Spatial Production Networksa

Costas Arkolakis
Yale University

Federico Huneeus
Central Bank of Chile

Yuhei Miyauchi
Boston University

June 2021
Cowles Trade Summer Conference

aThe views and opinions expressed are those of the authors alone and do not necessarily reflect those of the Central Bank of Chile.
Motivation

- Production networks are complex and distributed unevenly across space
 - Fragmented across countries, regions, and firms
 - “Global Value Chains” (World Bank 2019)
Motivation

- Production networks are complex and distributed unevenly across space
 - Fragmented across countries, regions, and firms
 - “Global Value Chains” (World Bank 2019)

- “Macro” and “micro” approaches (Johnson 2018, Antras-Chor 2021)
 - Microeconomics of how firms form endogenous production networks
 - Macroeconomics determined by production network across countries and regions
Motivation

- Production networks are complex and distributed unevenly across space
 - Fragmented across countries, regions, and firms
 - “Global Value Chains” (World Bank 2019)

- “Macro” and “micro” approaches (Johnson 2018, Antras-Chor 2021)
 - Microeconomics of how firms form endogenous production networks
 - Macroeconomics determined by production network across countries and regions

- Limited understanding of how “macro” and “micro” interact in space
 - How do endogenous production networks form across country or regions?
 - How do these firm-level decisions affect macroeconomic outcomes?
 - How do macroeconomic shocks propagate in space under endogenous networks?
This Paper

- **Microfounded** model of spatial production networks with tractable aggregation
 - Firms search and match with suppliers and buyers in the geographic space
 - Aggregate gravity equations in extensive (number of relationships) and intensive margins (volume per relationship)
 - Characterize equilibrium by two sets of fixed points for buyer and supplier access
 - Establish existence and uniqueness/counterfactuals/sufficient statistics

Apply this model to administrative firm-to-firm transaction level data from Chile

Stylized facts about spatial production networks consistent with the model

Compare role of trade frictions versus search and matching frictions

Reduced-form shocks to study how they propagate geographically

Counterfactual effect of trade shocks with endogenous response of spatial networks
This Paper

- **Microfounded** model of spatial production networks with *tractable aggregation*
 - Firms search and match with suppliers and buyers in the geographic space
 - Aggregate gravity equations in extensive (number of relationships) and intensive margins (volume per relationship)
 - Characterize equilibrium by two sets of fixed points for buyer and supplier access
 - Establish existence and uniqueness/counterfactuals/sufficient statistics

- Apply this model to administrative firm-to-firm transaction level data from Chile
 - Stylized facts about spatial production networks consistent with the model
 - Compare role of trade frictions versus search and matching frictions
 - Reduced-form shocks to study how they propagate geographically
 - Counterfactual effect of trade shocks with endogenous response of spatial networks

Endogenous production networks in space: Eaton-Kortum-Kramarz (2016); Miyauchi (2021); Panigraphi (2021); Antras-de-Gortari (2020)

Outline

1. Data and Motivating Facts
2. Model
3. General Equilibrium Analysis
4. Quantitative Analysis
5. Conclusion
Data and Motivating Facts
Domestic firm-to-firm transaction-level dataset in Chile

- Collected by Internal Revenue Service for value-added tax collection purposes
- Covers the universe of domestic trade between all firms in Chile during 2015-2019
- Includes seller and buyer firm ID, sales, products, prices, origin and destination municipality
- Linked to various firm data sets:
 - Customs data (for imports and exports)
 - Firm balance sheet characteristics (for total sales)
 - Matched employer-employee dataset (for employment and wages)
Domestic firm-to-firm transaction-level dataset in Chile

- Collected by Internal Revenue Service for value-added tax collection purposes
- Covers the universe of domestic trade between all firms in Chile during 2015-2019
- Seller and buyer firm ID, sales, products, prices, origin and destination municipality

Linked to various firm data sets:

- Customs data (for imports and exports)
- Firm balance sheet characteristics (for total sales)
- Matched employer-employee dataset (for employment and wages)
Motivating Facts

- Fact 1: Number of domestic suppliers and buyers per firm is increasing in firm sales with approximate log-linear relationships.
Fact 1: Number of domestic suppliers and buyers per firm is increasing in firm sales with approximate log-linear relationships.

Fact 2: Number of domestic suppliers and buyers per firm is positively correlated with population density and proximity to the capital city.
Motivating Facts

■ Fact 1: Number of domestic suppliers and buyers per firm is increasing in firm sales with approximate log-linear relationships.

■ Fact 2: Number of domestic suppliers and buyers per firm is positively correlated with population density and proximity to the capital city.

■ Fact 3: Number of supplier-buyer relationships between municipalities (extensive margin) and the volume of transaction per relationship (intensive margin) decay in geographic distance at different rates.
Model
Setup

- Space is partitioned by a finite number of locations $i, u, d \in \mathbb{N}$

- Continuum of workers of measure L_i in location i. No mobility for now

- Two types of goods: intermediate goods and final goods
 - Intermediate goods are traded across locations subject to iceberg trade cost $\tau_{ud} \geq 1$
 - Final goods are not traded

- Two types of producers:
 - “Retailers”: Produce final goods for final consumers
 - “Firms”: Produce intermediate goods for other “firms” and “retailers”

- Focus on presentation of “firms”
Representative consumers have CES preference over final goods, with ES η

Unit cost of production by “firm” ω in location i

$$c^I(\omega) = \frac{1}{z(\omega)} w_i^\beta \left(\int_{\nu \in \Omega^I_\omega} p(\omega, \nu)^{1-\sigma} d\nu \right)^{\frac{1-\beta}{1-\sigma}}$$

- $z(\omega)$ is productivity of firm ω
- w_i is local wages
- Ω^I_ω is the set of varieties that ω has access to (endogenized by search and matching)
- $p(\omega, \nu)$ is the price charged by supplier ν to ω
- σ is the elasticity of substitution for intermediate goods
Search and Matching Between Firms: Overview

- Production networks linkages: endogenous under search and matching process

- Firms post advertisements across locations depending on anticipated profits
 (Arkolakis 2010; Demir-Fieler-Xu-Yang 2021)
 - Reaching intermediate suppliers and buyers with two-sided search and matching
 - Reaching retailers with one-sided search and matching

- Aggregate random matching technology between locations à la DMP
Firms’ Search Decision

\[
\max \left\{ n_u \right\}_{n_{ui}}, \left\{ n_d \right\}_{n_{id}}, n_i^R \right\}
\]

\[
\frac{n_i^R}{\sigma} D_i^R (c)^{1-\sigma} + \sum_{d \in N} \frac{m_{id}^B n_{id}^B}{\sigma} D_i^l (c_{\tau id})^{1-\sigma}
\]

profit from "retailers"

\[
\sum_{d \in N} \frac{m_{id}^B n_{id}^B}{\sigma} D_i^l (c_{\tau id})^{1-\sigma}
\]

profit from "firm" buyers

\[
-W_i \left\{ f_i^R \frac{(n_i^R)^{\gamma^R}}{\gamma^B} + \sum_{d \in N} f_{id}^B \frac{(n_{id})^{\gamma^B}}{\gamma^B} + \sum_{u \in N} f_{ui}^S \frac{(n_{ui}^S)^{\gamma^S}}{\gamma^S} \right\}
\]

search cost

\[
c = \frac{w_i^B \left(\sum_{u \in N} n_{ui}^S m_{ui}^S (C_{ui})^{1-\sigma} \right)^{1-\beta}}{\beta^{1-\sigma}}
\]

subject to

- \{n_{ui}^S\}_{u}, \{n_{id}^B\}_{d}, n_i^R: number of postings to suppliers, “firm” buyers, and “retailers”
- \(f_i^R, f_{id}^B, f_{ui}^S, \gamma^B, \gamma^S\): exogenous parameters for search cost
- \(m_{ui}^S\): matching rates with suppliers (endogenous)
- \(C_{ui}\): average cost of suppliers from \(u\) to \(i\) (endogenous)
Matching Between Suppliers and Buyers

- Aggregate supplier and buyer postings:

\[\tilde{M}_{ud}^S = N_d \int n_{ud}^S(z) dG_d(z), \quad \tilde{M}_{ud}^B = N_u \int n_{ud}^B(z) dG_u(z) \]

- \(N_i \): measure of firms in location \(i \)
- \(G_i(\cdot) \): productivity distribution in location \(i \)

- Total number of supplier-to-buyer relationships determined by matching function:

\[M_{ud} = \kappa_{ud} \left(\tilde{M}_{ud}^S \right)^{\lambda^S} \left(\tilde{M}_{ud}^B \right)^{\lambda^B} \]

- Matching probability (intensity):

\[m_{ud}^S = \frac{M_{ud}}{\tilde{M}_{ud}^S} \quad m_{ud}^B = \frac{M_{ud}}{\tilde{M}_{ud}^B} \]
Gravity Equations of Bilateral Trade Flows: Extensive and Intensive Margin

Total number of successful relationships and average trade flow from u to d:

\[M_{ud} = \varrho^M \chi^M_{ud} \zeta^M_u \xi^M_d \quad (\text{Extensive Margin}) \]
\[\bar{r}_{ud} = \varrho^R \chi^R_{ud} \zeta^R_u \xi^R_d \quad (\text{Intensive Margin}) \]

\[\chi^M_{ud} = \left[\kappa_{ud} \left(f_{ud}^B \right)^{\frac{\lambda^B}{\gamma^B}} \left(f_{ud}^S \right)^{-\frac{\lambda^S}{\gamma^S}} \left(\tau_{ud}^{1-\sigma} \right) \right]^{\tilde{\gamma}}, \quad \tilde{\gamma} = \left[1 - \frac{\lambda^S}{\gamma^S} - \frac{\lambda^B}{\gamma^B} \right]^{-1} \]

\[\chi^R_{ud} = \left(\tau_{ud} \right)^{1-\sigma} \]

\[\zeta^M_u \text{ and } \zeta^R_u \text{ capture cost shifters } \Rightarrow \text{Seller effects} \]
\[\xi^M_d \text{ and } \xi^R_d \text{ capture demand shifters } \Rightarrow \text{Buyer effects} \]

Different spatial structure of “extensive” and “intensive” margins as in facts
General Equilibrium Analysis
Equilibrium reduced to a 2xN system on wages w_i and intermediate shifter C_i^*:

- "Buyer access"
 \[w_i = \frac{1}{\vartheta R L_i} \sum_d X_{id}(\{w\}, \{C^*\}, \{\chi^R\}, \{\chi^N\}) \]
 where \(X_{id} = M_{id} \bar{r}_{id} \)

- "Supplier access"
 \[(C_i^*)^{1-\sigma} = w_i^{\beta(1-\sigma)} \left((\bar{\sigma})^{\sigma} M_i \left(\frac{\delta}{\gamma S} \right) N_i \right)^{\beta-1} \left(\frac{\sum_u X_{ui}}{D_i^l} \right)^{1-\beta} \]

Similar to previous literature (Anderson and van Wincoop 2003, Redding and Venables 2004, Donaldson and Hornbeck 2016) while incorporating the endogenous search and matching
Rewriting the two equations yields:

\[(w_i)^{1+\frac{\lambda B}{\gamma B}} (C_i^*)^{(\sigma-1)\tilde{\gamma}} = \sum_d K_{id} D (w_d)^{-\iota} (C_d^*)^{(\sigma-1)\tilde{\gamma} \frac{1-\beta}{1-\beta}}\]

\[(w_i)^{1+\iota} (C_i^*)^{-\frac{(\sigma-1)\tilde{\gamma}}{1-\beta}} = \sum_u K_{ui} U (w_u)^{-\frac{\lambda B}{\gamma B} \tilde{\gamma}} (C_u^*)^{-{(\sigma-1)\tilde{\gamma}}}\]

where \(\iota = \frac{\lambda S}{\gamma S} \tilde{\gamma} \frac{\sigma-1}{1-\beta} + \left(\frac{\lambda B}{\gamma B} \tilde{\gamma} + 1\right) \frac{\beta \sigma-1}{1-\beta}; \tilde{\gamma} = \left[1 - \frac{\lambda S}{\gamma S} - \frac{\lambda B}{\gamma B}\right]^{-1}\)

- \(K_{id} D\) and \(K_{ui} U\) are combination of exogenous parameters, including \(\chi_{ud}^N, \chi_{ud}^R\)

Prove that system can span outcomes of gravity trade models with roundabout production (when \(\gamma^B, \gamma^S \to \infty\)) but not vice versa \((\text{Eaton and Kortum 2002, Caliendo and Parro 2014 (single-sector); Eaton, Kortum, Kramarz 2011; Costinot and Rodriguez-Clare 2014; Antras and Chor 2021})\)

- Characterize existence and uniqueness

- Characterize counterfactuals based on suff. statistics \(\{X_{ui}\}\) à la DEK \((2007)\)
Proportional changes of welfare are given by:

\[
\frac{\hat{w}_i}{P_i^F} = \left(\frac{\hat{\Lambda}_{ii}}{\text{own trade share}} \right) - \frac{1}{\sigma - 1} \frac{1 - \beta}{\beta} \left(\hat{M}_{ii} \right) \text{number of linkages within location} \left(\frac{1}{\sigma - 1} \frac{1 - \beta}{\beta} \right)
\]

- \(\gamma^B, \gamma^S \to \infty \Rightarrow \hat{M}_{ii} = 1 \) as in gravity trade models (ACR 2012)
- \(\hat{M}_{ii} \) captures changes in productivity through endogenous search and matching

\[
\hat{M}_{ii} = \hat{N}_i \hat{a}^S_{ii} \hat{m}^S_{ii}
\]
Quantitative Analysis
Calibration and Spatial Friction Decomposition

- We calibrate the model with 345 municipalities in Chile + all foreign countries
- Bilateral trade flows from domestic firm-to-firm transaction data and customs data
- Structural parameters \((\lambda^B, \lambda^S, \gamma^B, \gamma^S, \beta, \sigma)\)
 - Search cost elasticity \(\gamma^S = \gamma^B = 2.5\) from:
 \[
 \log \left(\sum_u n^k_{ui}(z) \right) = \frac{1}{\gamma_k} \log (r_i(z)) + \rho^k_i, \quad k \in \{S, B\}
 \]
 - Labor share in production: \(\beta = 0.5\)
 - Matching function elasticity \(\lambda^B = 1\) and \(\lambda^S = 0.6\) (Miyauchi 2021)
 - Elasticity of substitution across intermediate goods: \(\sigma = 1.5\)
- Structural decomposition of spatial frictions:
 - Search and matching costs more sensitive to distance than iceberg trade cost
Counterfactual Simulations of 10% Trade Shock

- Implemented as $\hat{\kappa}_{ROW,d} = 1.1$ (export shock) and $\hat{\kappa}_{u,ROW} = 1.1$ (import shock)

<table>
<thead>
<tr>
<th>Import and Export Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>No Extensive Margin ($\gamma^S, \gamma^B \to \infty$)</td>
</tr>
</tbody>
</table>

- Ignoring endogenous search and matching substantially overestimates the welfare gains by ignoring the substitution through domestic linkages
- Heterogeneous effects: Higher trade exposure increases benefit from shock
Significant Geographic Propagation of Trade Shock

<table>
<thead>
<tr>
<th></th>
<th>(1) Welfare</th>
<th>(2) Number of Suppliers</th>
<th>(3) Number of Buyers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import Share</td>
<td>0.16***</td>
<td>-0.15***</td>
<td>-0.04***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Export Share</td>
<td>0.10***</td>
<td>0.01**</td>
<td>-0.13***</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Supplier Locations' Import Share</td>
<td>0.13***</td>
<td>-0.03</td>
<td>-0.15***</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Supplier Locations' Export Share</td>
<td>-0.14***</td>
<td>0.07***</td>
<td>-0.04*</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Buyer Locations' Import Share</td>
<td>-0.14***</td>
<td>-0.08***</td>
<td>0.22***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Buyer Locations' Export Share</td>
<td>0.07***</td>
<td>-0.04***</td>
<td>-0.07***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.00***</td>
<td>1.00***</td>
<td>1.00***</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Observations</td>
<td>335</td>
<td>335</td>
<td>335</td>
</tr>
<tr>
<td>R^2</td>
<td>0.880</td>
<td>0.778</td>
<td>0.855</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$
Conclusion
Conclusion

- Provide a tractable micro-founded model of production networks in space

- Apply our model to firms' domestic and foreign transaction data from Chile
 - How spatial production networks are shaped by different trade frictions
 - How trade shocks affect different regions under endogenous production networks

- Framework can be used for international production networks across countries
Appendix
2. Number of Domestic Suppliers and Buyers per Firm and Geography

- Average Number of Links
 - Customers: 1, 10, 100, 1000
 - Suppliers: 1, 10, 100, 1000

- Population Density
 - Customers: 1, 10, 100, 1000
 - Suppliers: 1, 10, 100, 1000

- Distance to Santiago (Km)
 - Customers: 1, 10, 100, 1000
 - Suppliers: 1, 10, 100, 1000
Consider the regression

\[\log Y_{ij} = \beta \log Dist_{ij} + \xi_i + \zeta_j + \epsilon_{ij} \]

- \(i, j \) are municipalities in Chile
- \(Y_{ij} \): bilateral trade flows (total); the volume of transaction per relationship (intensive); number of relationships between suppliers and buyers (extensive)

<table>
<thead>
<tr>
<th></th>
<th>Total (1)</th>
<th>Intensive (2)</th>
<th>Extensive (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Distance</td>
<td>-1.139***</td>
<td>-0.405***</td>
<td>-0.734***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.005)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.161</td>
<td>0.062</td>
<td>0.185</td>
</tr>
<tr>
<td>Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(N)</td>
<td>119932</td>
<td>119932</td>
<td>119932</td>
</tr>
</tbody>
</table>
Complete Solution to Firms’ Search Problem

\[n_{ui}^{S}(z) = a_{ui}^{S} z^{\frac{\delta}{\gamma^{S}}}; \quad n_{i}^{R}(z) = a_{i}^{R} z^{\frac{\delta}{\gamma^{B}}}; \quad n_{id}^{B}(z) = a_{id}^{B} z^{\frac{\delta}{\gamma^{B}}} \]

where

\[a_{id}^{B} = \left(m_{id}^{B} \frac{D_{d}^{l}}{w_{i^{f}_{id}}^{B}} (\tau_{id})^{1-\sigma} (C_{i}^{*})^{1-\sigma} \right)^{\frac{1}{\gamma^{B}-1}} \]

\[a_{i}^{R} = \left(\frac{1}{w_{i}^{f}_{i}^{R}} D_{i}^{R} (C_{i}^{*})^{1-\sigma} \right)^{\frac{1}{\gamma^{B}-1}} \]

\[a_{ui}^{S} = \left(\frac{(1-\beta) D_{i}^{*}}{w_{i}^{f}_{i}^{S}} m_{ui}^{S} (C_{i}^{*})^{\beta \frac{\sigma-1}{1-\beta}} (C_{ui})^{1-\sigma} \right)^{\frac{1}{\gamma^{S}-1}} \]

and

\[D_{i}^{*} = a_{i}^{R} D_{i}^{R} + \sum_{d} m_{id}^{B} a_{id}^{B} D_{d}^{l} (\tau_{id})^{1-\sigma}; \quad (C_{i}^{*})^{1-\sigma} \equiv w_{i}^{\beta(1-\sigma)} \left(\sum_{u \in N} a_{ui}^{S} m_{ui}^{S} (C_{ui})^{1-\sigma} \right)^{1-\beta} \]
Mathematical structure commonly appears in trade/spatial models (Allen, Arkolakis, Li 2021):

\[(w_i)^{1+\frac{\lambda B}{\gamma B}} \tilde{\gamma} (C_i^*)(\sigma-1)\tilde{\gamma} = \sum_d K_{id} (w_d)^{1-\iota} (C_d^*)^{-\frac{1}{1-\beta}} \frac{(\sigma-1)\tilde{\gamma}}{1-\beta}\]

\[(w_i)^{1+\iota} (C_i^*)^{-\frac{(\sigma-1)\tilde{\gamma}}{1-\beta}} = \sum_u K_{ui} (w_u)^{-\frac{1}{1-\beta}} (C_u^*)^\frac{1}{1-\beta} \gamma \tilde{\gamma} (C_u^*)^{-\frac{1}{1-\beta}} \gamma\]

where \(\iota = \frac{\lambda S}{\gamma S} \tilde{\gamma} \frac{\sigma-1}{1-\beta} + \left(\frac{\lambda B}{\gamma B} \tilde{\gamma} + 1\right) \frac{\beta \sigma-1}{1-\beta}; \tilde{\gamma} = \left[1 - \frac{\lambda S}{\gamma S} - \frac{\lambda B}{\gamma B}\right]^{-1}\)

Proposition

If \(\frac{\lambda B}{\gamma B} \tilde{\gamma} + (1 + \iota) (1 - \beta) \geq 0\) then the equilibrium always exists and it is unique up-to-scale.
Responses to Shocks

- Denote observed import and export share by $\Psi_{id} = \frac{X_{id}}{\sum_{\ell} X_{i\ell}}$ and $\Lambda_{ui} = \frac{X_{ui}}{\sum_{\ell} X_{i\ell}}$
- Consider counterfactual changes in \hat{K}_{id}^D and \hat{K}_{id}^U ($\hat{x} \equiv x'/x$)

Proposition

The counterfactual changes of wages \hat{w}_i and intermediate cost shifter \hat{C}_i^* are solved by

$$
(\hat{w}_i)^{1+\frac{\lambda^B}{\gamma^B} \tilde{\gamma}} (\hat{C}_i^*)^{(\sigma-1)\tilde{\gamma}} = \sum_d \hat{K}_{id}^D (\hat{w}_d)^{-\frac{\lambda^B}{\gamma^B} \tilde{\gamma}} (\hat{C}_d)^{-\frac{(\sigma-1)\tilde{\gamma}}{1-\beta}} \Psi_{id}
$$

$$
(\hat{w}_i)^{1+\frac{\lambda^B}{\gamma^B} \tilde{\gamma}} (\hat{C}_i^*)^{-\frac{(\sigma-1)\tilde{\gamma}}{1-\beta}} = \sum_u \hat{K}_{ui}^U (\hat{w}_u)^{-\frac{\lambda^B}{\gamma^B} \tilde{\gamma}} (\hat{C}_u)^{-\frac{(\sigma-1)\tilde{\gamma}}{1-\beta}} \Lambda_{ui}
$$

- Aggregate X_{ui} and structural parameters ($\lambda^B, \lambda^S, \gamma^B, \gamma^S, \beta, \sigma$) are sufficient
Use model-predicted gravity equations to decompose trade frictions into “iceberg trade cost” and “search and matching frictions”

Iceberg trade cost is revealed from “intensive” margin of trade flows:

\[
\tilde{\tau}_{ud}^* \equiv \left(\frac{\tau_{ud}}{\tau_{uu} \tau_{dd}} \right)^{1-\sigma} = \frac{\bar{\tau}_{ud}}{\bar{\tau}_{uu} \bar{\tau}_{dd}}
\]

Search and matching costs is revealed by combining “extensive” and “intensive” margin of trade flows:

\[
\tilde{\kappa}_{ud}^* \equiv \left(\frac{\tilde{\kappa}_{ud}}{\tilde{\kappa}_{uu} \tilde{\kappa}_{dd}} \right)^{1-\sigma} = \frac{M_{ud}}{M_{uu} M_{dd}} (\tilde{\tau}_{ud}^*)^{-\left(\frac{\lambda_B}{\gamma_B} + \frac{\lambda_S}{\gamma_S}\right)} \tilde{\gamma},
\]

where

\[
\tilde{\kappa}_{ud} \equiv \left[\kappa_{ud} \left(f_{ud}^B \right)^{-\frac{\lambda_B}{\gamma_B}} \left(f_{ud}^S \right)^{-\frac{\lambda_S}{\gamma_S}} \right] \tilde{\gamma}
\]
Decomposition of Spatial Frictions

<table>
<thead>
<tr>
<th>Trade: $\tilde{\tau}_{ud}$</th>
<th>Search-Matching: $\tilde{\kappa}_{ud}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Log Distance</td>
<td>0.182***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.051</td>
</tr>
<tr>
<td>Year FE</td>
<td>✓</td>
</tr>
<tr>
<td>N</td>
<td>99284</td>
</tr>
</tbody>
</table>

- Search and matching costs is more sensitive to geographic distance than (physical) iceberg trade cost
Heterogeneous Effects: Higher Exposure Increases Benefit from Shock