There is increasing debate on the role of firms in determining labor market outcomes.
Motivation

- There is increasing debate on the role of firms in determining labor market outcomes
 - e.g. consider AKM (1999) model of log earnings for worker m at firm i, time t
 \[w_{mit} = \delta_m + \mu_i + \epsilon_{mit} \]
 - worker effect
 - firm effect
 - residual
 - variance decomposition using employer-employee data (Chile, 2005-2010):
 \[\text{var}(w_{mit}) = \text{var}(\delta_m) + \text{var}(\mu_i) + 2\text{cov}(\delta_m, \mu_i) + (\epsilon_{mit}) \]
 \[\begin{array}{c}
 57\% \\
 13\% \\
 15\% \\
 15\%
 \end{array} \]

- Why do firms matter for inequality in worker earnings?
 - current literature: firms are different in some innate characteristics, e.g. “productivity”
 - growing evidence of substantial heterogeneity in buyer-seller matching between firms
 - relevance of this for worker outcomes is not well understood
- We study the role of production networks in shaping earnings inequality
 - by building and estimating a model where
 \[\mu(TFP_{it}, \text{labour productivity}_{it}, \text{amenities}_{it}, \text{network}_{it}) \]
 - we then use the model to quantify how this dependence matters for:
 - the passthrough of firm shocks into worker earnings across the production network
 - the sources of earnings inequality
There is increasing debate on the role of firms in determining labor market outcomes, e.g. consider AKM (1999) model of log earnings for worker m at firm i, time t

\[w_{mit} = \delta_m + \mu_i + \epsilon_{mit} \]

- worker effect
- firm effect
- residual

Variance decomposition using employer-employee data (Chile, 2005-2010):

\[\text{var}(w_{mit}) = \text{var}(\delta_m) + \text{var}(\mu_i) + 2\text{cov}(\delta_m, \mu_i) + \text{var}(\epsilon_{mit}) \]

- 57%
- 13%
- 15%
- 15%

But why do firms matter for inequality in worker earnings?
- current literature: firms are different in some innate characteristics, e.g. “productivity”
There is increasing debate on the role of firms in determining labor market outcomes – e.g. consider AKM (1999) model of log earnings for worker \(m \) at firm \(i \), time \(t \):

\[
\ln(w_{mit}) = \delta_m + \mu_i + \epsilon_{mit}
\]

- worker effect
- firm effect
- residual

- variance decomposition using employer-employee data (Chile, 2005-2010):

\[
\text{var}(w_{mit}) = \text{var}(\delta_m) + \text{var}(\mu_i) + 2\text{cov} (\delta_m, \mu_i) + \text{var}(\epsilon_{mit})
\]

\[
\begin{array}{c}
57\% \\
13\% \\
15\% \\
15\%
\end{array}
\]

But **why** do firms matter for inequality in worker earnings?

- current literature: firms are different in some innate characteristics, e.g. “productivity”

We now also have growing evidence of substantial **heterogeneity in buyer-seller matching** between firms – yet relevance of this for worker outcomes is not well understood
There is increasing debate on the role of firms in determining labor market outcomes—e.g. consider AKM (1999) model of log earnings for worker m at firm i, time t:

$$w_{mit} = \delta_m + \mu_i + \epsilon_{mit}$$

- worker effect
- firm effect
- residual

Variance decomposition using employer-employee data (Chile, 2005-2010):

$$\text{var}(w_{mit}) = \text{var}(\delta_m) + \text{var}(\mu_i) + 2\text{cov}(\delta_m, \mu_i) + \epsilon_{mit}$$

- 57%
- 13%
- 15%
- 15%

But why do firms matter for inequality in worker earnings?
- current literature: firms are different in some innate characteristics, e.g. “productivity”

We now also have growing evidence of substantial **heterogeneity in buyer-seller matching** between firms—yet relevance of this for worker outcomes is not well understood.

We study the role of production networks in shaping earnings inequality—by building and estimating a model where $\mu(TFP_{it}, \text{labour productivity}_{it}, \text{amenities}_{it}, \text{network}_{it})$
Motivation

- There is increasing debate on the role of firms in determining labor market outcomes
 - e.g. consider AKM (1999) model of log earnings for worker m at firm i, time t
 \[w_{mit} = \delta_m + \mu_i + \epsilon_{mit} \]
 - worker effect
 - firm effect
 - residual
 - variance decomposition using employer-employee data (Chile, 2005-2010):
 \[\text{var} (w_{mit}) = \text{var} (\delta_m) + \text{var} (\mu_i) + 2\text{cov} (\delta_m, \mu_i) + (\epsilon_{mit}) \]
 - 57%
 - 13%
 - 15%
 - 15%

- But **why** do firms matter for inequality in worker earnings?
 - current literature: firms are different in some innate characteristics, e.g. “productivity”

- We now also have growing evidence of substantial **heterogeneity in buyer-seller matching** between firms
 - yet relevance of this for worker outcomes is not well understood

- We study the role of production networks in shaping earnings inequality
 - by building and estimating a model where $\mu (\text{TFP}_{it}, \text{labor productivity}_{it}, \text{amenities}_{it}, \text{network}_{it})$

- We then use the model to quantify how this dependence matters for:
 - the passthrough of firm shocks into worker earnings across the production network
 - the sources of earnings inequality
1. **Firms and earnings inequality**: Davis and Haltiwanger (1991); Abowd, Kramarz, and Margolis (1999); Card, Kline and Heining (2013); Card et al (2018); Borovickova and Shimer (2018); Song et al (2019); Bonhomme et al (2020); Haanwinckle (2020); Lamadon, Mogstad and Setzler (2021); Bonhomme, Lamadon and Manresa (2019)

 - **contribution**: structural representation of earnings variance decomposition allowing for networks

2. **Production networks**: Oberfield (2018); Huneeus (2019); Lim (2019); Dhyne, Kikkawa, Mogstad, and Tintelnot (2020); Kikkawa et al (2020); Acemoglu and Azar (2020); Eaton et al (2018); Demir et al (2020); Alfaro-Urena et al (2019); Adao et al (2020); Bernard et al (2020)

 - **contribution**: add heterogeneous workers and imperfectly competitive labor markets

3. **Labor market power**: Van Reenen (1996); Kline et al (2019); Berger, Herkenhoff and Mongey (2019); Azar, Berry and Marinescu (2019); Chan, Kroft and Mourifie (2019); Dube et al (2020); Jarosch, Nimczik and Sorkin (2021); Kroft, Luo, Mogstad, and Setzler (2020); Lamadon, Mogstad and Setzler (2021)

 - **contribution**: a richer theory of firm production in heterogeneous buyer-seller networks

 - **contribution**: new method for measuring factor prices with heterogeneous workers and inputs
1. **Firm-to-Firm VAT Transactions Data**
 - frequency: annual, 2005-2010
 - coverage: all suppliers of reporting firms, all sectors (≈80\% aggregate value-added)
 - key variables: origin and destination firm tax ID, flow transaction value
1. **Firm-to-Firm VAT Transactions Data**
 - frequency: annual, 2005-2010
 - coverage: all suppliers of reporting firms, all sectors (≈ 80% aggregate value-added)
 - key variables: origin and destination firm tax ID, flow transaction value

2. **Matched Employer-Employee Data**
 - frequency: annual, 2005-2018
 - coverage: universe of formal private firms and their employees
 - key variables: worker earnings, monthly employment, age, gender
1. **Firm-to-Firm VAT Transactions Data**
 - frequency: annual, 2005-2010
 - coverage: all suppliers of reporting firms, all sectors (≈ 80% aggregate value-added)
 - key variables: origin and destination firm tax ID, flow transaction value

2. **Matched Employer-Employee Data**
 - frequency: annual, 2005-2018
 - coverage: universe of formal private firms and their employees
 - key variables: worker earnings, monthly employment, age, gender

3. **Firm Production Data**
 - frequency: monthly, 2005-2018
 - coverage: universe of formal private firms
 - key variables: sales, materials, investment, capital, main industry, HQ location
General Environment

Workers

- heterogeneous in ability a, exogenous measure $L(a)$
- derive utility from three sources:
 - consumption goods produced by firms
 - amenities offered by employer
 - idiosyncratic preferences over employers (source of market power)
- observe ability-specific wage offers made by each firm and choose employer
General Environment

Workers
- heterogeneous in ability a, exogenous measure $L(a)$
- derive utility from three sources:
 - consumption goods produced by firms
 - amenities offered by employer
 - idiosyncratic preferences over employers (source of market power)
- observe ability-specific wage offers made by each firm and choose employer

Firms
- heterogeneous in factor productivities, amenity values, network connections
- produce output by combining workers of different abilities with materials
- set ability-specific wages to hire workers
- source materials from suppliers in production network (exogenous)
- sell output to final consumers and customers in network
Worker preferences

- Utility of a worker with ability \(a \) employed at firm \(i \):

\[
 u_{it}(a) = \log w_{it}(a) + \log g_{i}(a) + \log \tau_{t} + \frac{1}{\gamma} \epsilon_{it}
\]

- workers spend income on consumption goods (CES utility) with CPI as numeraire
- \(\epsilon_{it} \): idiosyncratic Gumbel (GEV-I) preference shock
Worker preferences

- Utility of a worker with ability a employed at firm i:

$$u_{it}(a) = \log w_{it}(a) + \log g_i(a) + \log \tau_t + \frac{1}{\gamma} \epsilon_{it}$$

 - workers spend income on consumption goods (CES utility) with CPI as numeraire
 - ϵ_{it}: idiosyncratic Gumbel (GEV-I) preference shock

- Implies upward-sloping labor supply curves:

$$L_{it}(a) = \kappa_{it}(a) w_{it}(a)^\gamma$$
Utility of a worker with ability a employed at firm i:

$$u_{it}(a) = \log w_{it}(a) + \log g_i(a) + \log \tau_t + \frac{1}{\gamma} \epsilon_{it}$$

- workers spend income on consumption goods (CES utility) with CPI as numeraire
- ϵ_{it}: idiosyncratic Gumbel (GEV-I) preference shock

Implies upward-sloping labor supply curves:

$$L_{it}(a) = \kappa_{it}(a)w_{it}(a)^\gamma$$

Labor supply shifter:

$$\kappa_{it}(a) \equiv \frac{L(a)}{\left[\sum_j g_j(a) w_{jt}(a) \right]^{\gamma-1}} \times g_i(a)^\gamma$$
Worker preferences

- Utility of a worker with ability a employed at firm i:

$$u_{it}(a) = \log w_{it}(a) + \log g_{i}(a) + \log \tau_{t} + \frac{1}{\gamma} \epsilon_{it}$$

- workers spend income on consumption goods (CES utility) with CPI as numeraire
- ϵ_{it}: idiosyncratic Gumbel (GEV-I) preference shock

- Implies upward-sloping labor supply curves:

$$L_{it}(a) = \kappa_{it}(a) w_{it}(a)^{\gamma}$$

- Labor supply shifter:

$$\kappa_{it}(a) \equiv \left(\frac{L(a)}{\gamma} \times \left[\sum_j \left(g_j(a) w_{jt}(a) \right)^{\gamma} \right]^{-1} \times g_{i}(a) \right)^{\gamma}$$

- Assume firms behave atomistically and perceive constant labor supply elasticity γ
Production combines labor $L_{it}(a)$ and materials $M_{it}(a)$:

$$X_{it} = T_{it} \sum_a f [\phi_i(a) \omega_{it} L_{it}(a), M_{it}(a)]$$

- f: CES production function with elasticity of substitution ϵ
- T_{it}: TFP; ω_{it}: labor productivity; $\phi_i(a)$: allows for worker-firm complementarities
Production combines labor $L_{it}(a)$ and materials $M_{it}(a)$:

$$X_{it} = T_{it} \sum_a f[\phi_i(a) \omega_{it} L_{it}(a), M_{it}(a)]$$

- f: CES production function with elasticity of substitution ϵ
- T_{it}: TFP; ω_{it}: labor productivity; $\phi_i(a)$: allows for worker-firm complementarities

Materials produced by combining inputs from suppliers Ω^S_{it}:

$$\sum_a M_{it}(a) \equiv M_{it} = \left[\Sigma_{j \in \Omega^S_{it}} \psi_{ijt} \frac{1}{\sigma} \left(x_{ijt} \right)^{\frac{1}{\sigma}} \right]^{\frac{\sigma}{\sigma - 1}}$$

- ψ_{ijt}: relationship-specific productivity
- market structure: monopolistic competition (CES markups)
Production combines labor $L_{it}(a)$ and materials $M_{it}(a)$:

$$X_{it} = T_{it} \sum_a f [\phi_i(a) \omega_{it} L_{it}(a), M_{it}(a)]$$

- f: CES production function with elasticity of substitution ϵ
- T_{it}: TFP; ω_{it}: labor productivity; $\phi_i(a)$: allows for worker-firm complementarities

Materials produced by combining inputs from suppliers Ω^S_{it}:

$$\sum_a M_{it}(a) \equiv M_{it} = \left[\sum_{j \in \Omega^S_{it}} \psi_{ijt} \left(\frac{1}{\sigma} \right) \left(x_{ijt} \right)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$$

- ψ_{ijt}: relationship-specific productivity
- Market structure: monopolistic competition (CES markups)

Main departure from standard production network models: **increasing marginal costs**
Wage Determination

Wages are a constant markdown of MRPLs:

\[w_{it}(a) = \frac{\gamma}{1+\gamma} \times \phi_i(a) W_{it} \]

markdown
MRPL
Wage Determination

- Wages are a constant markdown of MRPLs:

\[
 w_{it}(a) = \frac{\gamma}{1+\gamma} \times \phi_{i}(a) W_{it} \]

- Firm effect \(W_{it} \) depends on productivity \(\bar{T}_{it} \equiv \{ T_{it}, \omega_{it}, \phi_{i} \} \), amenities \(g_{i} \), and network variables \(\{ D_{it}, Z_{it} \} \):

\[
 W_{it} = W(\bar{T}_{it}, g_{i}, D_{it}, Z_{it})
\]
Wage Determination

- Wages are a constant markdown of MRPLs:

\[w_{it}(a) = \left(\frac{\gamma}{1+\gamma} \right) \times \phi_i(a) W_{it} \]

- Firm effect \(W_{it} \) depends on productivity \(\bar{T}_{it} \equiv \{ T_{it}, \omega_{it}, \phi_i \} \), amenities \(g_i \), and network variables \{ \text{D}_it, Z_{it} \}

\[W_{it} = W(\bar{T}_{it}, g_i, D_{it}, Z_{it}) \]

- **Network demand** is the sum of demand shifters across downstream network connections:

\[D_{it} = E_t + \sum_{j \in \Omega} \Delta_{jt}(\bar{T}_{jt}, g_j, D_{jt}, Z_{jt}) \psi_{jit} \]

Network cost is the CES input price index arising from upstream network connections:

\[Z_{it} = \frac{1-\sigma}{\sigma} - \sum_{j \in \Omega} S_{it} \Phi_{jt}(\bar{T}_{jt}, g_j, D_{jt}, Z_{jt}) \psi_{ijt} \]

In sum: network determines \{\text{D}_it, Z_{it}\}, which then determine \(W_{it} \) and hence wages \(w_{it}(a) \).
Wage Determination

- Wages are a constant markdown of MRPLs:

\[w_{it}(a) = \frac{\gamma}{1+\gamma} \times \phi_i(a) W_{it} \]

- Firm effect \(W_{it} \) depends on productivity \(\bar{T}_{it} \equiv \{ T_{it}, \omega_i, \phi_i \} \), amenities \(g_i \), and network variables \(\{ D_{it}, Z_{it} \} \)

\[W_{it} = W(\bar{T}_{it}, g_i, D_{it}, Z_{it}) \]

- **Network demand** is the sum of demand shifters across downstream network connections:

\[D_{it} = E_t + \sum_{j \in \Omega_{it}^C} \Delta_{jt}(\bar{T}_{jt}, g_j, D_{jt}, Z_{jt}) \psi_{jit} \]

- **Network cost** is the CES input price index arising from upstream network connections:

\[Z_{it}^{1-\sigma} = \sum_{j \in \Omega_{it}^S} \Phi_{jt}(\bar{T}_{jt}, g_j, D_{jt}, Z_{jt}) \psi_{ijt} \]
Wage Determination

- Wages are a constant markdown of MRPLs:
 \[w_{it}(a) = \frac{\gamma}{1 + \gamma} \times \phi_i(a) W_{it} \]

- Firm effect \(W_{it} \) depends on productivity \(\bar{T}_{it} \equiv \{ T_{it}, \omega_{it}, \phi_i \} \), amenities \(g_i \), and network variables \(\{ D_{it}, Z_{it} \} \)
 \[W_{it} = W(\bar{T}_{it}, g_i, D_{it}, Z_{it}) \]

- **Network demand** is the sum of demand shifters across downstream network connections:
 \[D_{it} = E_t + \sum_{j \in \Omega C} \Delta_{jt} (\bar{T}_{jt}, g_j, D_{jt}, Z_{jt}) \psi_{jit} \]

- **Network cost** is the CES input price index arising from upstream network connections:
 \[Z_{it}^{1-\sigma} = \sum_{j \in \Omega S} \Phi_{jt}(\bar{T}_{jt}, g_j, D_{jt}, Z_{jt}) \psi_{ijt} \]

- In sum: network determines \(\{ D_{it}, Z_{it} \} \), which then determine \(W_{it} \) and hence wages \(w_{it}(a) \)
Firm effect on earnings can be written as:

$$\log W_{it} = \text{const.} + \frac{1}{1 + \gamma} \log R_{it} - \frac{1}{1 + \gamma} \log H(g_i, \phi_i) + \frac{1}{1 + \gamma} \log F\left(\frac{Z_{it}}{W_{it}}\right)$$

where $F(\cdot)$ depends on $\{\lambda, \epsilon\}$ and $H(\cdot)$ depends on γ.
Firm effect on earnings can be written as:

\[
\log W_{it} = \text{const.} + \frac{1}{1 + \gamma} \log R_{it} - \frac{1}{1 + \gamma} \log H(g_i, \phi_i) + \frac{1}{1 + \gamma} \log F\left(\frac{Z_{it}}{W_{it}}\right)
\]

where \(F(\cdot)\) depends on \(\{\lambda, \epsilon\}\) and \(H(\cdot)\) depends on \(\gamma\).

Therefore two firms with identical size can have different firm effects through:

- differences in primitives that affect heterogeneous sorting of workers to firms \(\{g_i, \phi_i\}\)
- differences in the relative cost of materials to labor \(\frac{Z_{it}}{W_{it}}\)
- this is possible since firms are also heterogeneous in TFP \(T_{it}\) and labor productivity \(\omega_{it}\)
Firm effect on earnings can be written as:

\[\log W_{it} = \text{const.} + \frac{1}{1 + \gamma} \log R_{it} - \frac{1}{1 + \gamma} \log H(g_i, \phi_i) + \frac{1}{1 + \gamma} \log F(Z_{it}/W_{it}) \]

where \(F(\cdot) \) depends on \(\{\lambda, \epsilon\} \) and \(H(\cdot) \) depends on \(\gamma \).

Therefore two firms with identical size can have different firm effects through:

- differences in primitives that affect heterogeneous sorting of workers to firms \(\{g_i, \phi_i\} \)
- differences in the relative cost of materials to labor \(Z_{it}/W_{it} \)
- this is possible since firms are also heterogeneous in TFP \(T_{it} \) and labor productivity \(\omega_{it} \)

Hence firm size is in general not a sufficient statistic for the firm effect.

- need \(\{Z_{it}, g_i, \phi_i\} \) to be the same across all firms
Firm effect on earnings can be written as:

\[\log W_{it} = \text{const.} + \frac{1}{1 + \gamma} \log R_{it} - \frac{1}{1 + \gamma} \log H(g_i, \phi_i) + \frac{1}{1 + \gamma} \log F\left(\frac{Z_{it}}{W_{it}}\right) \]

where \(F(\cdot) \) depends on \(\{\lambda, \epsilon\} \) and \(H(\cdot) \) depends on \(\gamma \).

Therefore two firms with identical size can have different firm effects through:

- differences in primitives that affect heterogeneous sorting of workers to firms \(\{g_i, \phi_i\} \)
- differences in the relative cost of materials to labor \(\frac{Z_{it}}{W_{it}} \)
- this is possible since firms are also heterogeneous in TFP \(T_{it} \) and labor productivity \(\omega_{it} \)

Hence firm size is in general not a sufficient statistic for the firm effect

- need \(\{Z_{it}, g_i, \phi_i\} \) to be the same across all firms

Decomposing firm size (c.f. Bernard et al (2020)) is not equivalent to decomposing \(W_{it} \)
<table>
<thead>
<tr>
<th></th>
<th>Structural Estimation (Outline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>worker ability, a</td>
</tr>
<tr>
<td></td>
<td>production complementarity, $\phi_i(a)$</td>
</tr>
<tr>
<td>2.</td>
<td>relationship productivity, ψ_{ijt}</td>
</tr>
<tr>
<td>3.</td>
<td>labor-materials substitution elasticity, ϵ</td>
</tr>
<tr>
<td></td>
<td>labor productivity, ω_{it}</td>
</tr>
<tr>
<td>4.</td>
<td>labor supply elasticity, γ</td>
</tr>
<tr>
<td>5.</td>
<td>product substitution elasticity, σ</td>
</tr>
<tr>
<td>6.</td>
<td>amenities, $g_i(a)$</td>
</tr>
<tr>
<td>7.</td>
<td>TFP, T_{it}</td>
</tr>
</tbody>
</table>

- Other results: network matching, worker-firm sorting, model fit, earnings variance decomposition
The firm effect W_{it} depends on productivities $\{T_{it}, \omega_{it}\}$ and network characteristics $\{D_{it}, Z_{it}\}$.
The firm effect W_{it} depends on productivities $\{T_{it}, \omega_{it}\}$ and network characteristics $\{D_{it}, Z_{it}\}$.

Now consider shocks to $\{T_{it}, \omega_{it}, D_{it}, Z_{it}\}$ for some firm i:
- how does this affect earnings at another firm j in the production network?
The firm effect W_{it} depends on productivities $\{T_{it}, \omega_{it}\}$ and network characteristics $\{D_{it}, Z_{it}\}$

Now consider shocks to $\{T_{it}, \omega_{it}, D_{it}, Z_{it}\}$ for some firm i

- how does this affect earnings at another firm j in the production network?

For first-order changes, sufficient to know:

- estimated elasticities $\{\gamma, \sigma, \epsilon\}$
- observable network sales shares, network cost shares, material shares of cost
The firm effect W_{it} depends on productivities $\{T_{it}, \omega_{it}\}$ and network characteristics $\{D_{it}, Z_{it}\}$.

Now consider shocks to $\{T_{it}, \omega_{it}, D_{it}, Z_{it}\}$ for some firm i—how does this affect earnings at another firm j in the production network?

For first-order changes, sufficient to know:
- estimated elasticities $\{\gamma, \sigma, \epsilon\}$
- observable network sales shares, network cost shares, material shares of cost

Own passthrough (for the average firm):
\[
\frac{\partial \log W_{it}}{\partial \log T_{it}} = 34\%, \quad \frac{\partial \log W_{it}}{\partial \log \omega_{it}} = 13\%,
\]
\[
\frac{\partial \log W_{it}}{\partial \log D_{it}} = 13\%, \quad \frac{\partial \log W_{it}}{\partial \log Z_{it}} = -21%.
\]
The firm effect \(W_{it} \) depends on productivities \(\{T_{it}, \omega_{it}\} \) and network characteristics \(\{D_{it}, Z_{it}\} \).

Now consider shocks to \(\{T_{it}, \omega_{it}, D_{it}, Z_{it}\} \) for some firm \(i \):
- how does this affect earnings at another firm \(j \) in the production network?

For first-order changes, sufficient to know:
- estimated elasticities \(\{\gamma, \sigma, \epsilon\} \)
- observable network sales shares, network cost shares, material shares of cost

Own passthrough (for the average firm):

\[
\begin{align*}
\frac{\partial \log W_{it}}{\partial \log T_{it}} &= 34\%, \\
\frac{\partial \log W_{it}}{\partial \log \omega_{it}} &= 13\%, \\
\frac{\partial \log W_{it}}{\partial \log D_{it}} &= 13\%, \\
\frac{\partial \log W_{it}}{\partial \log Z_{it}} &= -21\%.
\end{align*}
\]

- \(\frac{\partial \log W_{it}}{\partial \log T_{it}} > 0 \) due to productivity effect on MPL (requires \(\gamma < \infty, \epsilon < \infty \))
- \(\frac{\partial \log W_{it}}{\partial \log D_{it}} > 0 \) due to scale effect (requires \(\gamma < \infty, \sigma < \infty, \epsilon < \infty \))
- \(\{\omega_{it}, Z_{it}\} \) shocks generate productivity and substitution effects, e.g. \(\text{sgn} \left(\frac{\partial \log W_{it}}{\partial \log Z_{it}} \right) = \text{sgn}(\epsilon - \sigma) \)
Passthrough

- Passthrough from first-degree customers:

\[
\frac{\partial \log W_{it}}{\partial \log T_{ct}} = 33\%,
\quad \frac{\partial \log W_{it}}{\partial \log D_{ct}} = 13\%,
\quad \frac{\partial \log W_{it}}{\partial \log \omega_{ct}} = 6\%,
\quad \frac{\partial \log W_{it}}{\partial \log Z_{ct}} = 8\%.
\]

- strength of \{T, D\} shock passthrough similar to own passthrough
Passthrough from second-degree customers:

\[
\frac{\partial \log W_{it}}{\partial \log T_{kt}} = 31\%, \quad \frac{\partial \log W_{it}}{\partial \log \omega_{kt}} = 5\%,
\frac{\partial \log W_{it}}{\partial \log D_{kt}} = 12\%, \quad \frac{\partial \log W_{it}}{\partial \log Z_{kt}} = 7\%
\]

- strength of passthrough decays slowly with downstream relationship degree
Passthrough from first-degree suppliers:

- $\frac{\partial \log W_{it}}{\partial \log T_{st}} = 20\%$
- $\frac{\partial \log W_{it}}{\partial \log \omega_{st}} = 4\%$
- $\frac{\partial \log W_{it}}{\partial \log D_{st}} = -1\%$
- $\frac{\partial \log W_{it}}{\partial \log Z_{st}} = -16\%$

- $\{T, Z\}$ shock passthrough is important, but weaker than own passthrough
- D shock passthrough is negligible because price responds weakly to demand ($\frac{\partial \log p_{st}}{\partial \log D_{st}} \approx 3\%$)
Passthrough from second-degree suppliers:

\[
\frac{\partial \log W_{it}}{\partial \log T_{kt}} = 15\%, \quad \frac{\partial \log W_{it}}{\partial \log \omega_{kt}} = 3\%,
\]

\[
\frac{\partial \log W_{it}}{\partial \log D_{kt}} = -0\%, \quad \frac{\partial \log W_{it}}{\partial \log Z_{kt}} = -12\%
\]

- strength of \(\{ T, Z \} \) shock passthrough decays by about 25% with each upstream relationship degree.
Passthrough from output market competitors:

\[
\frac{\partial \log W_{it}}{\partial \log T_{kt}} = -6\%, \\
\frac{\partial \log W_{it}}{\partial \log \omega_{kt}} = -1\%, \\
\frac{\partial \log W_{it}}{\partial \log D_{kt}} = 0\%, \\
\frac{\partial \log W_{it}}{\partial \log Z_{kt}} = 5\%.
\]

- \{T, Z\} shocks have small but non-zero effects on wages
Passthrough from input market competitors:

\[
\frac{\partial \log W_{it}}{\partial \log T_{kt}} = -1\%, \\
\frac{\partial \log W_{it}}{\partial \log \omega_{kt}} = -0\%, \\
\frac{\partial \log W_{it}}{\partial \log D_{kt}} = -0\%, \\
\frac{\partial \log W_{it}}{\partial \log Z_{kt}} = -0\%
\]

- all effects negligible because mechanisms rely on scale-dependence of output prices
How important is production network heterogeneity for earnings inequality? and how does this compare with importance of other sources of firm heterogeneity?
Decomposing earnings inequality

How important is production network heterogeneity for earnings inequality? and how does this compare with importance of other sources of firm heterogeneity?

Worker earnings depend on the following primitives:

1. worker abilities (\bar{a}, \hat{a})
2. firm productivities (T, ω)
3. production complementarities (ϕ)
4. amenities (g)
5. network linkages (Ω^S, Ω^C, ψ)
Decomposing earnings inequality

- How important is production network heterogeneity for earnings inequality?
 - and how does this compare with importance of other sources of firm heterogeneity?

- Worker earnings depend on the following primitives:
 1. worker abilities (\bar{a}, \hat{a})
 2. firm productivities (T, ω)
 3. production complementarities (ϕ)
 4. amenities (g)
 5. network linkages (Ω^S, Ω^C, ψ)

- Now simulate counterfactual earnings with various dimensions of heterogeneity shut down
 - Shapley value approach used to account for interdependencies in sources of heterogeneity
Decomposing earnings inequality

<table>
<thead>
<tr>
<th>(1) share of earnings variance</th>
<th>(2) worker effect variance</th>
<th>(3) firm effect variance</th>
<th>(4) sorting covariance</th>
<th>(5) interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>earnings variance</td>
<td>100</td>
<td>57.0</td>
<td>10.8</td>
<td>19.8</td>
</tr>
<tr>
<td>worker permanent ability, \bar{a}_m</td>
<td>53.8</td>
<td>48.6</td>
<td>-1.5</td>
<td>4.1</td>
</tr>
<tr>
<td>worker transient ability, \tilde{a}_{mt}</td>
<td>13.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>supplier network, ${m_{ijt}, \psi_{ijt}}_{j \in \Omega^S_t}$</td>
<td>11.9</td>
<td>0.9</td>
<td>7.9</td>
<td>2.7</td>
</tr>
<tr>
<td>customer network, ${m_{jit}, \psi_{jit}}_{j \in \Omega^C_t}$</td>
<td>8.6</td>
<td>-0.1</td>
<td>6.7</td>
<td>1.5</td>
</tr>
<tr>
<td>firm productivities, ${T_{it}, \omega_{it}}$</td>
<td>6.1</td>
<td>7.5</td>
<td>-4.3</td>
<td>3.3</td>
</tr>
<tr>
<td>production complementarities, ϕ_i</td>
<td>4.6</td>
<td>-4.0</td>
<td>-2.7</td>
<td>8.6</td>
</tr>
<tr>
<td>amenities, $g_i(\cdot)$</td>
<td>1.2</td>
<td>-0.4</td>
<td>3.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Network heterogeneity accounts for 21% of total earnings variance
- supplier heterogeneity slightly more important than customer heterogeneity
- in contrast, heterogeneity in own-firm characteristics explain around 12%

Bernard et al (2020) also find network heterogeneity explains more of var (sales) than own-firm primitives
Conclusion

- Matched employer-employee and firm-to-firm datasets:
 - allow simultaneous study of disaggregated worker and firm outcomes
 - becoming more widely available to researchers (e.g. Turkey, Costa Rica, Ecuador)

- We provide a quantitative framework + estimation methodology for studying these data
 - with heterogeneous firms/workers/network and labor market power

- Network linkages matter for the passthrough into earnings from:
 - productivity and demand shocks to customers
 - productivity and material cost shocks to suppliers
 - productivity and material cost shocks to output market competitors

- Network heterogeneity explains around one-fifth of earnings variance

- Extensions using the model + data:
 - outsourcing (with David Price) – firms hire labor or source labor indirectly from suppliers
 - automation (with Bradley Setzler) – firms have access to imported labor-replacing “robots”
We can write the wage equation as:

$$\log \tilde{w}_{imt} = \theta_i \log a_m + \log W_i + \log \hat{a}_{mt}$$

where \(\log \tilde{w}_{imt} = \log w_{imt} - \frac{1}{1+\gamma} \left(\log E_{it}^L - \mathbb{E}_t [\log E_{it}^L] \right) \) and \(\log W_i \equiv \mathbb{E}_t [\log \eta W_{it}] \)

Identification: worker and firm effects
Identification: worker and firm effects

- We can write the wage equation as:

\[
\log \tilde{w}_{imt} = \theta_i \log \bar{a}_m + \log W_i + \log \hat{a}_{mt}
\]

where \(\log \tilde{w}_{imt} = \log w_{imt} - \frac{1}{1+\gamma} (\log E^{L}_{it} - E_t [\log E^{L}_{it}]) \) and \(\log W_i \equiv E_t [\log \eta W_{it}] \)

- BLM show that \(\{\theta_i, W_i\} \) are identified from the following moment condition:

\[
E \left[\frac{1}{\theta_j} (\log \tilde{w}_{jm,t+1} - \log W_j) - \frac{1}{\theta_i} (\log \tilde{w}_{im,t} - \log W_i) \mid m \in M_{t,t+1}^{i\rightarrow j} \right] = 0
\]

where \(M_{t,t+1}^{i\rightarrow j} \) is the set of workers that move from \(i \) to \(j \) between \(t \) and \(t + 1 \)
Identification: worker and firm effects

- We can write the wage equation as:

\[
\log \tilde{w}_{imt} = \left(\theta_i \log \tilde{a}_m \right) + \left(\log W_i + \log \hat{a}_{mt} \right)
\]

where \(\log \tilde{w}_{imt} = \log w_{imt} - \frac{1}{1+\gamma} \left(\log E_{it}^L - \mathbb{E}_t \left[\log E_{it}^L \right] \right) \) and \(\log W_i \equiv \mathbb{E}_t \left[\log \eta W_{it} \right] \)

- BLM show that \(\{ \theta_i, W_i \} \) are identified from the following moment condition:

\[
E \left[\frac{1}{\theta_j} \left(\log \tilde{w}_{jm,t+1} - \log W_j \right) - \frac{1}{\theta_i} \left(\log \tilde{w}_{im,t} - \log W_i \right) \mid m \in M_{t,t+1}^{i \rightarrow j} \right] = 0
\]

where \(M_{t,t+1}^{i \rightarrow j} \) is the set of workers that move from \(i \) to \(j \) between \(t \) and \(t + 1 \)

- Follow BLM by restricting \(\{ \theta_i, W_i \} \) to vary only by \(K \) clusters so that \(\theta_i = \theta_{k(i)} \) and \(W_i = W_{k(i)} \)
We can write the wage equation as:

\[
\log \tilde{w}_{imt} = \theta_i \log \bar{a}_m + \log W_i + \log \hat{a}_{mt}
\]

where \(\log \tilde{w}_{imt} = \log w_{imt} - \frac{1}{1+\gamma} \left(\log E_{it}^L - \mathbb{E}_t \left[\log E_{it}^L \right] \right) \) and \(\log W_i \equiv \mathbb{E}_t \left[\log \eta W_{it} \right] \)

BLM show that \(\{ \theta_i, W_i \} \) are identified from the following moment condition:

\[
E \left[\frac{1}{\theta_j} \left(\log \tilde{w}_{jm,t+1} - \log W_j \right) - \frac{1}{\theta_i} \left(\log \tilde{w}_{im,t} - \log W_i \right) | m \in M_{t,t+1}^{i \rightarrow j} \right] = 0
\]

where \(M_{t,t+1}^{i \rightarrow j} \) is the set of workers that move from \(i \) to \(j \) between \(t \) and \(t + 1 \)

Follow BLM by restricting \(\{ \theta_i, W_i \} \) to vary only by \(K \) clusters so that \(\theta_i = \theta_{k(i)} \) and \(W_i = W_{k(i)} \)

Given identification of \(\{ \theta_{k(i)}, W_{k(i)} \} \), permanent worker ability is identified from:

\[
\log \bar{a}_m = E \left[\frac{\log \tilde{w}_{imt} - \log W_{k(i)}}{\theta_{k(i)}} \right]
\]

Time-varying firm effect \(W_{it} \) recovered using \(\log W_{it} = \log W_{k(i)} + \frac{1}{1+\gamma} \left(\log E_{it}^L - \mathbb{E}_t \left[\log E_{it}^L \right] \right) \)
We can write sales from firm j to firm i as:

$$\log R_{ijt} = \log \tilde{\Delta}_{it} + \log \tilde{\Phi}_{jt} + \log \tilde{\psi}_{ijt}$$

where $\tilde{\Delta}_{it} \equiv \Delta_{it}\psi_{it}$ and $\tilde{\Phi}_{jt} \equiv \Phi_{jt}\psi_{jt}$ are (transformed) buyer and seller effects.
We can write sales from firm j to firm i as:

$$\log R_{ijt} = \log \tilde{\Delta}_{it} + \log \tilde{\Phi}_{jt} + \log \tilde{\psi}_{ijt}$$

where $\tilde{\Delta}_{it} \equiv \Delta_{it} \psi_{it}$ and $\tilde{\Phi}_{jt} \equiv \Phi_{jt} \psi_{jt}$ are (transformed) buyer and seller effects.

Following Bernard et al (2019):

- buyer-seller matching is independent of $\tilde{\psi}_{ijt}$, hence $E \left[\log \tilde{\Delta}_{it} \log \tilde{\psi}_{ijt} \right] = E \left[\log \tilde{\Phi}_{jt} \log \tilde{\psi}_{ijt} \right] = 0$
- $\tilde{\Delta}_{it}$ identified from purchases by i controlling for total sales of i’s suppliers
- $\tilde{\Phi}_{jt}$ identified from sales by j controlling for total material cost of j’s customers
Identification: relationship capability

- We can write sales from firm j to firm i as:

\[
\log R_{ijt} = \log \tilde{\Delta}_{it} + \log \tilde{\Phi}_{jt} + \log \tilde{\psi}_{ijt}
\]

where $\tilde{\Delta}_{it} \equiv \Delta_{it} \psi_{it}$ and $\tilde{\Phi}_{jt} \equiv \Phi_{jt} \psi_{jt}$ are (transformed) buyer and seller effects.

- Following Bernard et al (2019):
 - buyer-seller matching is independent of $\tilde{\psi}_{ijt}$, hence $\mathbb{E}[\log \tilde{\Delta}_{it} \log \tilde{\psi}_{ijt}] = \mathbb{E}[\log \tilde{\Phi}_{jt} \log \tilde{\psi}_{ijt}] = 0$
 - $\tilde{\Delta}_{it}$ identified from purchases by i controlling for total sales of i’s suppliers
 - $\tilde{\Phi}_{jt}$ identified from sales by j controlling for total material cost of j’s customers

- To recover ψ_{it}, use share of i’s total sales s_{it}^{net} from network (excluding final sales):

\[
\psi_{it} = E_t \left(\frac{s_{it}^{\text{net}}}{1 - s_{it}^{\text{net}}} \right) \frac{1}{\sum_{j \in \Omega} \Delta_{jt} \psi_{jit}}
\]

- Given ψ_{it}, can recover network demand Δ_{it} and efficiency Φ_{it}, and hence cost Z_{it}
Standard CES production function with labor-augmenting productivity ω_{it} implies:

$$\log \left(\frac{E_{it}^M}{E_{it}^L} \right) = \text{const.} + (1 - \epsilon) \log \left(\frac{P_{it}^M}{P_{it}^L} \right) + (1 - \epsilon) \log \omega_{it}$$

relative M-L expenditure
relative M-L unit price
Identification: labor-materials substitution elasticity ϵ

- Standard CES production function with labor-augmenting productivity ω_{it} implies:

$$\log \left(\frac{E^M_{it}}{E^L_{it}} \right) = \text{const.} + (1 - \epsilon) \log \left(\frac{P^M_{it}}{P^L_{it}} \right) + (1 - \epsilon) \log \omega_{it}$$

- Relative M-L expenditure
- Relative M-L unit price

- Given input prices $\{P^M_{it}, P^L_{it}\}$, Doraszelski and Jaumandreu (2018) develop approach to identify $\{\epsilon, \omega_{it}\}$
Identification: labor-materials substitution elasticity ϵ

- Standard CES production function with labor-augmenting productivity ω_{it} implies:

$$\log \left(\frac{E_{it}^M}{E_{it}^L} \right) = \text{const.} + (1 - \epsilon) \log \left(\frac{P_{it}^M}{P_{it}^L} \right) + (1 - \epsilon) \log \omega_{it}$$

- Relative M-L expenditure
- Relative M-L unit price

- Given input prices $\{P_{it}^M, P_{it}^L\}$, Doraszelski and Jaumandreu (2018) develop approach to identify $\{\epsilon, \omega_{it}\}$

- Current literature approach to measurement of input prices:
 - $P_{it}^L =$ avg. local market wage (e.g. Oberfield-Raval (2020)), avg. firm wage (e.g. DJ (2018))
 - $P_{it}^M =$ industry characteristic (e.g. Oberfield-Raval (2020)); self-reported price (e.g. DJ (2018))
Identification: labor-materials substitution elasticity ϵ

- Standard CES production function with labor-augmenting productivity ω_{it} implies:

\[
\log \left(\frac{E^M_{it}}{E^L_{it}} \right) = \text{const.} + (1 - \epsilon) \log \left(\frac{P^M_{it}}{P^L_{it}} \right) + (1 - \epsilon) \log \omega_{it}
\]

relative M-L expenditure \hspace{1cm} \text{relative M-L unit price}

Given input prices $\{P^M_{it}, P^L_{it}\}$, Doraszelski and Jaumandreu (2018) develop approach to identify $\{\epsilon, \omega_{it}\}$

Current literature approach to measurement of input prices:
- $P^L_{it} =$ avg. local market wage (e.g. Oberfield-Raval (2020)), avg. firm wage (e.g. DJ (2018))
- $P^M_{it} =$ industry characteristic (e.g. Oberfield-Raval (2020)); self-reported price (e.g. DJ (2018))

What are the correct price measures when both workers and inputs are heterogeneous?
"Price of labor" can be estimated from decomposition of worker earnings into worker and firm effects:

\[
\log w_{mit} = \log \eta + \theta_i \log \bar{a}_m + \log W_{it} + \log \hat{a}_{mt}
\]

- theoretically correct price of labor is \(P^L_{it} = W_{it} \), i.e. the firm effect
"Price of labor" can be estimated from decomposition of worker earnings into worker and firm effects:

\[
\log w_{mit} = \log \eta + \theta_i \log \bar{a}_m + \log W_{it} + \log \hat{a}_{mt}
\]

- theoretically correct price of labor is \(P_{it}^L = W_{it} \), i.e. the firm effect

"Price of materials" can be estimated from decomposition of firm-to-firm sales into buyer and seller effects:

\[
\log R_{ijt} = \log \Delta_{it} + \log \Phi_{jt} + \log \psi_{ijt}
\]

- theoretically correct price of materials is \(P_{it}^M = Z_{it} = \left[\sum_{j \in \Omega_i} \Phi_{jt} \psi_{ijt} \right]^{1-\sigma} \), i.e. aggregation of seller effects across suppliers adjusted by relationship productivity
Pass-through of changes in wage bill for firm i to wages for employee m:

$$
\Delta \log w_{mit} = \frac{1}{1 + \gamma} \Delta \log E_{it}^L + \frac{1}{1 + \gamma} \Delta \log e_{it}^L + \Delta \log \hat{a}_{mt}
$$

- $\Delta \log w_{mit}$: change in wage bill
- $\Delta \log E_{it}^L$: wage bill measurement error
- $\Delta \log e_{it}^L$: worker shock

Since worker and firm shocks are orthogonal, so are $\Delta \log E_{it}^L$ and $\Delta \log \hat{a}_{mt}$.

If measurement error is MA(k) and greater lags of $\Delta \log E_{it}^L$ are valid instruments, results are robust to omitting worker earnings from firm wage bill.
Pass-through of changes in wage bill for firm i to wages for employee m:

$$
\Delta \log w_{mit} = \frac{1}{1 + \gamma} \Delta \log E_{it}^L + \frac{1}{1 + \gamma} \Delta \log e_{it}^L + \Delta \log \hat{a}_{mt}
$$

- Change in firm wage bill
- Wage bill measurement error
- Worker shock

Since worker and firm shocks are orthogonal, so are $\Delta \log E_{it}^L$ and $\Delta \log \hat{a}_{mt}$.
Identification: labor supply elasticity γ

- Pass-through of changes in wage bill for firm i to wages for employee m:

$$\Delta \log w_{mit} = \frac{1}{1 + \gamma} \Delta \log E_{it}^L + \frac{1}{1 + \gamma} \Delta \log e_{it}^L + \Delta \log \hat{a}_{mt}$$

 - Change in firm wage bill
 - Wage bill measurement error
 - Worker shock

- Since worker and firm shocks are orthogonal, so are $\Delta \log E_{it}^L$ and $\Delta \log \hat{a}_{mt}$.

- If measurement error is MA(k), k and greater lags of $\Delta \log E_{it}^L$ are valid instruments.
Identification: labor supply elasticity γ

- Pass-through of changes in wage bill for firm i to wages for employee m:

$$\Delta \log w_{mit} = \frac{1}{1 + \gamma} \Delta \log E_{it}^L + \frac{1}{1 + \gamma} \Delta \log e_{it}^L + \Delta \log \hat{a}_{mt}$$

 - change in firm wage bill
 - wage bill measurement error
 - worker shock

- Since worker and firm shocks are orthogonal, so are $\Delta \log E_{it}^L$ and $\Delta \log \hat{a}_{mt}$

- If measurement error is MA(k), k and greater lags of $\Delta \log E_{it}^L$ are valid instruments

- Results are robust to omitting worker m earnings from firm wage bill
Identification: elasticity of substitution σ

The first-order conditions from the firm’s profit maximization problem imply:

$$p_{it}x_{it} = \frac{\sigma}{\sigma - 1} \times \left[\frac{1}{\eta} - E_{it}^L + E_{it}^M \right]$$

where η corrects for wage markdown and increasing marginal cost.
The first-order conditions from the firm’s profit maximization problem imply:

\[
p_{it} X_{it} = \frac{\sigma}{\sigma - 1} \times \left[\frac{1}{\eta} E_{it}^L + E_{it}^M \right]
\]

where \(\eta \) corrects for wage markdown and increasing marginal cost.

Hence we identify \(\sigma \) from the following moment condition:

\[
\sigma = \mathbb{E} \left[\frac{R_{it}}{R_{it} - \frac{1}{\eta} E_{it}^L + E_{it}^M} \right]
\]

interpreting empirical deviations from the FOC as measurement error.
The first-order conditions from the firm’s profit maximization problem imply:

\[p_{it} x_{it} = \frac{\sigma}{\sigma - 1} \times \left[\frac{1}{\eta} E_{it}^L + E_{it}^M \right] \]

where \(\eta \) corrects for wage markdown and increasing marginal cost.

Hence we identify \(\sigma \) from the following moment condition:

\[\sigma = \mathbb{E} \left[\frac{R_{it}}{R_{it} - \frac{1}{\eta} E_{it}^L - E_{it}^M} \right] \]

interpreting empirical deviations from the FOC as measurement error.

Intuition: if firms make high profit fixing output, then demand must be inelastic

- when \(\gamma \to \infty, \eta \to 1 \) and \(\sigma \) is identified from the population average sales-profit ratio.
The first-order conditions from the firm’s profit maximization problem imply:

\[p_{it}x_{it} = \frac{\sigma}{\sigma - 1} \times \left[\frac{R_{it}}{1 - \frac{1}{\eta} E_{it}^L + E_{it}^M} \right] \]

where \(\eta \) corrects for wage markdown and increasing marginal cost.

Hence we identify \(\sigma \) from the following moment condition:

\[\sigma = \mathbb{E} \left[\frac{R_{it}}{R_{it} - \frac{1}{\eta} E_{it}^L - E_{it}^M} \right] \]

interpreting empirical deviations from the FOC as measurement error.

Intuition: if firms make high profit fixing output, then demand must be inelastic.

- when \(\gamma \to \infty, \eta \to 1 \) and \(\sigma \) is identified from the population average sales-profit ratio.

Note that leveraging firm FOCs allows identification of \(\sigma \) without needing identification of:

- firm-specific demand shifters \(D_{it} \)
- firm-specific prices and marginal costs

Approach is robust to additional firm-specific final demand heterogeneity (another component of \(D_{it} \)).
Follow LMS (2021) in restricting amenities as follows:

\[g_i(a) = \bar{g}_i \bar{g}_{k(i)}(\bar{a}) \]
Follow LMS (2021) in restricting amenities as follows:

\[g_i(a) = \tilde{g}_i \tilde{g}_{k(i)}(\bar{a}) \]

Cluster-ability component of amenities can be identified from:

\[\tilde{g}_{k(i)}(\bar{a}) = (\bar{a})^{-\theta_k} [\Lambda_{kt}(\bar{a})]^{\frac{1}{\gamma}} \]

where \(\Lambda_{kt}(\bar{a}) \) is share of workers of permanent ability \(\bar{a} \) employed by firms in cluster \(k \).
Follow LMS (2021) in restricting amenities as follows:

\[g_i(a) = \tilde{g}_i \tilde{g}_{k(i)}(\bar{a}) \]

Cluster-ability component of amenities can be identified from:

\[\tilde{g}_{k(i)}(\bar{a}) = (\bar{a})^{-\theta_k} [\Lambda_{k(t)}(\bar{a})]^{\frac{1}{\gamma}} \]

where \(\Lambda_{k(t)}(\bar{a}) \) is share of workers of permanent ability \(\bar{a} \) employed by firms in cluster \(k \)

Firm-specific component of amenities can be identified from:

\[\tilde{g}_i = \frac{1}{W_{it}} \left(\frac{\tilde{\Lambda}_{it}}{\tilde{\Lambda}_{k(i)t}} \right)^{\frac{1}{\gamma}} \]

where \(\tilde{\Lambda}_{it} \) and \(\tilde{\Lambda}_{k(i)t} \) are shares of employment (of all worker types) accounted for by firm \(i \) and cluster \(k(i) \)
We can express the time-varying firm effects that we recover from BLM as:

\[W_{it} = F_i \left[\{ T_{jt} \}_{j \in \Omega^F} | \Theta - T \right] \]

- \(\Theta - T \): set of model primitives other than TFPs
- \(\{ F_i \}_{i \in \Omega^F} \): set of known functions that depend on structural relationships of model
We can express the time-varying firm effects that we recover from BLM as:

\[W_{it} = F_i \left[\{ T_{jt} \}_{j \in \Omega^F} | \Theta - T \right] \]

- \(\Theta - T \): set of model primitives other than TFPs
- \(\{ F_i \}_{i \in \Omega^F} \): set of known functions that depend on structural relationships of model

Given identification of \(\Theta - T \), this provides a set of \(|\Omega^F|\) moments for exact identification of TFP

Note that without intermediates (\(\lambda \to 1 \)), \(\log W_{it} \) is linear in \(\log T_{it} \) and identification is straightforward

With intermediates, \(F_i \) is generally not log-linear and depends on \(T_{jt} \) for \(j \neq i \)

- hence need numerical approach in practice for estimation
Worker-firm sorting:

- Worker-firm sorting:

- note: “BLM cluster” indicates k-means cluster of firm based on percentiles of within-firm earnings distribution.

- worker ability quantile: 1 2 3 4 5

- model

- data

- firm BLM cluster

- employment share (%)
Model Fit

<table>
<thead>
<tr>
<th></th>
<th>data</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregate:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>labor share of value-added</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>value-added share of sales</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>labor-material cost ratio</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>worker-level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log earnings s.d.</td>
<td>0.75</td>
<td>0.80</td>
</tr>
<tr>
<td>earnings Gini coefficient</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td>earnings 90/10 ratio</td>
<td>7.10</td>
<td>7.37</td>
</tr>
<tr>
<td>earnings 75/25 ratio</td>
<td>2.91</td>
<td>2.76</td>
</tr>
<tr>
<td>earnings 75/50 ratio</td>
<td>1.81</td>
<td>1.79</td>
</tr>
<tr>
<td>earnings 50/25 ratio</td>
<td>1.61</td>
<td>1.54</td>
</tr>
</tbody>
</table>
Model Fit

<table>
<thead>
<tr>
<th></th>
<th>data</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregate:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>labor share of value-added</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>value-added share of sales</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>labor-material cost ratio</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>worker-level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log earnings s.d.</td>
<td>0.75</td>
<td>0.80</td>
</tr>
<tr>
<td>earnings Gini coefficient</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td>earnings 90/10 ratio</td>
<td>7.10</td>
<td>7.37</td>
</tr>
<tr>
<td>earnings 75/25 ratio</td>
<td>2.91</td>
<td>2.76</td>
</tr>
<tr>
<td>earnings 75/50 ratio</td>
<td>1.81</td>
<td>1.79</td>
</tr>
<tr>
<td>earnings 50/25 ratio</td>
<td>1.61</td>
<td>1.54</td>
</tr>
</tbody>
</table>
Model Fit

firm-level:

<table>
<thead>
<tr>
<th></th>
<th>data</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>log sales s.d.</td>
<td>1.60</td>
<td>1.27</td>
</tr>
<tr>
<td>avg. log wage s.d.</td>
<td>0.57</td>
<td>0.50</td>
</tr>
<tr>
<td>corr(log sales, avg. log wage)</td>
<td>0.53</td>
<td>0.73</td>
</tr>
<tr>
<td>corr(log sales, s.d. log wage)</td>
<td>0.46</td>
<td>0.74</td>
</tr>
<tr>
<td>corr(log sales, log out-degree)</td>
<td>0.54</td>
<td>0.70</td>
</tr>
<tr>
<td>corr(log sales, log in-degree)</td>
<td>0.78</td>
<td>0.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>data</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>corr(log sales, cust. log sales)</td>
<td>-0.28</td>
<td>-0.57</td>
</tr>
<tr>
<td>corr(log in-degree, cust. log in-degree)</td>
<td>-0.37</td>
<td>-0.54</td>
</tr>
<tr>
<td>corr(avg. log wage, cust. avg. log wage)</td>
<td>0.12</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Model Fit

<table>
<thead>
<tr>
<th></th>
<th>data</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>firm-level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log sales s.d.</td>
<td>1.60</td>
<td>1.27</td>
</tr>
<tr>
<td>avg. log wage s.d.</td>
<td>0.57</td>
<td>0.50</td>
</tr>
<tr>
<td>corr(log sales, avg. log wage)</td>
<td>0.53</td>
<td>0.73</td>
</tr>
<tr>
<td>corr(log sales, s.d. log wage)</td>
<td>0.46</td>
<td>0.74</td>
</tr>
<tr>
<td>corr(log sales, log out-degree)</td>
<td>0.54</td>
<td>0.70</td>
</tr>
<tr>
<td>corr(log sales, log in-degree)</td>
<td>0.78</td>
<td>0.75</td>
</tr>
<tr>
<td>firm-to-firm-level:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corr(log sales, cust. log sales)</td>
<td>-0.28</td>
<td>-0.57</td>
</tr>
<tr>
<td>corr(log in-degree, cust. log in-degree)</td>
<td>-0.37</td>
<td>-0.54</td>
</tr>
<tr>
<td>corr(avg. log wage, cust. avg. log wage)</td>
<td>0.12</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Earnings Decomposition

Earnings: \(\log w_{\text{int}} = \tilde{\theta} (\log \bar{a}_m - \log \bar{a}) + \log W_{it} \omega_{it} + \theta_i \log \bar{a} + (\theta_i - \bar{\theta}) (\log \bar{a}_m - \log \bar{a}) + \log \hat{a}_{mt} \)

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. var(worker effect)</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>2. var(firm effect)</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>3. cov(worker effect,firm effect)</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>4. interactions</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>5. residual</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>