q_{jt} = \Omega_{jt} K_{jt}^{\beta_K} L_{jt}^{\beta_L}. \tag{32}$$

Intermediate inputs have constant price $p_M$ and, due to the Leontief functional form, must satisfy $M_{jt} = Q_{jt}/\beta_M$. Given any production level $Q_{jt}$, the firm can find the most cost efficient combination $(K_{jt}, L_{jt})$ by solving the Hicksian cost-minimization problem,

$$\min_{(K_{jt}, L_{jt}): Q_{jt} = \Omega_{jt} K_{jt}^{\beta_K} L_{jt}^{\beta_L}} p_K K_{jt} + U_{jt} L_{jt}^{1+\theta}, \tag{33}$$

where $p_K K_{jt} + U_{jt} L_{jt}^{1+\theta}$ is the total cost of capital and labor. We now solve for the Hicksian demand for capital and labor using the Lagrangian,

$$\mathcal{L}_{jt} = p_K K_{jt} + U_{jt} L_{jt}^{1+\theta} + \lambda_{jt} (Q_{jt} - \Omega_{jt} K_{jt}^{\beta_K} L_{jt}^{\beta_L}), \tag{34}$$

where $\lambda_{jt}$ is the Lagrange multiplier. The first-order conditions for capital and labor, respectively, are as follows:

$$p_K = \lambda_{jt} \Omega_{jt} K_{jt}^{\beta_K - 1} L_{jt}^{\beta_L}, \tag{35}$$

$$(1 + \theta) U_{jt} L_{jt}^\theta = \lambda_{jt} \Omega_{jt} K_{jt}^{\beta_K} L_{jt}^{\beta_K - 1}. \tag{36}$$
These equations lead to the optimal choice of capital as a function of labor:

\[ K_{jt} = \frac{\beta_K}{\beta_L} \left( \frac{1 + \theta}{p_K} \right) U_{jt} L_{jt}^{1+\theta}. \]  

(37)

Substituting equation (37) into equation (32), the inverse Hicksian demand is

\[ Q_{jt} = \Omega_{jt} \left( \frac{\beta_K}{\beta_L} \left( \frac{1 + \theta}{p_K} U_{jt} L_{jt}^{1+\theta} \right) \right)^{\beta_K} L_{jt}^\beta_L = \Phi_{jt} L_{jt}^\rho, \]  

(38)

where we define \( \rho \equiv (1 + \theta) \beta_K + \beta_L \) and \( \Phi_{jt} \equiv \Omega_{jt} \left( \frac{\beta_K}{\beta_L} \left( \frac{1 + \theta}{p_K} U_{jt} L_{jt}^{1+\theta} \right) \right)^{\beta_K} \). Thus, \( L_{jt} = (Q_{jt}/\Phi_{jt})^{1/\rho} \). Substituting into the first-order condition for intermediate inputs, the Hicksian expenditure on intermediate inputs is

\[ X_{jt} \equiv p_M M_{jt} = p_M Q_{jt}/\beta_M = \frac{p_M}{\beta_M} \Phi_{jt} L_{jt}^\rho. \]  

(39)

Lastly, total costs can be expressed in terms of labor as

\[ W_{jt} L_{jt} + p_K K_{jt} + p_M M_{jt} = \kappa_U U_{jt} L_{jt}^{1+\theta} + \frac{p_M}{\beta_M} \Phi_{jt} L_{jt}^\rho, \]  

(40)

where \( \kappa_U \equiv \frac{\beta_K}{\beta_L} (1 + \theta) + 1. \)

### A.2 Firm’s Behavior in the Private Product Market

In this appendix, we derive equation (13) and several related results on firm behavior in the private market. Throughout, we assume a downward-sloping private product demand curve \( (\epsilon > 0) \) and increasing composite returns to labor \( (\rho > 1) \), consistent with the empirical evidence.

If \( d = 0 \), the firm’s profit maximization problem is,

\[ \max_{L_{0jt}} p_H \left( \Phi_{jt} L_{0jt}^\rho \right)^{1-\epsilon} - \kappa_U U_{jt} L_{0jt}^{1+\theta} - \frac{p_M}{\beta_M} \Phi_{jt} L_{0jt}^\rho, \]  

(41)

where we substituted equations (9) and (40) into equation (8) for the case with \( d = 0. \)
The profit-maximizing first-order condition is,

\[
\frac{\partial \pi_{0jt}}{\partial L_{0jt}} = H_{j}^1 \rho L_{0jt}^{(1-\rho)} - \left( \kappa U_{jt}(1+\theta) L_{0jt}^{1+\theta} - \frac{pM}{\beta M} \Phi_{jt} \rho L_{0jt}^{(1-\rho)} \right) = 0.
\]

This expression shows that \(L_{0jt}\) only varies across firms due to \(\Phi_{jt}\) and \(U_{jt}\).

We will now show that MRPL is greater than MCL as \(L_{0jt}\) approaches zero. Multiplying marginal profits in (42) by \(L_{0jt}^{\rho+1(1-\rho)}\), which is strictly positive, we have

\[
\frac{\partial \pi_{0jt}}{\partial L_{0jt}} L_{0jt}^{\rho+1(1-\rho)} = H_{j}^1 \rho L_{0jt}^{\rho(1-\epsilon)} - \left( \kappa U_{jt}(1+\theta) L_{0jt}^{\rho+1(1-\rho)} + \frac{pM}{\beta M} \Phi_{jt} \rho L_{0jt}^{\rho} \right).
\]

Note that MRPL \(\times L_{0jt}^{\rho+1(1-\rho)}\) is constant with respect to \(L_{0jt}\) and positive. By contrast, given \(\theta + \rho \epsilon + (1-\rho) > 0\), then MCL \(\times L_{0jt}^{\rho+1(1-\rho)}\) converges to zero as \(L_{0jt}\) approaches zero. Thus, we have shown that \(\lim_{L_{0jt} \to 0+} \frac{\partial \pi_{0jt}}{\partial L_{0jt}} > 0\). As a result, it is always optimal to choose \(L_{0jt} > 0\) if \(\theta + \rho \epsilon + (1-\rho) > 0\).

Furthermore, multiplying both sides of equation (42) by \(L_{0jt}\), we have

\[
\frac{\partial \pi_{0jt}}{\partial L_{0jt}} L_{0jt}^{\rho(1-\epsilon)} = H_{j}^1 \rho L_{0jt}^{\rho(1-\epsilon)} - \kappa U_{jt}(1+\theta) L_{0jt}^{1+\theta} - \frac{pM}{\beta M} \Phi_{jt} \rho L_{0jt}^{\rho} = 0.
\]

Recall that \(\kappa U_{jt} L_{0jt}^{1+\theta} = \frac{p}{\beta L} B_{0jt}, R_{0jt}^H = H_{j}^1 L_{0jt}^{\rho(1-\epsilon)},\) and \(X_{0jt} = \frac{pM}{\beta M} \Phi_{jt} L_{0jt}^{\rho}\). Substituting, we have

\[
(1-\epsilon) R_{0jt}^H = \frac{1+\theta}{\beta L} B_{0jt} + X_{0jt}.
\]

Similarly, if \(d = 1\), the firm’s profit maximization problem is,

\[
\max_{L_{1jt},^1,j \geq Q^1} H_{j}^1 \left( \Phi_{jt} L_{1jt}^{\rho} - Q^1 \right)^{1-\epsilon} - \kappa U_{jt} L_{1jt}^{1+\theta} - \frac{pM}{\beta M} \Phi_{jt} L_{1jt}^{\rho}.
\]
The first-order condition is,

\[
\frac{\partial \pi_{1jt}}{\partial L_{1jt}} \equiv p_H \Phi_{jt}(1-\epsilon) \left( \Phi_{jt} L_{1jt} - \bar{Q}^G \right)^{-\epsilon} L_{1jt}^{-(1-\epsilon)} - \frac{p_M}{\beta_M} \Phi_{jt} \rho L_{1jt}^{-(1-\epsilon)} = 0.
\]

As \( \Phi_{jt} L_{1jt}^\rho \) approaches \( \bar{Q}^G \), \( \left( \Phi_{jt} L_{1jt}^\rho - \bar{Q}^G \right)^{-\epsilon} \) approaches infinity while all other terms involving \( L_{1jt} \) approach constants. Thus, \( \Phi_{jt} L_{1jt}^\rho > \bar{Q}^G \) is necessary to satisfy the equation. Since \( Q_{1jt} = \Phi_{jt} L_{1jt}^\rho \), it follows that \( Q_{1jt}^H = Q_{1jt} - \bar{Q}^G > 0 \), so the winning firm always produces for the private market. Furthermore, it is always true that \( \frac{\partial \pi_{1jt}}{\partial L_{1jt}} \bigg|_{L_{1jt}=L_{0jt}} > 0 \). Thus, \( Q_{djt} \) is larger if \( d=1 \) than \( d=0 \).

Multiplying both sides of equation (47) by \( L_{1jt} \) and replacing \( p_H \left( \Phi_{jt} L_{1jt}^\rho - \bar{Q}^G \right)^{1-\epsilon} \) by \( R_{1jt}^H \), we have

\[
R_{1jt}^H \Phi_{jt}(1-\epsilon) \left( \Phi_{jt} L_{1jt}^\rho - \bar{Q}^G \right)^{-1} L_{1jt}^\rho - \frac{1 + \theta}{\beta_L} B_{1jt} - X_{1jt} = 0.
\]

(48)

Since \( Q_{1jt}^H = \Phi_{jt} L_{1jt}^\rho - \bar{Q}^G \) and \( Q_{1jt} = \Phi_{jt} L_{1jt}^\rho \), it follows that

\[
R_{1jt}^H (1-\epsilon) \frac{Q_{1jt}}{Q_{1jt}^H} - \frac{1 + \theta}{\beta_L} B_{1jt} - X_{1jt} = 0.
\]

(49)

Thus, combining equations (45) and (49), we have equation (13).

Lastly, it is interesting to consider if winning a procurement project will lead a firm to produce more for the private market (crowd-in) or less (crowd-out). To determine this, we evaluate the marginal profits of the winner when the total output is \( \hat{Q}_{1jt} \equiv \bar{Q}^G + Q_{0jt}^H \), that is, \( \hat{Q}_{1jt} \) is the hypothetical output of the firm in the \( d=1 \) case such that there is neither crowd-in nor crowd-out. The winner would prefer to produce more (less) than \( \hat{Q}_{1jt} \) if the marginal profit is positive (negative, respectively). Let the corresponding labor choice be \( \hat{L}_{1jt} \) such that \( \Phi_{jt} \hat{L}_{1jt}^\rho - \bar{Q}^G = Q_{0jt}^H = \Phi_{jt} L_{0jt}^\rho \). Note that, since \( \rho > 1 \) and \( \hat{L}_{1jt}^\rho = L_{0jt}^\rho + \bar{Q}^G / \Phi_{jt} \), then \( \hat{L}_{1jt}^\rho > L_{0jt}^\rho \). Evaluating equation (47) at \( \hat{L}_{1jt} \), marginal profits for the firm if it wins and produces hypothetical output
\( \dot{Q}_{1jt} \) are,

\[
\frac{\partial \pi_{1jt}}{\partial L_{1jt}} \bigg|_{L_{1jt} = \hat{L}_{1jt}} = p_H \Phi_{jt} (1 - \epsilon) \rho (Q_{0jt}^H)^{-\epsilon} \hat{L}_{1jt}^{-\rho - 1} - \kappa_U U_{jt} (1 + \theta) \hat{L}_{1jt}^\theta - \frac{p_M}{\beta_M} \Phi_{jt} \rho \hat{L}_{1jt}^{-\rho - 1}. \tag{50}
\]

Multiplying by \( L_{1jt}^{-\rho} \) and substituting \( Q_{0jt}^H = \Phi_{jt} L_{0jt}^\rho \), we have,

\[
L_{1jt}^{-\rho} \frac{\partial \pi_{1jt}}{\partial L_{1jt}} \bigg|_{L_{1jt} = \hat{L}_{1jt}} = p_H \Phi_{jt}^{\frac{1 - \epsilon}{\epsilon}} (1 - \epsilon) \rho L_{0jt}^{-\rho} - \kappa_U U_{jt} (1 + \theta) \hat{L}_{1jt}^{\theta + 1 - \rho} - \frac{p_M}{\beta_M} \Phi_{jt} \rho. \tag{51}
\]

Finally, substituting equation (44), this simplifies to,

\[
L_{1jt}^{-\rho} \frac{\partial \pi_{1jt}}{\partial L_{1jt}} \bigg|_{L_{1jt} = \hat{L}_{1jt}} = \kappa_U U_{jt} (1 + \theta) (L_{0jt}^{\theta + 1 - \rho} - \hat{L}_{1jt}^{\theta + 1 - \rho}). \tag{52}
\]

Since \( \hat{L}_{1jt} > L_{0jt} \), we have that \( \frac{\partial \pi_{1jt}}{\partial L_{1jt}} \bigg|_{L_{1jt} = \hat{L}_{1jt}} < 0 \) if \( \theta + 1 - \rho > 0 \), and \( \frac{\partial \pi_{1jt}}{\partial L_{1jt}} \bigg|_{L_{1jt} = \hat{L}_{1jt}} > 0 \) otherwise. Therefore, winning a government project crowds-out private projects when \( 1 + \theta > \rho \) and crowds-in if \( 1 + \theta < \rho \).

### A.3 Worker Rents Expressions

We prove that equation (16) implies the results in equations (17) and (19). Defining \( u = l, dv = dW \), we calculate \( V_j \) for a wage change from \( W_j = W_j^0 \) using integration by parts:

\[
V_{jt} = \int_{W_j^0}^{W_j^1} L(W) dW = [L(W) W_j^0]_{W_j^1} - \int_{W_j^0}^{W_j^1} \frac{dL}{dW} W dW \\
= \begin{cases} 
L(W_j^0) (W_j^1 - W_j^0) & \text{incumbents} \\
\int_{W_j^0}^{W_j^1} (W_j^1 - W) \frac{dL}{dW} dW & \text{new hires}
\end{cases}
\]

Following Lamadon et al. (2021), define \( \omega \equiv \frac{W_j}{W_j^1} \) so that \( \frac{d\omega}{dW} = \frac{1}{W_j^1} \). Next, \( L(\omega_j W_j^1) = \frac{(\omega_j W_j^1)^{\frac{1}{\theta_j}}}{\sum_{j'} (\omega_{j'} W_{j'}^1)^{\frac{1}{\theta_{j'}}}} \). Thus, \( \frac{dL}{dW} dW = \frac{dL}{d\omega} d\omega \). Moreover, \( \frac{dL}{d\omega} = \frac{\partial \omega^{\frac{1}{\theta_j}}}{\partial \omega} L(W_j^1) \).
Then,

\[ V_{jt} = L(W^0_{jt})(W^1_{jt} - W^0_{jt}) + W^1_{jt} \int_{W^0_{jt}}^{W^1_{jt}} (1 - \omega) \frac{dL}{d\omega} = \frac{W^1_{jt}L(W^1_{jt})}{1 + 1/\theta} - \frac{W^0_{jt}L(W^0_{jt})}{1 + 1/\theta} = \frac{B^1_{jt} - B^0_{jt}}{1 + 1/\theta}. \]

Furthermore, to solve the expression for rents captured by new hires, note that

\[ \int_{W^0_{jt}}^{W^1_{jt}} W dL/dW dW = \frac{B^1_{jt} - B^0_{jt}}{1 + \theta} \quad \text{and} \quad \int_{W^0_{jt}}^{W^1_{jt}} dL/dW dW = L^1_{jt} - L^0_{jt}. \]

Thus,

\[ \int_{W^0_{jt}}^{W^1_{jt}} (W^1_{jt} - W) \frac{dL}{dW} dW = W^1_{jt} \int_{W^0_{jt}}^{W^1_{jt}} \frac{dL}{dW} dW - \int_{W^0_{jt}}^{W^1_{jt}} W \frac{dL}{dW} dW = W^1_{jt} (L^1_{jt} - L^0_{jt}) - \frac{B^1_{jt} - B^0_{jt}}{1 + \theta}. \]

A.4 Over-identifying Restriction

In this appendix, we derive equation (28). Taking the log of both sides of equation (13) for the \( d = 1 \) case, we have,

\[ \log(1 - \epsilon) + r^H_{1jt} + q^H_{1jt} - q^H_{1jt} = \log \left( \frac{1 + \theta}{\beta L} B_{1jt} + X_{1jt} \right). \]

From equation (7), \( r^H_{1jt} = \log p_H + (1 - \epsilon)q^H_{1jt} \), so \( q^H_{1jt} = \frac{1}{1 - \epsilon} r^H_{1jt} - \frac{1}{1 - \epsilon} \log p_H \). From equation (10), \( q_{1jt} = \rho \ell_{1jt} + \phi_{jt} + e_{jt} \). Substituting, we have

\[ \log(1 - \epsilon) + r^H_{1jt} + (\rho \ell_{1jt} + \phi_{jt} + e_{jt}) - \left( \frac{1}{1 - \epsilon} r^H_{1jt} - \frac{1}{1 - \epsilon} \log p_H \right) = \log \left( \frac{1 + \theta}{\beta L} B_{1jt} + X_{1jt} \right), \]

which can be rearranged as equation (28).

B Product Market with Perfect Competition

This section solves the firm’s problem in the private product market assuming the firm is a price-taker (\( \epsilon = 0 \)). Denote the competitive price as \( p_H \). In terms of the composite production function \( Q_{jt} = \Phi_{jt}L^p_{jt} \), the firm’s problem is

\[ \max_{L_{jt}, \Phi_{jt}L^p_{jt} \geq \bar{d}Q^G} p_H \left( \Phi_{jt}L^p_{jt} - \bar{d}Q^G \right) - \kappa UU_{jt}L^{1+\theta}_{jt} - \frac{p_M}{\beta_M} \Phi_{jt}L^p_{jt}. \]
where the government’s output must be produced if the firm receives a procurement contract \((\Phi_{jt}L^\rho_{jt} \geq dQ^G)\). We consider three cases:

Suppose \(d = 0\). The government constraint is always satisfied, so we can ignore this constraint. The profit-maximizing solution is simply

\[
L_{0jt} = \left( \left( p_H - \frac{p_M}{\beta_M} \right) \frac{\Phi_{jt}\rho}{\kappa_U U_{jt}(1 + \theta)} \right)^{\frac{1}{\rho + 1}}
\]

and \(Q_{0jt} = \Phi_{jt}L^\rho_{0jt}\).

Suppose \(d = 1\) and \(Q_{0jt} > Q^G\). Then, the solution \(L_{\text{interior}}^{\text{interior}} = L_{0jt}\) and \(Q_{\text{interior}}^{\text{interior}} = Q_{0jt}\) satisfies the government constraint and otherwise solves the profit-maximization problem, so this is the optimal solution. An implication is that \(Q_{1jt}^{\text{interior}}\) is invariant to marginal changes in the size of the government contract, i.e., government projects crowd-out the firm’s private market production one-for-one. Since input costs are not affected by receiving a procurement contract, the opportunity cost of receiving a procurement contract is simply the loss in revenues in the private product market,

\[
\sigma_{jt}^{\text{interior}} = p_H \left( Q_{0jt} - \left( Q_{1jt}^{\text{interior}} - Q^G \right) \right) = p_H Q^G.
\]

Suppose \(d = 1\) and \(Q_{0jt} \leq Q^G\). Then, the firm is at the corner solution in which it only produces for the government market, i.e., \(Q_{\text{corner}}^{\text{corner}} = Q^G\) and \(L_{\text{corner}}^{\text{corner}} = \left( \frac{Q^G}{\Phi_{jt}} \right)^{1/\rho}\). The opportunity cost is \(\sigma_{jt}^{\text{corner}} = p_H Q_{0jt} - \{ T_{jt} (L_{0jt}) - T_{jt} (L_{\text{corner}}^{\text{corner}}) \}\), where \(T_{jt} (L) \equiv \kappa_U U_{jt} L^{1+\theta} + \frac{p_M}{\beta_M} \Phi_{jt} L^\rho\) is the total cost of production using labor \(L\).

### C Cobb-Douglas Production Function

#### C.1 Cobb-Douglas Model: Composite Production Function

Consider a Cobb-Douglas production function (in physical units)

\[
Q_{jt} = \Omega_{jt} L^\beta_{jt} K^\beta_{jt} M^\beta_{jt}.
\]  

(53)
Given any production level \( Q_{jt} \), the firm can find the most cost efficient combination \((L_{jt}, K_{jt}, M_{jt})\) by solving the cost-minimization problem,

\[
\min_{L_{jt}, K_{jt}, M_{jt}} C_{jt} \quad \text{s.t.} \quad Q_{jt} = \Omega_{jt} L_{jt}^{\beta_L} K_{jt}^{\beta_K} M_{jt}^{\beta_M}. \quad (54)
\]

where \( C_{jt} \equiv U_{jt} L_{jt}^{1+\theta} + p_K K_{jt} + p_M M_{jt} \) denotes the total cost. This leads to the Lagrangian,

\[
L_{jt} \equiv U_{jt} L_{jt}^{1+\theta} + p_K K_{jt} + p_M M_{jt} + \lambda_{jt}(Q_{jt} - \Omega_{jt} K_{jt}^{\beta_K} L_{jt}^{\beta_L} M_{jt}^{\beta_M}) \quad (55)
\]

where \( \lambda_{jt} \) is the Lagrange multiplier. The first-order conditions are:

\[
p_K = \lambda_{jt} \Omega_{jt} L_{jt}^{\beta_K-1} K_{jt}^{\beta_K} M_{jt}^{\beta_M},
\]

\[
(1 + \theta) U_{jt} L_{jt}^{\theta} = \lambda_{jt} \Omega_{jt} L_{jt}^{\beta_L} K_{jt}^{\beta_K} M_{jt}^{\beta_M-1}, \quad (56)
\]

\[
p_M = \lambda_{jt} \Omega_{jt} L_{jt}^{\beta_M} K_{jt}^{\beta_K} M_{jt}^{\beta_M-1}.
\]

We can use these first-order conditions to write the optimal choices of capital and intermediate inputs as a function of labor

\[
K_{jt} = \frac{\beta_K}{\beta_L} \cdot \frac{(1 + \theta) U_{jt} L_{jt}^{1+\theta}}{p_K} = \chi^{(K)} U_{jt} L_{jt}^{1+\theta} \quad \text{and} \quad M_{jt} = \frac{\beta_M}{\beta_L} \cdot \frac{(1 + \theta) U_{jt} L_{jt}^{1+\theta}}{p_M} = \chi^{(M)} U_{jt} L_{jt}^{1+\theta} \quad (57)
\]

where \( \chi^{(K)} \equiv \frac{\beta_K}{\beta_L} \cdot \frac{(1 + \theta)}{p_K} \) and \( \chi^{(M)} \equiv \frac{\beta_M}{\beta_L} \cdot \frac{(1 + \theta)}{p_M} \). We can substitute these expressions into \( Q_{jt} = \Omega_{jt} L_{jt}^{\beta_L} K_{jt}^{\beta_K} M_{jt}^{\beta_M} \) and obtain

\[
Q_{jt} = \Omega_{jt} \left[ \chi^{(K)} U_{jt} L_{jt}^{1+\theta} \right]^{\beta_K} \left[ \chi^{(M)} U_{jt} L_{jt}^{1+\theta} \right]^{\beta_M} = \Phi_{jt} L_{jt}^\rho \quad (58)
\]

where \( \Phi_{jt} \equiv \Omega_{jt} \left[ \chi^{(K)} U_{jt} \right]^{\beta_K} \left[ \chi^{(M)} U_{jt} \right]^{\beta_M} \) and \( \rho \equiv \beta_L + (1 + \theta)(\beta_K + \beta_M) \). We can also use equations (58) and equation (57) to rewrite the firm’s problem in the private
product market as
\[
\max_{L_{djt}, K_{djt}, M_{djt}} \pi_{djt} = p_H(\Omega_{jt} L_{djt}^{\beta_L} K_{djt}^{\beta_K} M_{djt}^{\beta_M} - \bar{Q}_G d)^{1-\varepsilon} - C_{djt},
\]
\[
\iff \max_{L_{djt}} \pi_{djt} = p_H(\Phi_{jt} L_{djt}^{\rho} - \bar{Q}_G d)^{1-\varepsilon} - \chi^{(W)} U_{jt} L_{djt}^{1+\theta},
\]
where cost-minimization implies \( C_{djt} = \chi^{(W)} U_{jt} L_{djt}^{1+\theta}, \chi^{(W)} \equiv \frac{\rho}{\beta_L} \equiv 1 + \frac{(\beta_M + \beta_K)(1+\theta)}{\beta_L} \).

### C.2 Cobb-Douglas Model: First-order Conditions

We now derive the profit-maximizing first-order conditions in the model with Cobb-Douglas production. These derivations assume \( \rho \equiv \beta_L + (1+\theta)(\beta_K + \beta_M) > 1 \) and \( \varepsilon > 0 \).

If the firm loses the auction, its profit maximization problem is
\[
\max_{L_{0jt}} p_H(\Phi_{jt} L_{0jt}^{\rho})^{1-\varepsilon} - \chi^{(W)} U_{jt} L_{0jt}^{1+\theta}. \tag{60}
\]
The first-order condition is
\[
\rho(1-\varepsilon) p_H \Phi_{jt}^{1-\varepsilon} L_{0jt}^{\rho(1-\varepsilon)-1} = \chi^{(W)} U_{jt} L_{0jt}^{\theta}(1+\theta), \tag{61}
\]
which implies,
\[
L_{0jt} = \left[ \frac{\rho(1-\varepsilon) p_H \Phi_{jt}^{1-\varepsilon}}{\chi^{(W)} U_{jt}(1+\theta)} \right]^{\frac{1}{\theta+1-\rho(1-\varepsilon)}}. \tag{62}
\]
Thus \( 0 < L_{0jt} < \infty \).

Similarly, if the firm wins the auction, the profit maximization problem is:
\[
\max_{L_{1jt} : \Phi_{jt} L_{1jt}^{\rho} \geq \bar{Q}_G} p_H(\Phi_{jt} L_{1jt}^{\rho} - \bar{Q}_G)^{1-\varepsilon} - \chi^{(W)} U_{jt} L_{1jt}^{1+\theta}. \tag{63}
\]
The first-order condition is
\[
\frac{\partial \pi_{1jt}}{\partial L_{1jt}} = \rho(1-\varepsilon) \Phi_{jt} p_H(\Phi_{jt} L_{1jt}^{\rho} - \bar{Q}_G)^{-\varepsilon} L_{1jt}^{\rho-1} - \chi^{(W)} U_{jt} L_{1jt}^{\theta}(1+\theta) = 0, \tag{64}
\]
which implies,

$$\rho(1 - \varepsilon)\Phi_{jt}p_H(\Phi_{jt}L_{1jt}^\rho - \bar{Q}^G)^{-\varepsilon} = \chi^{(W)}U_{jt}L_{1jt}^{1+\theta-\rho}(1 + \theta).$$  \hspace{1cm} (65)$$

As $\Phi_{jt}L_{1jt}^\rho$ approaches $\bar{Q}^G$, the left-hand side of equation (65) approaches infinity while the RHS approaches a constant. Thus, $\Phi_{jt}L_{1jt}^\rho > \bar{Q}^G$ is necessary to satisfy the equation. Since $Q_{1jt} = \Phi_{jt}L_{1jt}^\rho$, it follows that $Q_{1jt}^H = Q_{1jt} - \bar{Q}^G > 0$, so the winning firm always produces for the private market.

Furthermore, since the solution is interior (i.e., $L_{0jt} \geq \bar{Q}^G$) due to $\varepsilon > 0$, equation (61) implies $\rho(1 - \varepsilon)\Phi_{jt}p_H(\Phi_{jt}L_{0jt}^\rho)^{-\varepsilon}L_{0jt}^{\theta-1} - \chi^{(W)}U_{jt}L_{0jt}^\theta(1 + \theta) = 0$ and therefore $\rho(1 - \varepsilon)\Phi_{jt}p_H(\Phi_{jt}L_{0jt}^\rho - \bar{Q}^G)^{-\varepsilon}L_{0jt}^{\theta-1} - \chi^{(W)}U_{jt}L_{0jt}^\theta(1 + \theta) \equiv \frac{\partial \pi_{1jt}}{\partial L_{1jt}}|_{L_{1jt}=L_{0jt}} > 0$. Thus, $\frac{\partial \pi_{1jt}}{\partial L_{1jt}}|_{L_{1jt}=L_{0jt}} > 0$, so total production will be larger if the firm receives a procurement contract than if it does not.

### C.3 Cobb-Douglas Model: Identification

We now show identification of $(1 - \varepsilon, \rho, \beta_L)$ in the model with a Cobb-Douglas production function.

In the $d = 0$ case, revenues are related to labor by

$$r_{jt} = \log p_H + (1 - \varepsilon)\phi_{jt} + \rho(1 - \varepsilon)\ell_{jt}$$  \hspace{1cm} (66)$$

From this, we can identify $\rho(1 - \varepsilon)$ by regressing $r_{jt}$ on $\ell_{jt}$ controlling for $\phi_{jt}$ among $D_{jt} = 0$ firms. In practice, we can control for $(\hat{u}_{jt}, Z_{jt})$ in place of $\phi_{jt}$ as in Proposition 4 due to the invertibility of bids with respect to TFP, conditional on amenities. Thus, $\rho(1 - \varepsilon)$ is recovered by the estimator

$$\hat{\rho}(1 - \varepsilon) \equiv \frac{\text{Cov}[r_{jt}, \ell_{jt}|D_{jt} = 0]}{\text{Var}[\ell_{jt}|\hat{u}_{jt}, Z_{jt}, D_{jt} = 0]}. \hspace{1cm} (67)$$
In the $d = 0$ case, equation (61) implies

$$
\rho (1-\epsilon) \frac{R_{0jt}^H}{L_{0jt}} = \chi^{(W)} U_{jt} L_{0jt}^\theta (1 + \theta).
$$

Since we showed above that cost-minimization requires $C_{djt} = \chi^{(W)} U_{jt} L_{djt}^{\theta+1}$, it follows that

$$
\rho (1-\epsilon) = (1 + \theta) \frac{C_{0jt}}{R_{0jt}^H}. \quad (68)
$$

Taking expectations in logs and rearranging, this yields another estimator that over-identifies $\rho (1-\epsilon)$:

$$
\tilde{\rho} (1-\epsilon) \equiv \exp \left( \log (1 + \theta) + \mathbb{E} \left[ c_{jt} - r_{jt}^H | D_{jt} = 0 \right] \right). \quad (69)
$$

In the $d = 1$ case, multiplying both sides of equation (64) by $L_{1jt}$ implies

$$
\rho (1-\epsilon) \Phi_{jt} p_H (\Phi_{jt} L_{1jt}^\rho - \bar{Q}^G)^{-\epsilon} L_{1jt} = \chi^{(W)} U_{jt} L_{1jt}^{\theta+1} (1 + \theta) = (1 + \theta) C_{jt}
$$

Furthermore, since $(\Phi_{jt} L_{1jt}^\rho - \bar{Q}^G)^{-\epsilon} = (Q_{1jt}^H)^{-\epsilon} = (R_{1jt}^H / p_H)^{-\epsilon}$, we can rewrite this expression as

$$
\rho (1-\epsilon) p_H (R_{1jt}^H / p_H)^{-\epsilon} \Phi_{jt} L_{1jt}^\rho = (1 + \theta) C_{jt}
$$

Taking logs,

$$
\log \rho + \log (1-\epsilon) + \log p_H + \frac{-\epsilon}{1-\epsilon} r_{1jt}^H - \frac{-\epsilon}{1-\epsilon} \log p_H + \phi_{jt} + \rho \ell_{1jt} = \log (1 + \theta) + c_{jt}
$$

Rearranging, this gives,

$$
c_{jt} + \frac{\epsilon}{1-\epsilon} r_{1jt}^H = \text{constant} + \phi_{jt} + \rho \ell_{1jt}
$$

where constant $\equiv \log \rho + \log (1-\epsilon) + \frac{1}{1-\epsilon} \log p_H - \log (1 + \theta)$. Thus, for any candidate value of $\epsilon$, a regression of $\Lambda_{jt}^{CD}(\epsilon)$ on $\ell_{1jt}$ controlling for $\phi_{jt}$ for the winners identifies $\rho$. Since $\rho (1-\epsilon)$ is identified above, this implies $(1-\epsilon)$ is uniquely determined by this
implicit system of equations.

Furthermore, since we showed above that cost-minimization requires $C_{jt} = \frac{\rho}{\beta_L} B_{jt}$, the expected labor share of costs is

$$\frac{\beta_L}{\rho} = \mathbb{E} \left[ \frac{B_{jt}}{C_{jt}} \right],$$

(71)

so we identify $\beta_L$ given $\rho$.

In practice, we simultaneously estimate $(1-\epsilon, \rho, \beta_L)$ by applying equally-weighted GMM to equations (67), (69), (70), and (71).

For the remaining parameters, note that $X_{jt} = \frac{(1+\theta)\beta_M}{\beta_L} B_{jt}$ and $p_K K_{jt} = \frac{(1+\theta)\beta_K}{\beta_L} B_{jt}$, which implies the following expressions:

$$\beta_M = \exp \left( \mathbb{E} [x_{jt} - b_{jt}] - \log \frac{1 + \theta}{\beta_L} \right),$$

(72)

$$\beta_K = \exp \left( \mathbb{E} [\log (p_K K_{jt}) - b_{jt}] - \log \frac{1 + \theta}{\beta_L} \right),$$

(73)

$$\mathbb{E} [u_{jt}] = \mathbb{E} [b_{jt}] - (1 + \theta) \mathbb{E} [\ell_{jt}],$$

(74)

$$\log p_H = \mathbb{E} [r_{jt}] - \rho (1-\epsilon) \mathbb{E} [\ell_{jt}].$$

(75)

D Identification of the Labor Supply Elasticity using the LMS Estimator

Following Lamadon et al. (2021, LMS), we consider instrumenting for long-differences in log labor using short-differences in log revenues. Denoting the short-difference in log revenues by $\Delta r_{jt} \equiv \log R_{jt} - \log R_{jt-1}$, the estimator of LMS is,

$$\widehat{\theta}_{\Delta r} \equiv \frac{\text{Cov} [w_{jt+e} - w_{jt-e'}, \Delta r_{jt}]}{\text{Cov} [\ell_{jt+e} - \ell_{jt-e'}, \Delta r_{jt}]}$$

Unlike the estimators of Propositions 1-2, this estimator does not make use of information on procurement auctions and thus can be applied to the entire construction industry rather than only construction firms that bid for procurement projects.
Consider the following assumption, which compares short-run changes in revenues to longer-run changes in TFP and firm-specific amenity shocks:

**Assumption 3.** Suppose $\exists e, e' > 0$ sufficiently large such that (i) $\phi_{jt+e} - \phi_{jt-e'}$ is correlated with $\Delta r_{jt}$, and (ii) $\Delta r_{jt}$ is orthogonal to $\nu_{jt+e} - \nu_{jt-e'}$.

We then have the following result:

**Proposition 5.** Under Assumption 3 and the rank condition $\text{Cov}[(\ell_{jt+e} - \ell_{jt-e'}), \Delta r_{jt}] \neq 0$, $\hat{\theta}_{\Delta r}$ recovers $\theta$.

**Proof.** By equation (4),

$$
\hat{\theta}_{\Delta r} = \frac{\text{Cov}[\theta (\ell_{jt+e} - \ell_{jt-e'}), \Delta r_{jt}]}{\text{Cov}[(\ell_{jt+e} - \ell_{jt-e'}), \Delta r_{jt}]} + \frac{\text{Cov}[(\nu_{jt+e} - \nu_{jt-e'}), \Delta r_{jt}]}{\text{Cov}[(\ell_{jt+e} - \ell_{jt-e'}), \Delta r_{jt}]} = \theta
$$

where the denominator of each term is non-zero (i.e., the rank condition is satisfied) by Assumption 3(i) and the second term is zero by Assumption 3(ii).

The key result, the exclusion condition $\text{Cov}[(\nu_{jt+e} - \nu_{jt-e'}), \Delta r_{jt}] = 0$, relies on the assumption that firm-specific amenity shocks are transitory while TFP shocks are persistent. Thus, short-run revenue growth is correlated with long-run employment growth (satisfying the rank condition due to persistence in TFP shocks), but orthogonal to long-run firm-specific amenity shocks.

In practice, we must take a stand on the persistence of the transitory shocks. LMS argue that these transitory shocks are well-approximated as a moving average of order one, in which case, Assumption 3 holds as long as $e \geq 2, e' \geq 3$ and TFP shocks persist for at least $e$ periods. We use the same choices of $e$ and $e'$ as LMS in our empirical implementation.

### E Data Sources

All firm-level variables are constructed from annual business tax returns over the years 2001-2015: C-Corporations (Form 1120), S-Corporations (Form 1120-S), and
Partnerships (Form 1065). Worker-level variables are constructed from annual tax returns over the years 2001-2015: Direct employees (Form W-2) and independent contractors (Form 1099).

**Tax Return Variable Definitions:**

- **Earnings:** Reported on W-2 box 1 for each Taxpayer Identification Number (TIN). Each TIN is de-identified in our data.

- **Employer:** The Employer Identification Number (EIN) reported on W-2 for a given TIN. Each EIN is de-identified in our data.

- **Employees:** Number of workers matched to an EIN in year t from Form W-2 with annual earnings above the annualized full-time minimum wage and where the EIN is this worker’s highest-paying employer.

- **Wage bill:** Total earnings among employees in year t.

- **Independent contractors:** Number of workers matched to an EIN in year t from Form 1099-MISC with annual compensation above the annualized full-time minimum wage.

- **NAICS Code:** The NAICS code is reported on line 21 on Schedule K of Form 1120 for C-corporations, line 2a Schedule B of Form 1120S for S-corporations, and Box A of form 1065 for partnerships.

- **Sales:** Line 1 of Form 1120 for C-Corporations, Form 1120S for S-Corporations, and Form 1065 for partnerships. Also referred to as gross revenues.

- **Intermediate Input Expenditures:** Line 2 of Form 1120 for C-Corporations, Form 1120S for S-Corporations, and Form 1065 for partnerships. Also referred to as cost of goods sold.

- **EBITD:** We follow Kline et al. (2019) in defining Earnings Before Interest, Taxes, and Depreciation (EBITD) as the difference between total income and total deductions other than interest and depreciation. Total income is reported
on Line 11 on Form 1120 for C-corporations, Line 1c on Form 1120S for S-
corporations, and Line 1c on Form 1065 for Partnerships. Total deductions
other than interest and depreciation are computed as Line 27 minus Lines 18
and 20 on Form 1120 for C-corporations, Line 20 minus Lines 13 and 14 on
Firm 1120S for S-corporations, and Line 21 minus Lines 15 and 16c on Form
1065 for partnerships.

Procurement Auction Variable Definitions:

- **Bid:** The dollar value submitted by the firm as a price at which it would be
  willing to complete the procurement project.

- **Auction winner:** A firm is an auction winner if it placed the lowest bid in a
  procurement auction.

- **Amount of winnings:** Bid placed by the winner in each auction.

- **Year of first win:** First year in which the firm is an auction winner. To
  account for left-censoring, we do not define a win as a “first win” unless there
  were at least two observed years of data during which the firm could have won
  and did not win an auction. For example, if a state provided auction records
  for 2001-2015, and a firm is first observed winning in 2001 or 2002, we do not
  consider this firm a first-time winner, but if the firm is first observed winning
  in 2003 or later, we consider it a first time winner.

Firm Sample Definitions:

- **Baseline sample:** A firm that files Form 1120, 1120-S, or 1065 is considered
  part of the baseline sample centered around auction cohort $t$ if it is observed
  bidding in an auction in year $t$.

- **Sample of non-winners:** A firm in the baseline sample at $t$ that does not win
  an auction before or during $t$ is called a non-winner if it continues to not win
  any auctions until at least relative time $e \geq 4$. For example, if $t = 2005$, then
  a non-winner must not win its first auction until at least 2009.
• **Sample of first-timers:** A firm in the baseline sample at \( t \) that does not bid in an auction before \( t \) and bids in an auction at \( t \).

• **Sample in the same location:** Firm \( j \) and \( j' \) are in the same location at \( t \) if their business address zip codes reported on the business tax filings correspond to the same commuting zone at \( t \).

• **Known EIN sample:** Firms from the six states in which the auction records included the EIN, thus allowing us to link records exactly rather than using a fuzzy matching algorithm.

**Worker Sample Definitions:**

• **Main sample:** A worker is considered part of the main sample at \( t \) if the worker’s highest-paying firm at \( t \) on Form W-2 is in the baseline sample of firms and the W-2 wage payments from that firm are greater than $15,000 in 2015 USD. We also restrict to workers aged 25-60.

• **Add Contractors:** Add to the main sample any independent contractor whose highest-paying firm at \( t \) on Form 1099 is in the baseline sample of firms and the 1099 wage payments from that firm are greater than $15,000 in 2015 USD. We also restrict to contractors aged 25-60.

• **Stayers:** A worker is a stayer for \( 2e + 1 \) years at firm \( j \) in the baseline sample of firms at \( t \) if the worker’s highest-paying W-2 firm is the same firm during each time period in \((t - e, ..., t + e)\) and the W-2 wage payments from that firm in each year are greater than $15,000 in 2015 USD.

• **Tenure:** A worker has \( e \) years of tenure at firm \( j \) in the baseline sample of firms at \( t \) if the worker’s highest-paying W-2 firm is the same firm during each time period in \((t - e, ..., t)\) and the W-2 wage payments from that firm in each year are greater than $15,000 in 2015 USD.

• **New Hires:** A worker is a new hire at firm \( j \) in year \( t \) if the worker’s highest-paying W-2 employer in year \( t \) was firm \( j \) and highest-paying W-2 employer
in year $t - 1$ was firm $j' \neq j$, where the worker received W-2 wage payments greater than $15,000$ in 2015 USD from $j'$ in $t - 1$ as well as from $j$ in $t$.

A potential drawback of tax data is limited coverage of undocumented immigrants. As a result, we primarily interpret our paper as providing an analysis of the legal labor market. However, there is substantial coverage of undocumented immigrants in our W-2 returns. Since 1996, the IRS has assigned a tax identification number, called the ITIN, to undocumented immigrants in order to facilitate filing. By law, the IRS cannot share undocumented immigrant status with other agencies for purposes of immigration enforcement, so filing does not pose deportation risks. The IRS imposes penalties on employers for failing to file W-2 tax forms on behalf of undocumented employees, while tax refunds (e.g., child tax credits) and other benefits (e.g., evidence of consistently filing taxes can be used in support of citizenship applications) provide substantial incentives for undocumented immigrants to file. For example, the CBO (2007) estimated that up to 75 percent of all undocumented immigrants filed during the earlier part of our sample, and this rate may have risen due to DACA and other reforms instituted during the latter part of our sample.
Figure A.1: Chassang et al. (2019) Visual Test for Collusion

Notes: This figure displays the histogram of bid competition for each of the 28 states in our sample. Negative values indicate the difference between the winner’s bid and the bid of the runner-up. Positive values indicate the difference between each loser’s bid and the winner’s bid. Differences are scaled by the winner’s bid in each case. Chassang et al. (2019) demonstrate that, under some assumptions on the auction environment, these differences should display discontinuities in the histogram near zero if there is collusion.
<table>
<thead>
<tr>
<th>State</th>
<th>Data Source</th>
<th>Includes EIN</th>
<th>Bidders in 2010 (Num. Firms)</th>
<th>Share of 2010 Construction Sector: Value Added</th>
<th>FTE Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>State Website</td>
<td>✗</td>
<td>196</td>
<td>13.7%</td>
<td>17.4%</td>
</tr>
<tr>
<td>AR</td>
<td>State Website</td>
<td>✗</td>
<td>149</td>
<td>7.9%</td>
<td>12.8%</td>
</tr>
<tr>
<td>AZ</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>CA</td>
<td>State Website</td>
<td>✗</td>
<td>1,041</td>
<td>8.3%</td>
<td>11.2%</td>
</tr>
<tr>
<td>CO</td>
<td>FOIA Request</td>
<td>✓</td>
<td>241</td>
<td>12.6%</td>
<td>14.7%</td>
</tr>
<tr>
<td>CT</td>
<td>FOIA Request</td>
<td>✓</td>
<td>126</td>
<td>9.4%</td>
<td>15.5%</td>
</tr>
<tr>
<td>FL</td>
<td>State Website</td>
<td>✓</td>
<td>344</td>
<td>30.7%</td>
<td>10.6%</td>
</tr>
<tr>
<td>GA</td>
<td>BidX Website</td>
<td>✗</td>
<td>137</td>
<td>4.3%</td>
<td>7.0%</td>
</tr>
<tr>
<td>IA</td>
<td>BidX Website</td>
<td>✗</td>
<td>256</td>
<td>15.4%</td>
<td>20.7%</td>
</tr>
<tr>
<td>ID</td>
<td>BidX Website</td>
<td>✗</td>
<td>112</td>
<td>17.2%</td>
<td>13.6%</td>
</tr>
<tr>
<td>IL</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>IN</td>
<td>State Website</td>
<td>✓</td>
<td>213</td>
<td>10.6%</td>
<td>16.6%</td>
</tr>
<tr>
<td>KS</td>
<td>BidX Website</td>
<td>✓</td>
<td>130</td>
<td>14.7%</td>
<td>21.6%</td>
</tr>
<tr>
<td>KY</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>LA</td>
<td>BidX Website</td>
<td>✗</td>
<td>167</td>
<td>11.5%</td>
<td>10.8%</td>
</tr>
<tr>
<td>MA</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>MD</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>ME</td>
<td>BidX Website</td>
<td>✗</td>
<td>141</td>
<td>13.7%</td>
<td>16.9%</td>
</tr>
<tr>
<td>MI</td>
<td>BidX Website</td>
<td>✗</td>
<td>391</td>
<td>9.5%</td>
<td>16.3%</td>
</tr>
<tr>
<td>MN</td>
<td>BidX Website</td>
<td>✗</td>
<td>262</td>
<td>13.5%</td>
<td>19.8%</td>
</tr>
<tr>
<td>MO</td>
<td>BidX Website</td>
<td>✗</td>
<td>179</td>
<td>14.9%</td>
<td>13.3%</td>
</tr>
<tr>
<td>MS</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>MT</td>
<td>FOIA Request</td>
<td>✗</td>
<td>122</td>
<td>15.0%</td>
<td>23.6%</td>
</tr>
<tr>
<td>NC</td>
<td>BidX Website</td>
<td>✗</td>
<td>135</td>
<td>5.2%</td>
<td>9.8%</td>
</tr>
<tr>
<td>ND</td>
<td>FOIA Request</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>NE</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>NH</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>NJ</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>NM</td>
<td>BidX Website</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>NV</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>NY</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>OH</td>
<td>BidX Website</td>
<td>✗</td>
<td>320</td>
<td>43.7%</td>
<td>17.5%</td>
</tr>
<tr>
<td>OK</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>OR</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>PA</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>SC</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>SD</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>TN</td>
<td>BidX Website</td>
<td>✗</td>
<td>140</td>
<td>5.3%</td>
<td>11.5%</td>
</tr>
<tr>
<td>TX</td>
<td>FOIA Request</td>
<td>✓</td>
<td>551</td>
<td>4.9%</td>
<td>9.6%</td>
</tr>
<tr>
<td>UT</td>
<td>No</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>VA</td>
<td>BidX Website</td>
<td>✗</td>
<td>241</td>
<td>14.2%</td>
<td>12.0%</td>
</tr>
<tr>
<td>VT</td>
<td>BidX Website</td>
<td>✗</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>WA</td>
<td>BidX Website</td>
<td>✗</td>
<td>200</td>
<td>7.5%</td>
<td>14.0%</td>
</tr>
<tr>
<td>WI</td>
<td>BidX Website</td>
<td>✗</td>
<td>194</td>
<td>12.1%</td>
<td>14.6%</td>
</tr>
<tr>
<td>WV</td>
<td>BidX and State Websites</td>
<td>✓</td>
<td>103</td>
<td>13.7%</td>
<td>19.0%</td>
</tr>
<tr>
<td>National</td>
<td></td>
<td></td>
<td>6,792</td>
<td>10.7%</td>
<td>9.9%</td>
</tr>
</tbody>
</table>

Table A.1: Summary of Auction Data by State

Notes: The first two columns provide information on in-state DOT data sources by state, where “state” refers to the state in which the auction occurred. The first column indicates the source from which we obtained data on that state’s DOT auctions, and the second column indicates whether or not EINs were included in the auction records. The final three columns provide information on the final sample of firms in the matched auction-tax data, where “state” refers to the state in which the firm filed taxes. Among firms in the construction sector in 2010, the last two columns consider the share of value added and FTE workers due to the firms that participated in auctions in our sample. We drop from these calculations firms that have missing values on the variables displayed, so the total sample size must be smaller than in Table 1 in the main text. An asterisk (*) denotes that number of bidders is non-zero but below the disclosure threshold.
Figure A.2: Falsification Test: DiD Estimands in the Pre-period

Notes: This figure presents the baseline estimate and sensitivity checks for the DiD estimands corresponding to the numerator and denominator of $\theta_{IV}$, respectively. “Before” refers to event times $\{-4, -3\}$ while “After” refers to event times $\{0, 1, 2\}$. 

A20
Figure A.3: Markdown: Baseline Estimate and Alternative Specifications

Notes: This figure presents the baseline estimate and sensitivity checks for the markdown, $\frac{1}{1+1/\theta}$. Specification details and sample definitions are provided in the text in Subsection 5.1.

Figure A.4: Labor Supply Elasticity: Robustness to Stayer and Tenure Sample Definitions

Notes: This figure presents estimates of the IV estimator defined in Proposition 1 of Section 4.1. It provides these estimates for alternative sample definitions for stayers (subfigure a) and tenured workers (subfigure b).
Figure A.5: Reduced Form Estimates by Right-to-Work or Prevailing Wage States

Notes: This figure presents estimates used in the numerator and denominator, respectively, of the IV estimator defined in Proposition 1 of Section 4.1. We restrict the sample to auctions located in Right-to-Work (RTW) or non-RTW states, or auctions located in Prevailing Wage (PW) or non-PW states.

Figure A.6: Estimates for Stayers: Robustness to FTE Wage Restriction

Notes: This figure presents estimates using the IV estimator defined in Proposition 1 of Section 4.1. It focuses on the sample of “stayers” who remained FTE employed by the same firm from at least 2 years prior to the auction until at least 2 years after the auction. It varies the FTE restriction from 100 percent to 150 percent of the baseline definition.
Figure A.7: Reduced Form Estimates at Annual Frequency

Notes: This figure presents estimates of the DiD estimand corresponding to the numerator of $\theta_{IV}$. It provides these estimates separately by year relative to the year in which the recipient of the procurement contract is announced, both for all the workers in the firm (subfigure a) and stayers (subfigure b).

Figure A.8: Bandwidth Estimator: Robustness to Choice of Bandwidth

Notes: This figure presents results from the bandwidth estimator characterized by Proposition 2 in Section 4.1. On the x-axis, it specifies the bandwidth parameter $\tau$. On the y-axis, it provides estimates of the labor supply elasticity $1/\theta$ (subfigure a) and the markdown $\frac{1}{1+1/\theta}$ (subfigure b).
Figure A.9: Interquartile Range in TFP by Year

Notes: This figure presents the interquartile range of TFP estimated separately by calendar year.

Figure A.10: Heterogeneity across Census Regions in the Estimate of $1-\epsilon$

Notes: This figure presents heterogeneity across Census regions in the estimate of $1-\epsilon$ using the estimator of Proposition 3, as well as the implied price markup $(1 + 1/\epsilon)/(1/\epsilon)$. 
Figure A.11: Firm Heterogeneity, Simplified Model in which Firms Only Produce for the Private Product Market

Notes: This figure presents the counterfactual values of labor, wages, the wage bill, output, and profits (subfigure a) as well as total rents (subfigure b). It expresses these values as percentage differences from the typical firm, defined as the median-TFP firm. See Appendix G for the model equations used to estimate these outcomes while shutting down the procurement market.

G A Simplified Model in which Firms Only Produce for the Private Product Market

Our main analyses account for imperfect competition in both the private product market for construction projects and the government market for procurement projects. The government market for procurement projects is primarily relevant for the construction industry and is only a fraction of the size of the private market for construction projects. As a result, one may be interested in examining the importance of imperfect competition in labor and product markets when firms only have the option to produce for the private product market. To this end, this appendix presents the simplified model in which construction firms only produce for the private product market. Then, it uses this simplified model to repeat the counterfactual analyses from Section 7.2 when shutting down the government market for procurement projects.

We find in this appendix that counterfactual responses in output, wage bill, employment, and other outcomes are qualitatively similar to the results in the main
model if we do not account for the government market. Counterfactual responses are somewhat more sensitive in the simplified model, as the government market serves as an outside option that makes firms less dependent on, and thus less sensitive to, demand from the private product market. We note that, while accounting for the government market does not alter the qualitative findings from these counterfactual exercises, including the government market for procurement projects in the model of the main text is key to deriving the identification results of Propositions 1, 2, and 4. Without these identification results, we could not have recovered the key model parameters like $\theta$ and $\rho$, which are in turn required to perform all counterfactual analyses.

G.1 Model

We parameterize worker preferences over employers the same way as we did in the main model, leading to the inverse labor supply curve for firm $j$ at time $t$,

$$W_{jt} = L_{jt}^\theta U_{jt},$$

where $W_{jt}$ is the posted wage offer, $L_{jt}$ is the number of employees, and $U_{jt}$ represents amenities. As in our main model, the production function (in physical units) is

$$Q^H_{jt} = \min\{\Omega_{jt} L_{jt}^{\beta_L} K_{jt}^{\beta_K} \beta_M M_{jt}\} \exp(e_{jt}),$$

where $\Omega_{jt}$ denotes total factor productivity (TFP), $K_{jt}$ denotes capital, $M_{jt}$ denotes intermediate inputs, and $e_{jt}$ represents measurement error. We assume that capital and intermediate input markets are perfect, so firms can rent capital at constant rate $p_K$ and purchase intermediate inputs at constant price $p_M$. The first-order condition for capital implies a composite production function,

$$Q^H_{jt} = \min\{\Phi_{jt} L_{jt}^{\rho} \beta_M M_{jt}\} \exp(e_{jt}),$$

where $\Phi_{jt}$ denotes capital.
where $\Phi_{jt} \equiv \Omega_{jt}[\beta_K \beta_L \frac{(1+\theta)U_{jt}}{p_K}]^{\beta_K}$ is composite TFP and $\rho \equiv (1 + \theta)\beta_K + \beta_L$ is the composite returns to labor. Defining $X_{jt} \equiv p_M M_{jt}$ as expenditure on intermediate inputs, the Leontief functional form implies that

$$X_{jt} = \frac{p_M}{\beta_M} L_{jt}^\rho \Phi_{jt}. \quad (79)$$

In the private product market, firm $j$ at time $t$ posts a price $P^H_{jt}$ at which it is willing to produce. Consumers have idiosyncratic preferences over producers. We follow the parameterization of consumer preferences from the main model, which implies private market revenues are related to output in physical units by

$$R^H_{jt} = p_H (Q^H_{jt})^{1-\epsilon}. \quad (80)$$

The firm’s problem is to hire labor $L_{jt}$, purchase intermediate inputs $M_{jt}$, and rent capital $K_{jt}$ to maximize private market profits,

$$\pi^H_{jt} = R^H_{jt} - W_{jt} L_{jt} - p_M M_{jt} - p_K K_{jt}, \quad (81)$$

subject to the labor supply curve (equation 76), the production function (equation 78), the choice of intermediate inputs (equation 79), the private market revenue curve (equation 80), the price of intermediate inputs ($p_M$), and the price of capital ($p_K$). The profit-maximizing first-order condition is

$$\rho p_H (1-\epsilon) \Phi_{jt}^{1-\epsilon} L_{jt}^{\rho(1-\epsilon)-1} = (1 + \theta) \kappa_U U_{jt} L_{jt}^\rho + \rho \frac{p_M}{\beta_M} \Phi_{jt} L_{jt}^{\rho-1}, \quad (82)$$

which uniquely determines $L_{jt}$ as a function of $\Phi_{jt}, U_{jt}$, and the model parameters. Given $L_{jt}, \Phi_{jt}, U_{jt}$, and estimates of the model parameters, the other firm choices $W_{jt}, M_{jt}, K_{jt}, Q^H_{jt}$, and $R^H_{jt}$ are also uniquely determined from equations (76, 78, 79, 80).
(a) Impacts of Labor Market Power (assuming $\epsilon = 0$)

(b) Impacts of Product Market Power (assuming $\theta = 0$)

Figure A.12: Simplied Model with Only the Private Product Market: Quantifying the Impacts of Labor and Product Market Power

Notes: This figure presents counterfactual median outcomes when the labor market becomes less competitive and the product market is perfectly competitive (subfigure a) or the private product market becomes less competitive and the labor market is perfectly competitive (subfigure b). It expresses these values as percentage changes relative to the actual economy for the median-TFP firm.

G.2 Counterfactual Analyses

We now perform counterfactual analyses to examine how the outcomes and behavior of firms and workers would change if firms gained labor or product market power. As noted above, we need estimates of the model parameters such as $\theta$, $\epsilon$, and $\rho$ in order to perform counterfactual analyses. Bids and outcomes from the procurement auctions are key to identifying these parameters, so we calibrate the model parameters to the estimates from the main model. We caution that these parameter estimates may or may not be reasonable in a counterfactual economy with no government market for procurement projects.

The results for labor market power are displayed in Figure A.12(a). In this figure, we increase the degree of labor market power through a compensated decrease in the labor supply elasticity $1/\theta$ (see the discussion in Subsection 7.1) while counterfactually shutting down product market power ($\epsilon = 0$). We find that, as the firm gains labor
market power, the extent to which it employs fewer workers and pays a lower wage to each employee is greater when it does not produce for the government market. When the labor supply elasticity of a given firm is reduced by half, the firm employs 27 percent fewer workers (versus 22 percent in the main model), decreases wages by 15 percent (versus 11 in the main model), and decreases the wage bill by 38 percent (versus 31 in the main model). Output is reduced by 26 percent (the same as the reduction in total output in the main model) and the profit of the firm is 12 percent higher (versus 7 in the main model). Thus, we see that the requirement to produce the amount of output specified in the procurement contract limits the extent to which firms producing in the government market can exploit labor by reducing output.

The results for product market power are displayed in Figure A.12(b). In this figure, we increase the degree of product market power through a compensated decrease in the product demand elasticity $1/\epsilon$ (see the discussion in Subsection 7.1) while counterfactually shutting down labor market power ($\theta = 0$). We find that, as the firm gains product market power, the extent to which it produces less output and receives a higher price is greater when it does not produce for the government market. When the product demand elasticity of a given firm is reduced by half, the firm produces 46.1 percent less output for the private market (versus 46.0 percent in the main model) and increases private market prices by 18.3 percent (versus 18.5 percent in the main model). Employment is reduced by 47 percent (versus 28 percent in the main model) and the profit of the firm is 24 percent higher (versus 21 percent in the main model). Thus, we see that the requirement to produce the amount of output specified in the procurement contract limits the extent to which firms producing in the government market can exploit product market power by reducing output.

H Computational Details

Overview: Simulating model counterfactuals is computationally challenging. Since $1/\theta$ and $1/\epsilon$ both appear in the firm’s opportunity cost $\sigma(\phi_{jt}, u_{jt})$ (recall the definition associated with equation 8), it follows that changing these parameters also changes the
optimal bid $Z^*_j$ (equation 14). In turn, the bid affects the additional rents captured by firms from winning a procurement contract. To perform the counterfactuals, we first solve the second stage problem for each $\phi_{jt}$ to find the counterfactual distribution of opportunity costs. Next, we solve the first stage problem to obtain the distribution of optimal bids given the counterfactual opportunity costs. Finally, we combine the optimal bid distribution from the first stage with the optimal private market profits from the second stage. From this, we recover all counterfactual outcomes. To ease the computational burden in solving for these distributions we implement the quantile representation method of Luo (2020). Our main results focus on counterfactual outcomes for the typical firm (the firm with the median value of $\phi_{jt}$), which further reduces the computational burden.

**Second stage:** Denote the TFP quantile function as $\phi(\alpha)$ where, for example, $\alpha = 0.10$ indicates the 10th quantile of the TFP distribution. We use a log Normal distribution to approximate the distribution of TFP, which allows for a simple mapping between $\phi$ and $\alpha$, choosing the standard deviation that matches the interquartile range of TFP (reported in Table 2). For each combination of winner status, TFP quantile, and auction size $(d, \alpha, Q^G)$, we solve the second-stage problem for firm and worker outcomes. This is done by numerical optimization of the profit function (equation 8) subject to the labor supply curve (equation 2), the production function (equation 9), and the optimal intermediate inputs condition (equation 10).

**First stage:** The challenge is to compute expectations of the second-stage across the distribution of outcomes from the first-stage. To solve the first-stage, note that the opportunity cost of winning an auction of size $Q^G$ is $\sigma (\alpha | Q^G) = \pi^{H}_0 (\alpha) - \pi^{H}_1 (\alpha | Q^G)$. Since $\pi^{H}_1$ is the winning firm’s revenue in the private market net of the total cost, it follows that $\pi^{H}_0 > \pi^{H}_1$ and thus $\sigma > 0$. $\pi^{H}_1$ is decreasing in $Q^G$, and $\pi^{H}_0$ does not depend on $Q^G$. Moreover, $\sigma$ is decreasing in $\alpha$. In other words, a higher TFP firm has a lower opportunity cost of producing in the government procurement market. Since $\alpha$ represents quantiles of TFP, it has the standard uniform distribution. The probability that the winning quantile is less than $\alpha$ is the probability that it is the lowest among all
I bidders’ draws from the standard uniform distribution, yielding the probability \( \alpha^I \) and associated density function \( f_1(\alpha, I) = I \alpha^{I-1} \). By similar reasoning, the density function of a losing firm’s TFP quantile is \( f_0(\alpha, I) = \frac{I}{I^2}(1 - \alpha^{I-1}) \).

**Solution:** Let \( Y_d(\alpha|Q^g) \) denote a second-stage outcome for a firm characterized by TFP quantile \( \alpha \) bidding in an auction of size \( Q^g \). Using the distribution functions from the first stage, we compute the expected outcome as 
\[
E[Y_d|Q^g, I] = \int_0^1 Y_d(\alpha|Q^g) f_1(\alpha, I) \, d\alpha.
\]
For example, the probability that a bidder with TFP \( \phi_{jt} \) wins the project is the probability that its TFP is the highest among all participating bidders, i.e., \( H(\phi_{jt})^I \), where \( H \) denotes the distribution of TFP. This implies that the density function of the winner’s TFP is \( IH(\phi_{jt})^{I-1}h(\phi_{jt}) \). The profit function depends on who wins the auction, in particular, the TFP of the winner. The expected profit of the winner is then
\[
\bar{\pi}_{1jt} = \int \pi_{1jt}(\phi_{jt}|Q^g)[IH(\phi_{jt})^{I-1}h(\phi_{jt})] \, d\phi_{jt} = \int \pi_{1jt}(\phi_{jt}(\alpha)|Q^g)I\alpha^{I-1} \, d\alpha.
\]
Note that this expectation depends on the combinations \( (Q^g, I) \). One possibility is to solve the model for each possible combination of \( (Q^g, I) \), and then average across them. In our setting, this is computationally infeasible. An alternative is to evaluate \( (Q^g, I) \) at representative values. In practice, we choose the values of \( (Q^g, I) \) that provide the best fit to the additional rents from procurement projects, \( (V_{jt\Delta}, \pi_{jt\Delta}) \), for the typical firm. The best fit yields a model-simulated incidence on workers of about \$6,500, which is the same as the main estimate in Table 3, and incidence on firms of \$9,200, which is very close to the main estimate of about \$9,600 in Table 3. The implied incidence share on workers is about 41 percent, which is about the same as our main estimate. The best fit is achieved at \( I = 5 \) bidders per auction, which is in the right ballpark to the mean observed value in the data of around 8 bidders per auction.

**Additional details:** We now provide the derivation of the quantile representation of the optimal bidding strategy. Consider a standard first-price auction model. Fol-
following Guerre et al. (2000), we can rewrite the first-order condition and obtain a representation of the cost as a function of observables:

\[ c = b - \frac{1}{I-1} \frac{1 - G(b)}{g(b)}, \]

where \( G(\cdot) \) and \( g(\cdot) \) are the bid distribution and density, respectively. Since the bidding strategy is strictly increasing, we can further rewrite this expression in terms of quantiles:

\[ c(\alpha) = b(\alpha) - \frac{1}{I-1} [1 - \alpha] b'(\alpha), \]

where \( c(\cdot) \) and \( b(\cdot) \) are the cost quantile function and the bid quantile function, respectively. The boundary condition is that the least efficient firm bids the highest, i.e., \( c(1) = b(1) \). Following Luo (2020), we solve this ODE and obtain the mapping from the cost quantile function to the bid quantile function:

\[ b(\alpha) = (I - 1)(1 - \alpha)^{1-I} \int_{\alpha}^{1} c(x)(1 - x)^{I-2} dx. \]

This representation is convenient for numerically solving the first-price procurement auction model.
Data Supplement

S.1 Acquisition and Preparation of Auction Data

This appendix describes our data sources for auction bids and how we build the data set for our main application. Appendix Table A.1 provides a summary of the sources of DOT records by state.

Bid Express Auction Records

The Bid Express website collects information on bids and bidders for procurement auctions held by Departments of Transportation of many US states. It can be freely accessed at www.bidx.com, although the access to information on the bidders requires a paid account registration. We scraped 17 states’ DOT auction records from Bid Express. We performed the scraping using the Python library Selenium to automate browser actions. We registered a BidX.com account, which is required to access bidder information.

We collect the auction information for a given state using the following procedure:

1. We go to the web page of that state on BidX.com and select the latest letting.
   
   Browser actions: visit www.bidx.com, select the desired agency from “Select a U.S. Agency” drop down menu and click the button “go”. An illustration is provided in Appendix Figure S.1a. Then click the “Letting” tab on the top left corner of the new refreshed web page and click the first letting date hyperlink in “List of Letting” table. An illustration is provided in Appendix Figure S.1b.

2. There are two different sources of information - “Apparent Bids” and “Bid Summary” - on a letting page. More specifically, “Apparent Bids” and “Bid Summary” contain auction information but in different formats, and both of them have links to additional bidder information, which requires a paid account to access. Starting from the latest letting page, our scraper clicks the hyperlink “Apparent Bids” (Appendix Figure S.1c) then downloads a csv file for every
bidder by clicking on the bidder hyperlink (Appendix Figure S.1d) and “Export(csv)” on the refreshed page.

If there is no information on the refreshed page, it moves to a new letting by clicking the arrow with html class “prev_arrow”. The procedure is iterated until the arrow is not clickable. We repeat the same procedure for the “Bid Summary” hyperlink.

Through this procedure, we obtain three tables for each letting:

a. auction information from “Apparent Bids”, which contains: bidder names, bidder ID, bidder ranks, bid amounts, bidder call orders, project description, counties, letting ID and letting date. We do note that a few states record two extra variables: DBE Percentage and DBE Manual.

b. auction information from “Bid Summary”, which contains: bidder names, bidder ID, bidder ranks, bid amounts, bidder call orders, counties, proposal ID and letting date.
c. additional bidder information from bidder links, which contains: company name, company address, company phone number, company fax number.

We then merge the table c into a and b. Therefore, two files are created for every letting, one for “Apparent Bids” and one for “Bid Summary” with both auction and firm level information.

The information at the letting level is then further aggregated for each state as follow:

1. For a state X, we merge its “Apparent Bids” files into one single file X_apparentbid and “Bid Summary” files into one single file X_bidsummary. Then we add a new variable State, which is the two-letter abbreviation of states, in X_apparentbid and X_bidsummary.

2. Then we find lettings that are in X_bidsummary but not in X_apparentbid, and augment them so that they have the same variables as lettings in X_apparentbid. The variables added are filled with “N/A”. Then we merged these lettings with X_apparentbid into one file X_all.

3. We merge all *_all files into one final file.

As a result, we obtain a comprehensive file that has the following variables: Date of the auction, unique auction identifier, name of the bidding firm, address of the bidding firm, unique firm identifier, total bid amount, and state in which the auction occurred.

**State-specific Auction Records**

We obtained auction records on 12 other states from two types of sources: scraping state-specific bidding websites (7 states) and submitting Freedom of Information Act (FOIA) requests to state governments (5 states). Each data set included different variables and were organized in different formats. For example, the data from Texas included 121 variables while the data from West Virginia included only 11 variables.

---

1Proposal in X_bidsummary is treated as Letting ID.
We harmonized these data sets focusing on the core set of variables: Date of the auction, unique auction identifier, name of the bidding firm, address of the bidding firm, unique firm identifier, total bid amount, and state in which the auction occurred. Note that one state, West Virginia, transitioned from its own website to Bid Express in 2011, so we use combined records from both sources. Once harmonized, we combined the various state-specific DOT auction records with the records obtained from Bid Express.

EIN Availability

We were able to obtain the EINs for firms that bid in DOT auctions in six states:

- Florida, Indiana, and West Virginia: These states' DOT auction records were scraped from state-specific websites. The EINs were available from these websites.

- Colorado and Kansas: These states' DOT auction records were obtained through FOIA requests. The requested data included EINs.

- Texas: This state's DOT auction records were obtained through a FOIA request. Although this request did not include EINs, we were able to look up EINs by firm name and address through a Texas state government website: https://mycpa.cpa.state.tx.us/coa/.

S.2 Matching Auction Data to Tax Records

This appendix describes the procedure adopted to match the bidders in our auction sample to the tax data. For a subset of bidders the Employer Identification Number (EIN) is available in the auction data, providing a unique identifier for the matching. For those observations an exact matching can be performed. We refer to this subset of perfect matches as the training data. In any other case, we rely on the fuzzy matching algorithm described below.

The procedure takes advantage of some regularities in the denomination of firms and common abbreviations to improve the quality of matching. Furthermore, in order
to properly distinguish different branches of the same company, additional information on value added or state will be used.

Overview of denominations

Generally, a business name consists of three parts: a distinctive part, a descriptive part, and a legal part.\(^2\) The distinctive part is named by the business owner and is usually required by governments to be “substantially different” from any other existing name. The descriptive part describes what the business does, or its sector.\(^3\) Finally, the legal part refers to the business structure of a corporation. For example, for the name “Rogers Communications Inc.”, “Rogers” is the distinctive part, “Communication” is the descriptive part, and “Inc.” is the legal part. Most of the discrepancies of company names between different sources arise from the descriptive and the legal parts, since they are more subject to be abbreviations or common synonyms.

The legal part of corporation names takes a fairly small number of denominations, therefore can be identified using a properly constructed dictionary and treated separately. Conversely, disentangling the distinctive and the descriptive parts is not as straightforward. However, conventionally, the descriptive part follows the distinctive one within the string. This observation motivates a procedure that gives more weight to the first words within a company name, since they are more likely to be part of the distinctive part.

Legal-Parts Dictionary

In order to construct a uniform abbreviation in the legal part, we constructed a many-to-one dictionary using a subsample of our training data. We manually select abbreviations (including for misspelled words) by comparing mismatched names for the same firm in multiple databases. For example, “Incorporated” appears as “Inc.”

\(^2\)Although there are no specific regulations on this naming structure, it is in alignment with naming convention and government guidelines. https://www.ic.gc.ca/eic/site/cd-dgc.nsf/eng/cs01070.html

\(^3\)An example would be California Code of Regulations for business entities. https://www.sos.ca.gov/administration/regulations/current-regulations/business/business-entity-names/#section-21000
“INC”, “Incorp” and so on in our data. Therefore, these abbreviations, when found, are mapped into “Incorporated” as described below. Our dictionary and matching algorithm are available upon request for replicability.

**Matching Algorithm**

We now describe the database matching algorithm (written in Python). A pseudocode representation of this procedure is provided in Appendix Algorithm 1. For each company name in the auction database, the algorithm searches the best match in the tax database. Although the algorithm is meant for the comparison of corporate names, it can be augmented with additional information if available. In our main application, the auction data contains information about the name and the state of origin of the bidding firms. The latter can be used to improve the quality of the matching by using a “blocking” procedure that prioritizes firms from the same origin state, as explained below. Let \( a \) be the firm, \( S^a \) be the firm’s string name and \( State^a \) be the firm’s state of origin. The state of origin is only used if the state option is

---

**Algorithm 1 Matching Algorithm Pseudocode**

```
Input: \( S^a \), State\(^a\), Dict, IRS.FirmList.normalised
Output: Match\(^a\), Score\(^a\)
1. Name Normalization;
2. \( S_{\text{norm}}^a \) Remove non-alphanumeric characters and double spaces from \( S^a \) and set uppercase letters;
3. \( W = \{ w_1, w_2, \ldots, w_n \} \) = Split substrings at spaces (\( S_{\text{norm}} \));
4. for \( i = 1, \ldots, n \) do
5.   if \( w_i \in \text{Dict} \) then \( W = W - \{ w_i \} \);
6. enddo
7. \( S_{\text{norm}} \) = Merge words in \( W \);
8. 2. Shortlisting, ShortList \( = \) IRS.FirmList.normalised
9. Candidate = “Unmatched”
10. Out = 0
11. i = 0
12. repeat
13.   i = i + 1
14.   C = \{ FirmName \in IRS.FirmList.normalised \mid w_i \in FirmName \}
15.   ShortList = ShortList \cap C
16.   if ShortList is singleton then
17.     Candidate = ShortList
18.     Out = 1
19.   else
20.     Candidate = ShortList
21. until Out = 1;
22. 3. Scoring
23. for \( e \in \text{Candidate} \) do
24.   \( \text{Score} = \text{Levenshtein distance}(e, S_{\text{norm}}^a) \)
25.   Best = argmax(\( \text{Score} \))
26. if Levenshtein distance(Best, \( S_{\text{norm}}^a \)) < 0.6 then
27.   Match\(^a\) = “Unmatched”
28. else
29.   Match\(^a\) = Best;
30. \( \text{Score} = \text{Levenshtein distance}(\text{Best}, S_{\text{norm}}^a) \)
```

---

S6
enabled in the code provided. The algorithm proceeds as follow.

1. **Name Normalization**

   All non-alphanumeric characters with the exception of spaces are removed from \(S^a\) and all letter characters are capitalized. Consecutive white spaces are replaced with one white space. Any sub-string separated by one space is considered a "word". Every word in the legal-parts dictionary is removed. For example, “Ammio Brothers Inc.” is composed by the three words “Ammio” “Brothers” and “Inc.”. After the first step, it would be normalized to “AMNIO BROS”, since the word “Brothers” is recognized in our dictionary as a synonym for “BROS” and “Inc.” is recognized in our dictionary as a legal part and therefore removed. We refer to the normalized string as \(S^a_{\text{norm}}\). The same normalization is applied to every company name in the tax database. If the normalized name is not unique in the tax database, we restrict to the ones that ever filed at least one of the three firm tax returns (1120,1120-S or 1065). If the same firm name filed multiple firm tax returns, we select the one with highest value added, as the firm with greater value added is participating in more economic activity and therefore more likely to be the firm that participated in the auction.

2. **Shortlisting**

   Let \(S^a_{\text{norm}}\) be composed by \(n \geq 2\) words. Starting from the first word, we search in the list of normalized tax data company names the subset of names that contains that word. If the subset is empty, no matching occurs and the matching for \(A\) ends. If the subset is a singleton, \(A\) is paired with the unique element of the set and the shortlisting step ends for \(A\). If the subset has more than one element, we proceed with the second word in \(S^a_{\text{norm}}\) and consider only the candidate matches that also contain the second word. If the set still contains more than one element, we proceed with the third word and so on, until all the \(n\) words are used or we obtain either a singleton or an empty set. If this iteration leads to a singleton, \(A\) is paired with the unique element of the set. If it leads to an empty set, then \(A\) is paired with the smallest non-empty subset from the previous iterations. In short, this step selects a shortlist of candidate matches.
that share, after normalization, the highest number of initial words with $A$. If the `state` option is enabled, only firms that match exactly the $State^a$ are considered for shortlisting.

3. **Scoring**

   This step employs the Levenshtein ratio (LR), a widespread measure of distance between strings, to select the best match from the shortlist. For each element of the set paired to $A$ we compute its LR with respect to $S^a$. The company whose name has the highest score is selected as the match. If multiple companies tie for the top score, the one with the highest value added is selected. If the option `strict` is enabled, all the company names that do not reach a minimum threshold $T \in (0, 1)$ in their LR are dropped. If all candidate matches are dropped, then $A$ is considered unmatched. Hence the higher the $T$, the more stringent is the matching process. In our application, we considered $T = 0.6$.

Appendix Table S.1 illustrates how the algorithm works with an example search, using “Hannaford Bros. Distribution Co.” as the search query. In our example, `strict` and `state` are disabled.

**In-Sample Algorithm Validation**

In order to validate the algorithm, we apply it to the subset of firms for which we were provided the EIN by the state DOT, thus allowing us to link records exactly rather than using the algorithm (the “Known EIN” sample). The results are displayed in Appendix Table S.2. In Column (1), we provide results from using a simple string matching algorithm, in which a firm in the auction database is only matched to a firm in the tax database if they have identical names. In Columns (2-5), we apply our approach presented in Appendix Algorithm 1. Overall, the algorithm outperforms string matching in both accuracy and number of matches achieved. In our preferred specification in column (5), the algorithm correctly matches 84.5 percent of the bidders whose EIN are known and could be found in tax database. The use of
the State option proves effective in increasing the number of true matches, while the Strict option with $T = 0.6$ improves accuracy by reducing the false matches.

**Out-of-Sample Algorithm Validation**

In order to assess the external validity of the algorithm outside our specific application, we constructed two test data sets using data from the Employee Benefits Security Administration (ESBA). Our test data sets, PensionData and PensionTest, are constructed using Form 5500 data sets that are published by the Employee Benefits Security Administration (ESBA)\(^4\). Form 5500 data sets contain information, including company names and EINs, about the operations, funding and investments of approximately 800,000 business entities. We consider both retirement and Health and Welfare data sets, drop every variable except the Company Name and EIN, then remove duplicate observations. For every unique EIN, we find all names that are associated with it, then we discard any duplicate names. Most of the EINs are associated with multiple company names, which reproduces a challenge in the tax database. For each EIN, if multiple names are associated with it, we select the first name and put

---

\(^4\)https://www.dol.gov/agencies/ebsa/researchers/data
Table S.2: In-Sample Algorithm Validation

<table>
<thead>
<tr>
<th>Algorithm Parameters:</th>
<th>Simple Search</th>
<th>Fuzzy Match</th>
</tr>
</thead>
<tbody>
<tr>
<td>Match must be perfect (string score = 1.0)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Match must be high-quality (string score ≥ 0.6)</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Prefer matches in same state as auction</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Notes: This table provides summary statistics on the in-sample performance of the matching algorithm when applied to the six states that provided EINs. For these six states, we observe the true match between auction and tax records. Since some contractors are individuals rather than firms or are otherwise not required to file one of the three firm tax forms, not all contractors in auction data have a true match in firm tax records. First row provides share of contractors in the auction data that the algorithm matches to a firm tax record. Second row provides share of contractors in the auction data that the algorithm matches to a firm tax record and the match is true. Third row provides share of contractors in the auction data that the algorithm matches to a firm tax record and the match is true, among contractors in the auction data for which the true match exists in the firm tax data.

in into the PensionData data set and all the others into the PensionTest data set. If there is only one name associated with the EIN, we still add that name into PensionData. This gives us 709,850 companies in PensionTest and 1,270,079 companies in PensionData. We then proceeded to test our program using PensionData as a main data set and PensionTest as a query set.

<table>
<thead>
<tr>
<th>$T$</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matches</td>
<td>99.05%</td>
<td>99.04%</td>
<td>98.46%</td>
<td>91.68%</td>
<td>74.52%</td>
<td>64.44%</td>
<td>49.01%</td>
</tr>
<tr>
<td>Correct Matches</td>
<td>70.36%</td>
<td>70.37%</td>
<td>70.57%</td>
<td>73.39%</td>
<td>80.69%</td>
<td>84.12%</td>
<td>82.58%</td>
</tr>
</tbody>
</table>

(a) Performance for Values of $T$

<table>
<thead>
<tr>
<th>Quantile</th>
<th>1%</th>
<th>10%</th>
<th>30%</th>
<th>50%</th>
<th>70%</th>
<th>90%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>37</td>
<td>2733</td>
</tr>
</tbody>
</table>

(b) Quantiles of Shortlist Lengths

Table S.3: Out-of-Sample Algorithm Validation using Pension Data

We tested the program by searching in PensionData all the 709,850 PensionTest
firms. Since we have the EIN for all the names in the two data sets, we can evaluate the matching performance. The program achieved an average speed of 152 queries per second and an average accuracy of 73.39 percent among matched queries for a $T = 0.6$ using the strict option. Appendix Table S.3a presents the percentage of correctly matched firms and false matches for different values of $T$. We note that the percentage of correct matches is not monotone in $T$ when $T$ is close to 1. In fact, requiring extreme level of string similarity leads to a loss of correct matches that outweighs the gains in precision. Therefore, we do not recommend setting $T$ above 0.9. In Appendix Table S.3b, instead, we provide a closer look at the effectiveness of the shortlisting step. Looking at the distribution of the shortlists’ length, we see that over 50% of the sample is matched at the shortlisting step and 70 percent of the candidate matches requires the scoring of at most 2 candidates. Furthermore, the 99th percentile of the longest shortlist amounts to 2,733 candidates. This is only 0.2 percent of the potential matches that a standard matching algorithm would have to consider for each query and, therefore, much more efficient.

S.3 Description of the Norwegian Data

The Norwegian data comes from the State Register of Employers and Employees, which covers the universe of workers and firms. Our sample spans 2009-2014. For each job, it includes information on start and end dates, annual earnings, and contracted hours. We construct annual earnings at the primary employer as our main outcome of interest. Because the Norwegian data also provides hours worked per day, we can construct the average hourly wage. We supplement the employer-employee data with a measure of value added, which we define as the difference in sales and non-wage operating costs as reported to the Norwegian tax authority by the firm.

To harmonize the Norwegian data with our sample from the US, we follow Bonhomme et al. (2020) by applying the following steps. First, as is common in the literature, whenever a worker is employed by multiple employers in the same year, we focus on the employer associated with the greatest annual earnings. Second, we restrict attention to workers employed in the construction industry. Third, we restrict
attention to workers who are between 25 and 60 years of age. Lastly, we restrict attention to full-time equivalent (FTE) workers. Recall that, since we do not observe hours worked in US data, or a formal measure of full-time employment, we defined a worker as FTE if his or her annual earnings exceed $15,000, which is approximately the annualized minimum wage and corresponds to 32.5% of the national average. To harmonize the sample selection across countries, we similarly restrict the Norwegian sample to workers with annual earnings above 32.5% of the national average.