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Appendix B Verification of regularity conditions in ex-

amples

We verify the conditions (1), (8) and (10) in some applications.

B.1 Gaussian white noise model

The approximation (8) holds as an exact equality (i.e. with the o(1) term equal to zero) in

the Gaussian white noise model whenever the problem renormalizes in the sense of Donoho

and Low (1992). We show this below, using notation taken mostly from that paper. Consider

a Gaussian white noise model

Y (dt) = (Kf)(t) dt+ (σ/
√
n)W (dt), t ∈ Rd.

∗email: timothy.armstrong@yale.edu
†email: mkolesar@princeton.edu
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We are interested in estimating the linear functional T (f) where f is known to be in the

class F = {f : J2(f) ≤ C} where J2(f) : F → R and C ∈ R are given. Let Ua,b denote

the renormalization operator Ua,bf(t) = af(bt). Suppose that T , J2, and the inner product

are homogeneous: T (Ua,bf) = abs0T (f), J2(Ua,bf) = abs2J2(f) and 〈KUa1,bf,KUa2,bg〉 =

a1a2b
2s1〈Kf,Kg〉. These are the same conditions as in Donoho and Low (1992) except for

the last one, which is slightly stronger since it must hold for the inner product rather than

just the norm.

Consider the class of linear estimators based on a given kernel k:

T̂ (h; k) = hsh
∫

(Kk(·/h))(t) dY (t) = hsh
∫

[KU1,h−1k](t) dY (t)

for some exponent sh to be determined below. The worst-case bias of this estimator is

bias(T̂ (h; k)) = sup
J2(f)≤C

|T (f)− hsh〈Kk(·/h), Kf〉| .

Note that J2(f) ≤ C iff. f = Uhs2 ,h−1 f̃ for some f̃ with J2(f̃) = J2(Uh−s2 ,hf) = J2(f) ≤ C.

This gives

bias(T̂ (h; k)) = sup
J2(f)≤C

|T (Uhs2 ,h−1f)− hsh〈Kk(·/h), KUhs2 ,h−1f〉|

= sup
J2(f)≤C

∣∣hs2−s0T (f)− hsh+s2−2s1〈Kk(·), Kf〉
∣∣ .

If we set sh = −s0 + 2s1 so that s2− s0 = sh + s2− 2s1, the problem will renormalize, giving

bias(T̂ (h; k)) = hs2−s0 bias(T̂ (1; k)).
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The variance does not depend on f and is given by

varf (T̂ (h; k)) = h2sh(σ2/n)〈KU1,h−1k,KU1,h−1k〉 = h2sh−2s1(σ2/n)〈Kk,Kk〉

= h−2s0+2s1(σ2/n)〈Kk,Kk〉.

Thus, Equation (1) holds with γb = s2 − s0, γs = s1 − s0,

B(k) = bias(T̂ (1; k)) = sup
J2(f)≤C

|T (f)− 〈Kk,Kf〉| ,

and S(k) = σ‖Kk‖ and with both o(1) terms equal to zero. This implies that (8) holds with

the o(1) term equal to zero, since the estimator is normally distributed.

B.2 Local polynomial estimators in fixed design regression

This section proves Theorem 3.1 and Equation (13) in Section 3.

We begin by deriving the worst-case bias of a general linear estimator

T̂ =
n∑
i=1

w(xi)yi

under Hölder and Taylor classes. For both FT,p(M) and FHöl,p(M) the worst-case bias is

infinite unless
∑n

i=1w(xi) = 1 and
∑n

i=1w(xi)x
j = 0 for j = 1, . . . , p−1, so let us assume that

w(·) satisfies these conditions. For f ∈ FT,p(M), we can write f(x) =
∑p−1

j=0 x
jf (j)(0)/j!+r(x)

with |r(x)| ≤M |x|p/p!. As noted by Sacks and Ylvisaker (1978), this gives the bias under f

as
∑n

i=1w(xi)r(xi), which is maximized at r(x) = M sign(w(x))|x|p/p!, giving biasFT,p
(T̂ ) =∑n

i=1M |w(xi)x|p/p!.

For f ∈ FHöl,p(M), the (p− 1)th derivative is Lipschitz and hence absolutely continuous.

Furthermore, since
∑n

i=1w(xi) = 1 and
∑n

i=1w(xi)x
j = 0, the bias at f is the same as

the bias at x 7→ f(x)−
∑p−1

j=0 x
jf (j)(0)/j!, so we can assume without loss of generality that

f(0) = f ′(0) = · · · = f (p−1)(0). This allows us to apply the following lemma.
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Lemma B.1. Let ν be a finite measure on R (with the Lebesgue σ-algebra) with finite support

and and let w : R→ R be a bounded measurable function with finite support. Let f be p− 1

times differentiable with bounded pth derivative on a set of Lebesgue measure 1 and with

f(0) = f ′(0) = f ′′(0) = · · · = f (p−1)(0) = 0. Then

∫ ∞
0

w(x)f(x) dν(x) =

∫ ∞
s=0

w̄p,ν(s)f
(p)(s) ds

and ∫ 0

−∞
w(x)f(x) dν(x) =

∫ 0

s=−∞
w̄p,ν(s)f

(p)(s) ds

where

w̄p,ν(s) =


∫∞
x=s

w(x)(x−s)p−1

(p−1)! dν(x) s ≥ 0∫ s
x=−∞

w(x)(x−s)p−1(−1)p
(p−1)! dν(x) s < 0.

Proof. By the Fundamental Theorem of Calculus and the fact that the first p−1 derivatives

at 0 are 0, we have, for x > 0,

f(x) =

∫ x

t1=0

∫ t1

t2=0

· · ·
∫ tp−1

tp=0

f (p)(tp) dtp · · · dt2dt1 =

∫ x

s=0

f (p)(s)(x− s)p−1

(p− 1)!
ds.

Thus, by Fubini’s Theorem,

∫ ∞
x=0

w(x)f(x) dν(x) =

∫ ∞
x=0

w(x)

∫ x

s=0

f (p)(s)(x− s)p−1

(p− 1)!
dsdν(x)

=

∫ ∞
s=0

f (p)(s)

∫ ∞
x=s

w(x)(x− s)p−1

(p− 1)!
dν(x)ds

which gives the first display in the lemma. The second display in the lemma follows from

applying the first display with f(−x), w(−x) and ν(−x) playing the roles of f(x), w(x) and

ν(x).

Applying Lemma B.1 with ν given by the counting measure that places mass 1 on

each of the xi’s (ν(A) = #{i : xi ∈ A}), it follows that the bias under f is given by
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∫
w(x)f(x) dν =

∫
w̄p,ν(s)f

(p)(s) ds. This is maximized over f ∈ FHöl,p(M) by taking

f (p)(s) = M sign(w̄p,ν(s)), which gives biasFHöl,p(M)(T̂ ) =
∫
|w̄p,ν(s)| ds.

We collect these results in the following theorem.

Theorem B.1. For a linear estimator T̂ =
∑n

i=1w(xi)yi such that
∑n

i=1w(xi) = 1 and∑n
i=1w(xi)x

j = 0 for j = 1, . . . , p− 1,

biasFT,p(M)(T̂ ) =
n∑
i=1

M |w(xi)x|p/p! and biasFHöl,p(M)(T̂ ) =

∫
|w̄p,ν(s)| ds

where w̄p,ν(s) is as defined in Lemma B.1 with ν given by the counting measure that places

mass 1 on each of the xi’s.

Note that, for t > 0 and any q,

∫ ∞
s=t

wq,ν(s) ds =

∫ ∞
s=t

∫ ∞
x=s

w(x)(x− s)q−1

(q − 1)!
dν(x)ds =

∫ ∞
x=t

∫ x

s=t

w(x)(x− s)q−1

(q − 1)!
dsdν(x)

=

∫ ∞
x=t

w(x)

[
−(x− s)q

q!

]x
s=t

dν(x) =

∫ ∞
x=t

w(x)(x− t)q

q!
dν(x) = w̄q+1,ν(t).

(S1)

Let us define w̄0,ν(x) = w(x), so that this holds for q = 0 as well.

For the boundary case with p = 2, the bias is given by (using the fact that the support

of ν is contained in [0,∞))

∫ ∞
0

w(x)f(x) dν(x) =

∫ ∞
0

w̄2,ν(x)f (2)(x) dx where w̄2,ν(s) =

∫ ∞
x=s

w(x)(x− s) dν(x).

For a local linear estimator based on a kernel with nonnegative weights and support [−A,A],

the equivalent kernel w(x) is positive at x = 0 and negative at x = A and changes signs

once. From (S1), it follows that, for some 0 ≤ b ≤ A, w̄1,ν(x) is negative for x > b and

nonnegative for x < b. Applying (S1) again, this also holds for w̄2,ν(x). Thus, if w̄2,ν(s̃)

were strictly positive for any s̃ > 0, we would have to have w̄2,ν(s) nonnegative for s ∈ [0, s̃].
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Since w̄2,ν(0) =
∑n

i=1w(xi)xi = 0, we have

0 < w̄2,ν(0)− w̄2,ν(s̃) = −
∫ s̃

x=0

w(x)(x− s̃) dν(x)

which implies that
∫ s
x=s

w(x)dν(x) < 0 for some 0 ≤ s < s < s̃. Since w(x) is positive

for small enough x and changes signs only once, this means that, for some s∗ ≤ s̃, we have

w(x) ≥ 0 for 0 ≤ x ≤ s∗ and
∫ s∗
x=0

w(x)dν(x) > 0. But this is a contradiction, since it means

that w̄2,ν(s
∗) = −

∫ s∗
0
w(x)(x − s∗) dν(x) < 0. Thus, w̄2,ν(s) is weakly negative for all s,

which implies that the bias is maximized at f(x) = −(M/2)x2.

We now provide a proof for Theorem 3.1 by proving the result for a more general sequence

of estimators of the form

T̂ =
1

nh

n∑
i=1

k̃n(xi/h)yi,

where k̃n satisfies 1
nh

∑n
i=1 k̃n(xi/h) = 1 and 1

nh

∑n
i=1 k̃n(xi/h)xji = 0 for j = 1, . . . , p− 1. We

further assume

Assumption B.1. The support and magnitude of k̃n are bounded uniformly over n, and,

for some k̃, supu∈R |k̃n(u)− k̃(u)| → 0.

Theorem B.2. Suppose Assumptions 3.1 and B.1 hold. Then for any bandwidth sequence

hn such that lim infn hnn
1/(2p+1) > 0, and lim supn hnn

1/(2p+1) <∞.

biasFT,p(M)(T̂ ) =
Mhpn
p!
B̃T
p (k̃)(1 + o(1)), B̃T

p (k̃) = d

∫
X
|upk̃(u)| du

and

biasFHöl,p(M)(T̂ ) =
Mhpn
p!
B̃Höl
p (k̃)(1 + o(1)),

B̃Höl
p (k̃) = dp

∫ ∞
t=0

∣∣∣∣∫
u∈X ,|u|≥t

k̃(u)(|u| − t)p−1 du
∣∣∣∣ dt.
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If Assumption 3.2 holds as well, then

sd(T̂ ) = h−1/2n n−1/2S(k̃)(1 + o(1)),

where S(k̃) = d1/2σ(0)
√∫

X k̃(u)2 du, and (8) holds for the RMSE, FLCI and OCI perfor-

mance criteria with γb = p and γs = −1/2.

Proof. Let Ks denote the bound on the support of k̃n, and Km denote the bound on the

magnitude of k̃n.

The first result for Taylor classes follows immediately since

biasFT,p(M)(T̂ ) =
M

p!
hp

1

nh

n∑
i=1

|k̃n(xi/h)||xi/h|p =

(
M

p!
hpd

∫
X
|k̃(u)||u|p du

)
(1 + o(1))

where the first equality follows from Theorem B.1 and the second equality follows from the

fact that for any function g(u) that is bounded over u in compact sets,

∣∣∣∣∣ 1

nh

n∑
i=1

k̃n(xi/h)g(xi/h)− d
∫
X
k(u)g(u) du

∣∣∣∣∣
≤

∣∣∣∣∣ 1

nh

n∑
i=1

k̃(xi/h)g(xi/h)− d
∫
X
k(u)g(u) du

∣∣∣∣∣+
1

nh

n∑
i=1

∣∣∣k̃n(xi/h)g(xi/h)− k̃(xi/h)g(xi/h)
∣∣∣

≤ o(1) +
1

nh

n∑
i=1

I(|xi/h| ≤ Ks) sup
u∈[−Ks,Ks]

|g(u)| · sup
u∈[−Ks,Ks]

|k̃n(u)− k̃(u)| = o(1), (S2)

where the second line follows by triangle inequality, the third line by Assumption 3.1 applied

to the first summand, and the last equality follows by Assumption 3.1 applied to the first

term, and Assumption B.1 applied to the last term.

For Hölder classes,

biasFHöl,p(M)(T̂ (h; k̃n)) = M

∫
|w̄p,ν(s)| ds

by Theorem B.1 where w̄p,ν is as defined in that theorem with w(x) = 1
nh
k̃n(x/h). We have,
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for s > 0,

w̄p,ν(s) =

∫
x≥s

1
nh
k̃n(x/h)(x− s)p−1

(p− 1)!
dν(x) =

1

nh

n∑
i=1

k̃n(xi/h)(xi − s)p−1

(p− 1)!
I(xi ≥ s)

= hp−1
1

nh

n∑
i=1

k̃n(xi/h)(xi/h− s/h)p−1

(p− 1)!
I(xi/h ≥ s/h).

Thus, by Equation (S2), for t ≥ 0, h−(p−1)w̄p,ν(t · h)→ d · w̄p(t), where

w̄p(t) =

∫
u≥t

k̃(u)(u− t)p−1

(p− 1)!
du

(i.e. w̄p(t) denotes w̄p,ν(t) when w = k̃ and ν is the Lebesgue measure). Furthermore,

|h−(p−1)w̄p,ν(t · h)| ≤

[
Km

nh

n∑
i=1

I(0 ≤ xi/h ≤ Ks)(xi/h)p−1

(p− 1)!

]
· I(t ≤ Ks) ≤ K1 · I(t ≤ Ks),

where the last inequality holds for some K1 by Assumption 3.1. Thus,

M

∫
s≥0
|w̄p,ν(s)| ds = hpM

∫
t≥0
|h−(p−1)w̄p,ν(t · h)| dt = hpM

[
d

∫
t≥0
|w̄p(t)| dt

]
(1 + o(1))

by the Dominated Convergence Theorem. Combining this with a symmetric argument for

t ≤ 0 gives the result.

For the second part of the theorem, the variance of T̂ doesn’t depend on f , and equals

var(T̂ ) =
1

n2h2

n∑
i=1

k̃n(xi/h)2σ2(xi) =
1

nh
S̃2
n, where S̃2

n =
1

nh

n∑
i=1

k̃n(xi/h)2σ2(xi).
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By the triangle inequality,

∣∣∣∣S̃2
n − dσ2(0)

∫
X
k̃(u)2 du

∣∣∣∣
≤ sup
|x|≤hKs

∣∣∣k̃n(x/h)2σ2(x)− k̃(x/h)2σ2(0)
∣∣∣ · 1

nh

n∑
i=1

I(|xi/h| ≤ Ks)

+ σ2(0)

∣∣∣∣∣ 1

nh

n∑
i=1

k̃(xi/h)2 − d
∫
X
k̃(u)2 du

∣∣∣∣∣ = o(1),

where the equality follows by Assumption 3.1 applied to the second summand and the second

term of the first summand, and Assumptions 3.2 and B.1 applied to the first term of the

first summand. This gives the second display in the theorem.

The last statement (verification of Equation (8)) follows immediately from continuity of

R̃ for these performance criteria, since T̂ is distributed normal with constant variance.

The local polynomial estimator takes the form given above with

k̃n(u) = e′1

(
1

nh

n∑
i=1

k(xi/h)mq(xi/h)mq(xi/h)′

)−1
mq(u)k(u).

If k is bounded with bounded support, then, under Assumption 3.1 this sequence satisfies

Assumption B.1 with

k̃(u) = e′1

(
d

∫
X
k(u)mq(u)mq(u)′ du

)−1
mq(u)k(u) = d−1k∗q(u),

where k∗q is the equivalent kernel defined in Equation (12). Theorem 3.1 and Equation (13)

then follow immediately by applying Theorem B.2 with this choice of k̃n and k̃.
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Appendix C Regression discontinuity with different band-

widths on either side of the cutoff

This appendix calculates the efficiency gain from using different bandwidths on either side

of the cutoff. We state a result in a more general setup than that considered in Section 4.

Consider estimating a parameter T (f), f ∈ F , using a class of estimators T̂ (h+, h−; k)

indexed by two bandwidths h− and h+. Suppose that the worst-case (over F) performance

of T̂ (h+, h−; k) according to a given criterion satisfies

R(T̂ (h+, h−; k)) = R̃(B(k)(hγb− + hγb+ ), n−1/2(S+(k)2h2γs+ + S−(k)2h2γs− )1/2)(1 + o(1)), (S3)

where R̃(b, s) denotes the value of the criterion when T̂ (h+, h−; k) − T (f) ∼ N(b, s2), and

S(k) > 0 and B(k) > 0. Assume that R̃ scales linearly with its arguments.

In the RD application considered in Section C, if Assumptions 3.1 holds, ui is normally

distributed, and σ2
+(x) and σ2

−(0) are right- and left-continuous at 0, then Condition (S3)

holds with γs = −1/2, γb = 2, S+(k) = σ2
+(0)

∫∞
0
k∗1(u)2 du/d, S−(k) = σ2

−(0)
∫∞
0
k∗1(u)2 du/d,

and B(k) = −M
∫∞
0
u2k∗1(u)du/2.

Let ρ = h+/h− denote the ratio of the bandwidths, and let t denote the ratio of the

leading worst-case bias and standard deviation terms,

t =
B(k)(hγb− + hγb+ )

n−1/2(S+(k)2h2γs+ + S−(k)2h2γs− )1/2
= hγb−γs−

B(k)(1 + ργb)

n−1/2(S+(k)2ρ2γs + S−(k)2)1/2
.

Substituting h+ = ρh− and h− = (tn−1/2(S+(k)2ρ2γs + S−(k)2)1/2B(k)−1(1 + ργb)−1)1/(γb−γs)

into (S3) and using linearity of R̃ gives

R(T̂ (h+, h−; k)) = R̃(B(k)hγb− (1 + ργb), hγs− n
−1/2(S+(k)2ρ2γs + S−(k)2)1/2)(1 + o(1))

= n−r/2(1 + ς(k)2ρ2γs)r/2 (1 + ργb)1−r S−(k)rB(k)1−rR̃(t, 1)(1 + o(1)),
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where r = γb/(γb − γs) is the rate exponent, and ς(k) = S+(k)/S−(k) is the ratio of the

variance constants. Therefore, the optimal bias-sd ratio is given by t∗R = argmint>0 R̃(t, 1),

and depends only on the performance criterion. The optimal bandwidth ratio ρ is given by

ρ∗ = argmin
ρ

(1 + ς(k)2ρ2γs)r/2 (1 + ργb)1−r = ς(k)
2

γb−2γs ,

and doesn’t depend on the performance criterion.

Consequently, inference that restricts the two bandwidths to be the same (i.e. restricting

ρ = 1) has asymptotic efficiency given by

lim
n→∞

minh+,h− R(T̂ (h+, h−; k))

minhR(T̂ (h; k))
=

(
(1 + ς(k)2ρ2γs∗ )γb/2 (1 + ργb∗ )−γs

(1 + ς(k)2)γb/22−γs

) 1
γb−γs

= 2r−1

(
1 + ς(k)

2r
2−r

)1−r/2
(1 + ς(k)2)r/2

.

In the RD application in Section 4, ς(k) = σ+(0)/σ−(0), and r = 4/5. The display above

implies that the efficiency of restricting the bandwidths to be the same on either side of the

cutoff is at least 99.0% if 2/3 ≤ σ+/σ− ≤ 3/2, and the efficiency is still 94.5% when the ratio

of standard deviations equals 3. There is therefore little gain from allowing the bandwidths

to be different.

Appendix D Optimal kernels for inference at a point

Here we give details of optimal kernel calculations discussed in Section 3.1 in the main text.

The optimal equivalent kernel under the Taylor class FT,p(M) solves Equation 15 in the

main text. The solution is given by

kSY,p(u) =
(
b+

∑p−1
j=1 αju

j − |u|p
)
+
−
(
b+

∑p−1
j=1 αju

j + |u|p
)
−
,
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the coefficients b and α solving

∫
X
ujkSY,p(u) du = 0, j = 1, . . . , p− 1,∫
X
kSY,p(u) du = 1.

For p = 1, the triangular kernel kTri(u) = (1−|u|)+ is optimal both in the interior and on the

boundary. In the interior for p = 2, α1 = 0 solves the problem, yielding the Epanechnikov

kernel kEpa(u) = 3
4
(1−u2)+ after rescaling. For other cases, the solution can be easily found

numerically. Figure S1 plots the optimal equivalent kernels for p = 2, 3, and 4, rescaled to

be supported on [0, 1] and [−1, 1] in the boundary and interior case, respectively.

The optimal equivalent kernel under the Hölder class FHöl,2(M) has the form of a quadratic

spline with infinite number of knots on a compact interval. In particular, in the interior, the

optimal kernel is given by f Int
Höl,2(u)/

∫∞
−∞ f

Int
Höl,2(u) du, where

f Int
Höl,2(u) = 1− 1

2
x2 +

∞∑
j=0

(−1)j(|x| − kj)2+,

and the knots kj are given by kj = (1+q)1/2

1−q1/2 (2 − qj/2 − q(j+1)/2), where q is a constant q =

(3 +
√

33−
√

26 + 6
√

33)2/16.

At the boundary, the optimal kernel is given by fBd
Höl,2(u)/

∫∞
−∞ f

Bd
Höl,2(u) du, where

fBd
Höl,2(u) = (1− x0x+ x2/2)1(0 ≤ x ≤ x0) + (1− x20)f Int

Höl,2((x− x0)/(x20 − 1))1(x > x0),

with x0 ≈ 1.49969, so that for x > x0, the optimal boundary kernel is given by a rescaled

version of the optimal interior kernel. The optimal kernels are plotted in Figure S2.
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BT
p,q(k) =

∫ 1

0
|upk∗q(u)| du BHöl

p,q (k)

Kernel (k(u)) q
∫ 1

0
k∗q(u)2 du p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

1(|u| ≤ 1)

0 1 1
2

1
2

1 4 16
27

59
162

8
27

1
6

2 9 0.7055 0.4374 0.3294 0.2352 216
3125

1
20

Triangular

(1− |u|)+

0 4
3

1
3

1
3

1 24
5

3
8

3
16

27
128

1
10

2 72
7

0.4293 0.2147 0.1400 0.1699 32
729

1
35

Epanechnikov
3
4
(1− u2)+

0 6
5

3
8

3
8

1 4.498 0.4382 0.2290 0.2369 11
95

2 9.816 0.5079 0.2662 0.1777 0.1913 0.0508 15
448

Table S1: Kernel constants for standard deviation and maximum bias of local polynomial
regression estimators of order q for selected kernels. Functional of interest is value of f at a
boundary point.

BT
p,q(k) =

∫ 1

−1|u
pk∗q(u)| du BHöl

p,q (k)

Kernel q
∫ 1

−1 k
∗
q(u)2 du p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

Uniform

1(|u| ≤ 1)

0 1
2

1
2

1
2

1 1
2

1
2

1
3

1
2

1
3

2 9
8

0.4875 0.2789 0.1975 0.2898 0.0859 1
16

Triangular

(1− |u|)+

0 2
3

1
3

1
3

1 2
3

1
3

1
6

1
3

1
6

2 456
343

0.3116 0.1399 0.0844 0.2103 0.0517 8
245

Epanechnikov
3
4
(1− u2)+

0 3
5

3
8

3
8

1 3
5

3
8

1
5

3
8

1
5

2 5
4

0.3603 0.1718 0.1067 0.2347 0.0604 5
128

Table S2: Kernel constants for standard deviation and maximum bias of local polynomial
regression estimators of order q for selected kernels. Functional of interest is value of f at
an interior point.
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Figure S1: Optimal equivalent kernels for Taylor class FT,p(M) on the boundary (left), and
in the interior (right), rescaled to be supported on [0, 1] on the boundary and [−1, 1] in the
interior.
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Figure S2: Optimal equivalent kernels for Hölder class FHöl,2(M) on the boundary (left),
and in the interior (right), rescaled to be supported on [0, 1] on the boundary and [−1, 1] in
the interior.
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