Supplemental Material to FINITE-SAMPLE OPTIMAL ESTIMATION AND INFERENCE ON AVERAGE TREATMENT EFFECTS UNDER UNCONFOUNDEDNESS

By

Timothy B. Armstrong and Michal Kolesár

December 2017 Revised December 2018

COWLES FOUNDATION DISCUSSION PAPER NO. 2092RS

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE UNIVERSITY Box 208281 New Haven, Connecticut 06520-8281

http://cowles.yale.edu/

Supplemental Materials for "Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness"

Timothy B. Armstrong*
Yale University

Michal Kolesár[†] Princeton University

December 17, 2018

D Proofs of auxiliary Lemmas and additional details

D.1 Proof of Lemma A.2

We will show that the constraint $f^*(x_i, 1) \leq f^*(x_j, 1) + ||x_i - x_j||_{\mathcal{X}}$ holds for all $i, j \in \{1, \ldots, n\}$. The argument that $f^*(x_i, 0) \leq f^*(x_j, 0) + ||x_i - x_j||_{\mathcal{X}}$ holds for all $i, j \in \{1, \ldots, n\}$ is similar and omitted. We assume, without loss of generality, that the observations are ordered so that $d_j = 0$ for $j = 1, \ldots, n_0$ and $d_i = 1$ for $i = n_0 + 1, \ldots, n$. Observe that the bias can be written as

$$\sum_{i=n_0+1}^{n} (k(x_i, 1) - w(1)) f(x_i, 1) - \sum_{j=1}^{n_0} w(0) f(x_j, 1) + \sum_{j=1}^{n_0} (k(x_j, 0) + w(0)) f(x_j, 0) + \sum_{i=n_0+1}^{n} w(1) f(x_i, 0).$$

If $k(x_i, 1) = w(1)$ for $i \in \{n_0 + 1, ..., n\}$, we can set $f^*(x_i, 1) = \min_{j \in \{1, ..., n_0\}} \{f^*(x_j, 1) + ||x_i - x_j||_{\mathcal{X}}\}$ without affecting the bias, so that we can without loss of generality assume that (24) holds for all $i \in \{n_0 + 1, ..., n\}$ and all $j \in \{1, ..., n_0\}$.

If w(0) = 0, then the assumptions on k imply $k(x_i, 1) = w(1)$ for $i > n_0$, and the value of $f(\cdot, 1)$ doesn't affect the bias. If w(0) > 0, then for each $j \in \{1, \ldots, n_0\}$, at least one of the constraints $f^*(x_i, 1) \le f^*(x_j, 1) + ||x_i - x_j||_{\mathcal{X}}$, $i \in \{n_0 + 1, \ldots, n\}$, must bind, otherwise we could decrease $f^*(x_j, 1)$ and increase the value of the objective function. Let i(j) denote the index of one of the binding constraints (picked arbitrarily), so that $f^*(x_{i(j)}, 1) = f^*(x_j, 1) + ||x_{i(j)} - x_j||_{\mathcal{X}}$. We need to

 $^{^*}email: timothy.armstrong@yale.edu$

[†]email: mkolesar@princeton.edu

show that the constraints

$$f^*(x_i, 1) \le f^*(x_{i'}, 1) + ||x_i - x_{i'}||_{\mathcal{X}}$$
 $i, i' \in \{n_0 + 1, \dots, n\},$ (S1)

$$f^*(x_j, 1) \le f^*(x_{j'}, 1) + ||x_j - x_{j'}||_{\mathcal{X}}$$
 $j, j' \in \{1, \dots, n_0\},$ (S2)

$$f^*(x_j, 1) \le f^*(x_i, 1) + ||x_i - x_j||_{\mathcal{X}} \qquad j \in \{1, \dots, n_0\}, \ i \in \{n_0 + 1, \dots, n\}.$$
 (S3)

are all satisfied. If (S1) doesn't hold for some (i, i'), then by triangle inequality, for all $j \in \{1, \ldots, n_0\}$,

$$f^*(x_{i'}, 1) + \|x_i - x_{i'}\|_{\mathcal{X}} < f(x_i, 1) \le f^*(x_j, 1) + \|x_i - x_j\|_{\mathcal{X}} \le f^*(x_j, 1) + \|x_i - x_{i'}\|_{\mathcal{X}} + \|x_{i'} - x_j\|_{\mathcal{X}},$$

so that $f^*(x_{i'}, 1) < f^*(x_j, 1) + ||x_{i'} - x_j||_{\mathcal{X}}$. But then it is possible to increase the bias by increasing $f^*(x_{i'}, 1)$, which cannot be the case at the optimum. If (S2) doesn't hold for some (j, j'), then by triangle inequality, for all i,

$$f^*(x_j, 1) + ||x_i - x_j||_{\mathcal{X}} > f^*(x_{j'}, 1) + ||x_i - x_j||_{\mathcal{X}} + ||x_j - x_{j'}||_{\mathcal{X}}$$
$$\geq f^*(x_{j'}, 1) + ||x_i - x_{j'}||_{\mathcal{X}} \geq f^*(x_i, 1).$$

But this contradicts the assertion that for each j, at least one of the constraints $f(x_i, 1) \le f(x_j, 1) + \|x_i - x_j\|_{\mathcal{X}}$ binds. Finally, suppose that (S3) doesn't hold for some (i, j). Then by triangle inequality,

$$f^*(x_i, 1) + ||x_i - x_{i(j)}||_{\mathcal{X}} \le f^*(x_i, 1) + ||x_i - x_j||_{\mathcal{X}} + ||x_{i(j)} - x_j||_{\mathcal{X}}$$
$$< f^*(x_i, 1) + ||x_{i(j)} - x_j||_{\mathcal{X}} = f^*(x_{i(j)}, 1),$$

which violates (S1).

D.2 Proof of Lemma A.4

We will show that Equations (28), (29) and (30) hold at the optimum for d_i , $d_{i'} = 1$ and d_j , $d_{j'} = 0$. The argument that they hold for d_i , $d_{i'} = 0$ and d_j , $d_{j'} = 1$ is similar and omitted. The first-order conditions associated with the Lagrangian (31) are

$$m_j/\sigma^2(0) = \mu w(0) + \sum_{i=1}^{n_1} \Lambda_{ij}^0, \qquad \mu w(0) = \sum_{i=1}^{n_1} \Lambda_{ij}^1 \qquad j = 1, \dots, n_0,$$
 (S4)

$$m_{i+n_0}/\sigma^2(1) = \mu w(1) + \sum_{j=1}^{n_0} \Lambda_{ij}^1, \qquad \mu w(1) = \sum_{j=1}^{n_0} \Lambda_{ij}^0 \qquad i = 1, \dots, n_1.$$
 (S5)

If w(0) = 0, the first-order conditions together with the dual feasibility condition $\Lambda_{ij}^1 \geq 0$ implies that $m_{i+n_0} = \mu w(1)\sigma^2(1)$, and the assertion of the lemma holds trivially, since $r_j = \mu w(1)\sigma^2(1)$

for $j=1,\ldots,n$ achieves the optimum. Suppose, therefore, that w(0)>0. Then $\sum_{i=1}^{n_1}\Lambda_{ij}^1>$ 0, so that at least one of the constraints associated with Λ_{ij}^1 must bind for each j. Let i(j)denote the index of one of the binding constraints (picked arbitrarily if it is not unique), so that $r_j = m_{i(j)+n_0} + ||x_{i(j)+n_0} - x_j||_{\mathcal{X}}$. Suppose (28) didn't hold, so that for some $j, j' \in \{1, \dots, n_0\}$, $r_j > r_{j'} + ||x_j - x_{j'}||_{\mathcal{X}}$. Then by triangle inequality

$$r_{j} > r_{j'} + \|x_{j} - x_{j'}\|_{\mathcal{X}} = m_{i(j') + n_0} + \|x_{i(j') + n_0} - x_{j'}\|_{\mathcal{X}} + \|x_{j} - x_{j'}\|_{\mathcal{X}} \ge m_{i(j') + n_0} + \|x_{i(j') + n_0} - x_{j}\|_{\mathcal{X}},$$

which violates the constraint associated with $\Lambda^1_{i(j')j}$. Next, if (29) didn't hold, so that for some $i, i' \in \{1, \dots, n_1\}, m_{i+n_0} > m_{i'+n_0} + ||x_{i+n_0} - x_{i'+n_0}||_{\mathcal{X}}, \text{ then for all } j \in \{1, \dots, n_0\},$

$$r_j \leq m_{i'+n_0} + \|x_{i'+n_0} - x_j\|_{\mathcal{X}} \leq m_{i'+n_0} + \|x_{i'+n_0} - x_{i+n_0}\|_{\mathcal{X}} + \|x_{i+n_0} - x_j\|_{\mathcal{X}} < m_{i+n_0} + \|x_{i+n_0} - x_j\|_{\mathcal{X}},$$

The complementary slackness condition $\Lambda_{ij}^1(r_j - m_{i+n_0} - \|x_{i+n_0} - x_j\|_{\mathcal{X}}) = 0$ then implies that $\sum_{i} \Lambda_{ij}^{1} = 0$, and it follows from the first-order condition that $m_{i+n_0}/\sigma^2(1) = \mu w(1) \le m_{i'+n_0}/\sigma^2(1)$, which contradicts the assertion that $m_{i+n_0} > m_{i'+n_0} + ||x_{i+n_0} - x_{i'+n_0}||_{\mathcal{X}}$. Finally, if (30) didn't hold, so that $m_{i+n_0} > r_j + ||x_{i+n_0} - x_j||_{\mathcal{X}}$ for some $i \in \{1, ..., n_1\}$ and $j \in \{1, ..., n_0\}$, then by triangle inequality

$$m_{i+n_0} > r_j + ||x_{i+n_0} - x_j||_{\mathcal{X}} = m_{i(j)} + ||x_{i(j)+n_0} - x_j||_{\mathcal{X}} + ||x_{i+n_0} - x_j||_{\mathcal{X}} \ge m_{i(j)} + ||x_{i(j)+n_0} - x_{i+n_0}||_{\mathcal{X}},$$

which contradicts (29).

D.3Derivation of algorithm for solution path

Observe that $\Lambda_{ij}^0 = 0$ unless for some $k, i \in \mathcal{R}_k^0$ and $j \in \mathcal{M}_k^0$, and similarly $\Lambda_{ij}^1 = 0$ unless for some $k, j \in \mathcal{R}_k^1$ and $i \in \mathcal{M}_k^1$. Therefore, the first-order conditions (S4) and (S5) can equivalently be written as

$$m_j/\sigma^2(0) = \mu w(0) + \sum_{i \in \mathcal{R}_b^0} \Lambda_{ij}^0 \qquad j \in \mathcal{M}_k^0, \qquad \mu w(1) = \sum_{j \in \mathcal{M}_b^0} \Lambda_{ij}^0 \qquad i \in \mathcal{R}_k^0, \tag{S6}$$

$$m_{j}/\sigma^{2}(0) = \mu w(0) + \sum_{i \in \mathcal{R}_{k}^{0}} \Lambda_{ij}^{0} \qquad j \in \mathcal{M}_{k}^{0}, \qquad \mu w(1) = \sum_{j \in \mathcal{M}_{k}^{0}} \Lambda_{ij}^{0} \qquad i \in \mathcal{R}_{k}^{0},$$
 (S6)
$$m_{i+n_{0}}/\sigma^{2}(1) = \mu w(1) + \sum_{j \in \mathcal{R}_{k}^{1}} \Lambda_{ij}^{1} \qquad i \in \mathcal{M}_{k}^{1}, \qquad \mu w(0) = \sum_{i \in \mathcal{M}_{k}^{1}} \Lambda_{ij}^{1} \qquad j \in \mathcal{R}_{k}^{1}.$$
 (S7)

Summing up these conditions then yields

$$\sum_{j \in \mathcal{M}_{k}^{0}} m_{j} / \sigma^{2}(0) = \mu w(0) \cdot \# \mathcal{M}_{k}^{0} + \sum_{j \in \mathcal{M}_{k}^{0}} \sum_{i \in \mathcal{R}_{k}^{0}} \Lambda_{ij}^{0} = \# \mathcal{M}_{k}^{0} \cdot \mu w(0) + \# \mathcal{R}_{k}^{0} \cdot \mu w(1),$$

$$\sum_{i \in \mathcal{M}_{k}^{1}} m_{i+n_{0}} / \sigma^{2}(1) = \mu w(1) \cdot \# \mathcal{M}_{k}^{1} + \sum_{i \in \mathcal{M}_{k}^{1}} \sum_{j \in \mathcal{R}_{k}^{1}} \Lambda_{ij}^{1} = \# \mathcal{M}_{k}^{1} \cdot \mu w(1) + \# \mathcal{R}_{k}^{1} \cdot \mu w(0).$$

Following the argument in Osborne et al. (2000, Section 4), by continuity of the solution path, for a small enough perturbation s, $N^d(\mu + s) = N^d(\mu)$, so long as the elements of $\Lambda^d(\mu)$ associated with the active constraints are strictly positive. In other words, the set of active constraints doesn't change for small enough changes in μ . Hence, the partition \mathcal{M}_k^d remains the same for small enough changes in μ and the solution path is differentiable. Differentiating the preceding display yields

$$\frac{1}{\sigma^2(0)} \sum_{j \in \mathcal{M}_k^0} \frac{\partial m_j(\mu)}{\partial \mu} = \# \mathcal{M}_k^0 \cdot w(0) + \# \mathcal{R}_k^0 \cdot w(1),$$

$$\frac{1}{\sigma^2(1)} \sum_{i \in \mathcal{M}_k^1} \frac{\partial m_{i+n_0}(\mu)}{\partial \mu} = \# \mathcal{M}_k^1 \cdot w(1) + \# \mathcal{R}_k^1 \cdot w(0).$$

If $j \in \mathcal{M}_k^0$, then there exists a j' and i such that the constraints associated with Λ_{ij}^0 and $\Lambda_{ij'}^0$ are both active, so that $m_j + \|x_{i+n_0} - x_j\|_{\mathcal{X}} = r_{i+n_0} = m_{j'} + \|x_{i+n_0} - x_{j'}\|_{\mathcal{X}}$, which implies that $\partial m_j(\mu)/\partial \mu = \partial m_{j'}(\mu)/\partial \mu$. Since all elements in \mathcal{M}_k^0 are connected, it follows that the derivative $\partial m_j(\mu)/\partial \mu$ is the same for all j in \mathcal{M}_k^0 . Similarly, $\partial m_j(\mu)/\partial \mu$ is the same for all j in \mathcal{M}_k^1 . Combining these observations with the preceding display implies

$$\frac{1}{\sigma^2(0)} \frac{\partial m_j(\mu)}{\partial \mu} = w(0) + \frac{\# \mathcal{R}_{k(j)}^0}{\# \mathcal{M}_{k(j)}^0} w(1), \qquad \frac{1}{\sigma^2(1)} \frac{\partial m_{i+n_0}(\mu)}{\partial \mu} = w(1) + \frac{\# \mathcal{R}_{k(i)}^1}{\# \mathcal{M}_{k(i)}^1} w(0),$$

where k(i) and k(j) are the partitions that i and j belong to. Differentiating the first-order conditions (S6) and (S7) and combining them with the restriction that $\partial \Lambda_{ij}^d(\mu)/\partial \mu = 0$ if $N_{ij}^d(\mu) = 0$ then yields the following set of linear equations for $\partial \Lambda^d(\mu)/\partial \mu$:

$$\frac{\#\mathcal{R}_k^0}{\#\mathcal{M}_k^0}w(1) = \sum_{i \in \mathcal{R}_k^0} \frac{\partial \Lambda_{ij}^0(\mu)}{\partial \mu}, \qquad w(1) = \sum_{j \in \mathcal{M}_k^0} \frac{\partial \Lambda_{ij}^0(\mu)}{\partial \mu},$$

$$\frac{\#\mathcal{R}_k^1}{\#\mathcal{M}_k^1}w(0) = \sum_{j \in \mathcal{R}_k^1} \frac{\partial \Lambda_{ij}^1(\mu)}{\partial \mu}, \qquad w(0) = \sum_{i \in \mathcal{M}_k^1} \frac{\partial \Lambda_{ij}^1(\mu)}{\partial \mu}, \qquad \frac{\partial \Lambda_{ij}^d(\mu)}{\partial \mu} = 0 \quad \text{if } N_{ij}^d(\mu) = 0.$$

Therefore, $m(\mu)$, $\Lambda^0(\mu)$, and $\Lambda^1(\mu)$ are all piecewise linear in μ . Furthermore, since for $i \in \mathcal{R}_k^0$, $r_{i+n_0}(\mu) = m_j(\mu) + ||x_{i+n_0} - x_j||_{\mathcal{X}}$ where $j \in \mathcal{M}_k^0$, it follows that

$$\frac{\partial r_{i+n_0}(\mu)}{\partial \mu} = \frac{\partial m_j(\mu)}{\partial \mu} = \sigma^2(0) \left[w(0) + \frac{\# \mathcal{R}_k^0}{\# \mathcal{M}_k^0} w(1) \right].$$

Similarly, since for $j \in \mathcal{R}_k^1$, and $i \in \mathcal{M}_k^1$ $r_j(\mu) = m_{i+n_0}(\mu) + ||x_{i+n_0} - x_j||_{\mathcal{X}}$, where $j \in \mathcal{M}_k^0$, we have

$$\frac{\partial r_j(\mu)}{\partial \mu} = \frac{\partial m_{i+n_0}(\mu)}{\partial \mu} = \sigma^2(1) \left[w(1) + \frac{\# \mathcal{R}_k^1}{\# \mathcal{M}_k^1} w(0) \right].$$

Thus, $r(\mu)$ is also piecewise linear in μ .

Differentiability of m and Λ^d is violated if the condition that the elements of Λ^d associated with the active constraints are all strictly positive is violated. This happens if one of the non-zero elements of $\Lambda^d(\mu)$ decreases to zero, or else if a non-active constraint becomes active, so that for some i and j with $N_{ij}^0(\mu) = 0$, $r_{i+n_0}(\mu) = m_j(\mu) + ||x_{i+n_0} - x_j||_{\mathcal{X}}$, or for some i and j with $N_{ij}^1(\mu) = 0$, $r_j(\mu) = m_{i+n_0}(\mu) + ||x_{i+n_0} - x_j||_{\mathcal{X}}$. This determines the step size s in the algorithm.

D.4 Proof of Lemma B.2

For ease of notation, let $f_i = f(x_i, d_i)$, $\sigma_i^2 = \sigma^2(x_i, d_i)$, and let $\overline{f}_i = J^{-1} \sum_{j=1}^J f_{\ell_j(i)}$ and $\overline{u}_i = J^{-1} \sum_{j=1}^J u_{\ell_j(i)}$. Then we can decompose

$$\begin{split} \frac{J+1}{J}(\hat{u}_i^2 - u_i^2) &= [f_i - \overline{f}_i + u_i - \overline{u}_i]^2 - \frac{J+1}{J}u_i^2 \\ &= [(f_i - \overline{f}_i)^2 + 2(u_i - \overline{u}_i)(f_i - \overline{f}_i)] - 2\overline{u}_i u_i + \frac{2}{J^2} \sum_{j=1}^J \sum_{k=1}^{j-1} u_{\ell_j(i)} u_{\ell_k(i)} + \frac{1}{J^2} \sum_{j=1}^J (u_{\ell_j(i)}^2 - u_i^2) \\ &= T_{1i} + 2T_{2i} + 2T_{3i} + T_{4i} + T_{5i} + \frac{1}{J^2} \sum_{j=1}^J (\sigma_{\ell_j(i)}^2 - \sigma_i^2), \end{split}$$

where

$$T_{1i} = [(f_i - \overline{f}_i)^2 + 2(u_i - \overline{u}_i)(f_i - \overline{f}_i)], \qquad T_{2i} = \overline{u}_i u_i$$

$$T_{3i} = \frac{1}{J^2} \sum_{j=1}^{J} \sum_{k=1}^{j-1} u_{\ell_j(i)} u_{\ell_k(i)}, \qquad T_{4i} = \frac{1}{J^2} \sum_{j=1}^{J} (u_{\ell_j(i)}^2 - \sigma_{\ell_j(i)}^2), \qquad T_{5i} = \sigma_i^2 - u_i^2.$$

Since $\max_i ||x_{\ell_J(i)} - x_i|| \to 0$ and since $\sigma^2(\cdot, d)$ is uniformly continuous, it follows that

$$\max_{i} \max_{1 \le j \le J} |\sigma_{\ell_j(i)}^2 - \sigma_i^2| \to 0,$$

and hence that $|\sum_{i=1}^n a_{ni}J^{-1}\sum_{j=1}^J (\sigma_{\ell_j(i)}^2 - \sigma_i^2)| \le \max_i \max_{j=1,\dots,J} (\sigma_{\ell_j(i)}^2 - \sigma_i^2)\sum_{i=1}^n a_{ni} \to 0$. To prove the lemma, it therefore suffices to show that the sums $\sum_{i=1}^n a_{ni}T_{qi}$ all converge to zero.

To that end,

$$E\left|\sum_{i} a_{ni} T_{1i}\right| \leq \max_{i} (f_i - \overline{f}_i)^2 \sum_{i} a_{ni} + 2 \max_{i} |f_i - \overline{f}_i| \sum_{i} a_{ni} E|u_i - \overline{u}_i|,$$

which converges to zero since $\max_i |f_i - \overline{f}_i| \le \max_i \max_{j=1,\dots,J} (f_i - f_{\ell_j(i)}) \le C_n \max_i ||x_i - x_{\ell_J(i)}||_{\mathcal{X}} \to C_n$

0. Next, by the von Bahr-Esseen inequality,

$$E\left|\sum_{i=1}^{n} a_{ni} T_{5i}\right|^{1+1/2K} \le 2 \sum_{i=1}^{n} a_{ni}^{1+1/2K} E\left|T_{5i}\right|^{1+1/2K} \le 2 \max_{i} a_{ni}^{1/2K} \max_{j} E\left|T_{5j}\right|^{1+1/2K} \sum_{k=1}^{n} a_{nk} \to 0.$$

Let \mathcal{I}_j denote the set of observations for which an observation j is used as a match. To show that the remaining terms converge to zero, let we use the fact $\#\mathcal{I}_j$ is bounded by $J\overline{L}$, where \overline{L} is the kissing number, defined as the maximum number of non-overlapping unit balls that can be arranged such that they each touch a common unit ball (Miller et al., 1997, Lemma 3.2.1; see also Abadie and Imbens, 2008). \overline{L} is a finite constant that depends only on the dimension of the covariates (for example, $\overline{L} = 2$ if dim $(x_i) = 1$). Now,

$$\sum_{i} a_{ni} T_{4i} = \frac{1}{J^2} \sum_{j=1}^{n} (u_j - \sigma_j^2) \sum_{i \in \mathcal{I}_i} a_{ni},$$

and so by the von Bahr-Esseen inequality,

$$E\left|\sum_{i} a_{ni} T_{4i}\right|^{1+1/2K} \leq \frac{2}{J^{2+1/K}} \sum_{j=1}^{n} E\left|u_{j} - \sigma_{j}^{2}\right|^{1+1/2K} \left(\sum_{i \in \mathcal{I}_{j}} a_{ni}\right)^{1+1/2K}$$

$$\leq \frac{(J\overline{L})^{1/2K}}{J^{2+1/K}} \max_{k} E\left|u_{k} - \sigma_{k}^{2}\right|^{1+1/2K} \max_{i} a_{ni}^{1+1/2K} \sum_{j=1}^{n} \sum_{i \in \mathcal{T}_{i}} a_{ni},$$

which is bounded by a constant times $\max_i a_{ni}^{1+1/2K} \sum_{j=1}^n \sum_{i \in \mathcal{I}_j} a_{ni} = \max_i a_{ni}^{1+1/2K} J \sum_i a_{ni} \to 0$. Next, since $E[u_i u_{i'} u_{\ell_j(i)} u_{\ell_k(i')}]$ is non-zero only if either i = i' and $\ell_j(i) = \ell_k(i')$, or else if $i = \ell_k(i')$ and $i' = \ell_j(i)$, we have $\sum_{i'=1}^n a_{ni'} E[u_i u_{i'} u_{\ell_j(i)} u_{\ell_k(i')}] \leq \max_{i'} a_{ni'} \left(\sigma_i^2 \sigma_{\ell_j(i)}^2 + \sigma_{\ell_j(i)}^2 \sigma_i^2\right)$, so that

$$\operatorname{var}(\sum_{i} a_{ni} T_{2i}) = \frac{1}{J^2} \sum_{i,j,k,i'} a_{ni} a_{ni'} E[u_i u_{\ell_k(i')} u_{i'} u_{\ell_j(i)}] \le 2K^2 \max_{i'} a_{ni'} \sum_{i} a_{ni} \to 0.$$

Similarly for $j \neq k$ and $j' \neq k$, $\sum_{i'=1}^{n} a_{ni'} E[u_{\ell_j(i)} u_{\ell_k(i)} u_{\ell_{j'}(i')} u_{\ell_{k'}(i')}] \leq \max_{i'} 2\sigma_{\ell_j(i)}^2 \sigma_{\ell_k(i)}^2$, so that

$$\operatorname{var}\left(\sum_{i} a_{ni} T_{3i}\right)$$

$$= \frac{1}{J^4} \sum_{i \ i' \ i \ i'} \sum_{k=1}^{j-1} \sum_{k'=1}^{j'-1} a_{ni} a_{ni'} E[u_{\ell_j(i)} u_{\ell_k(i)} u_{\ell_{j'}(i')} u_{\ell_{k'}(i')}] \leq 2K^2 \max_{i'} a_{ni'} \sum_{i} a_{ni} \to 0.$$

References

- ABADIE, A. AND G. W. IMBENS (2008): "Estimation of the Conditional Variance in Paired Experiments," Annales d'Économie et de Statistique, 175–187.
- MILLER, G. L., S.-H. TENG, W. THURSTON, AND S. A. VAVASIS (1997): "Separators for Sphere-Packings and Nearest Neighbor Graphs," *Journal of the ACM*, 44, 1–29.
- OSBORNE, M. R., B. PRESNELL, AND B. A. TURLACH (2000): "A New Approach to Variable Selection in Least Squares Problems," *IMA Journal of Numerical Analysis*, 20, 389–404.