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Appendix B Verification of regularity conditions in ex-
amples

We verify the conditions (1), (8) and (10) in some applications.

B.1 Gaussian white noise model

The approximation (8) holds as an exact equality (i.e. with the o(1) term equal to zero) in
the Gaussian white noise model whenever the problem renormalizes in the sense of Donoho
and Low (1992). We show this below, using notation taken mostly from that paper. Consider

a Gaussian white noise model

Y (dt) = (Kf)(t)dt + (o/v/n)W(dt), tecR%

*email: timothy.armstrong@yale.edu
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We are interested in estimating the linear functional T'(f) where f is known to be in the
class F = {f: Jo(f) < C} where Jo(f) : F — R and C € R are given. Let U,; denote
the renormalization operator U, f(t) = af(bt). Suppose that T', Jo, and the inner product
are homogeneous: T'(Uypf) = ab®°T(f), Jo(Uapf) = ab?Jo(f) and (KU, pf, KUayp9) =
a1asb** (K f, Kg). These are the same conditions as in Donoho and Low (1992) except for
the last one, which is slightly stronger since it must hold for the inner product rather than
just the norm.

Consider the class of linear estimators based on a given kernel k:

~

T(h; k) = h° /(Kk(/h))(t) dY (t) = h° /[Kuljh_lk](t) dyY (t)
for some exponent s, to be determined below. The worst-case bias of this estimator is

bias(T(h; k) = s T(f) = h{(KK(/h), K1)

Note that Jo(f) < C iff. f = Upss -1 f for some f with Jo(f) = JoUy-nf) = Ja(f) < C.

This gives
bias(T'(h; k) = sup [T Uy pr f) — B (Kk(-/h), KUyss 1 f)]
J2(f)<C
= sup |hPTOT(f) — BT KE(), K f)]
J2(f)<C
If we set s;, = —sg + 2s1 so that sy — sg = s + s9 — 251, the problem will renormalize, giving

bias(T'(h; k)) = h*2~0 bias(T'(1; k).



The variance does not depend on f and is given by

var(T(h; k)) = h*r(o? In) (KU, -1k, KU, p-1k) = h**h 72 (0? /n)(Kk, Kk)

= h™20% 2162 In)(Kk, Kk).
Thus, Equation (1) holds with 7, = sy — sg, 75 = s1 — So,

B(k) = bias(T(1; k) = o T(f) — (KK, Kf)l,

and S(k) = o||Kk|| and with both o(1) terms equal to zero. This implies that (8) holds with

the o(1) term equal to zero, since the estimator is normally distributed.

B.2 Local polynomial estimators in fixed design regression

This section proves Theorem 3.1 and Equation (13) in Section 3.

We begin by deriving the worst-case bias of a general linear estimator

n

T = Z w(x;)y;

i=1

under Hélder and Taylor classes. For both Fr (M) and Fpep(M) the worst-case bias is
infinite unless Y, w(x;) = Land > w(z;)a? = 0for j =1,...,p—1, so let us assume that
w(-) satisfies these conditions. For f € Fr (M), we can write f(z) = Z?;(l) 27 £9(0)/§!4r(z)
with |r(x)| < M|z|P/p!. As noted by Sacks and Ylvisaker (1978), this gives the bias under f
as Y. w(x;)r(x;), which is maximized at r(x) = M sign(w(z))|z[?/p!, giving biasz, (T) =
S, Mlw(a:)al? /.

For f € Fusip(M), the (p — 1)th derivative is Lipschitz and hence absolutely continuous.
Furthermore, since Y7 w(z;) = 1 and Y1 w(z;)a? = 0, the bias at f is the same as
the bias at x — f(x) — Z?;é 27 fU)(0)/4!, so we can assume without loss of generality that

f(0) = f(0) = --- = f®=1(0). This allows us to apply the following lemma.



Lemma B.1. Let v be a finite measure on R (with the Lebesgue o-algebra) with finite support
and and let w: R — R be a bounded measurable function with finite support. Let f be p — 1

times differentiable with bounded pth derivative on a set of Lebesque measure 1 and with

f(0) = f(0) = f"(0) = --- = f*=D(0) = 0. Then

and

where

oo w(x)(z—s)P L
[, MO du(x) s>0

fs w(z)(z—s)P1(=1)P dy(x) s < 0.

T=—00 (p—1)!

Wy, (8) =

Proof. By the Fundamental Theorem of Calculus and the fact that the first p — 1 derivatives

at 0 are 0, we have, for x > 0,

T t1 tp—1 Z f(p) (8)(1' — S)p_l
= (») =
f(z) /t . /tFO /tp:o PO dt, - - dtydty /s:o s

Thus, by Fubini’s Theorem,

00 0o £ () (r — s)P!
/ w(x)f(x)du(x):/ w(x) fPs) ) dsdv(z)

=0 =0 5=0 (p—1)!
= /8_0 P (s) /x_s W(w();x__lil) dv(z)ds

which gives the first display in the lemma. The second display in the lemma follows from
applying the first display with f(—x), w(—x) and v(—=z) playing the roles of f(x), w(x) and
v(z). O

Applying Lemma B.1 with v given by the counting measure that places mass 1 on

each of the z;'s (V(A) = #{i: x; € A}), it follows that the bias under f is given by



[w(x)f(x)dv = [w,,(s)fP(s)ds. This is maximized over f € Fyus,(M) by taking
f®(s) = M sign(w,,(s)), which gives biasz,, (T) = [ @y (s)|ds.

We collect these results in the following theorem.

Theorem B.1. For a linear estimator T = Y1 w(z;)y; such that 3.1 w(z;) = 1 and

S w(z)a? =0 forj=1,...,p—1,

biasr, o (T) = Y Mlw(z:)zP/p!  and  Diasg,, ,an(T) = / [y, (5)| ds

i=1

where Wy, (s) is as defined in Lemma B.1 with v given by the counting measure that places

mass 1 on each of the xz;’s

Note that, for ¢ > 0 and any ¢,

/S Wy (s ds—/g t/x S xéq;__ls 1dl/<x>d8:/;: :t w(“/’();x_—li)q_l dsdv(z)
- [T [P v = [T )~ 0

q‘ s=t

Let us define wy, (z) = w(x), so that this holds for ¢ = 0 as well.
For the boundary case with p = 2, the bias is given by (using the fact that the support

of v is contained in [0, 00))

o0

/0 oow(:v)f(x)du(x): /O oowz,,(x)f(?)(x)dx where 10, (s) = / w(z)(z — ) dv(z).

=S

For a local linear estimator based on a kernel with nonnegative weights and support [—A, A],
the equivalent kernel w(z) is positive at * = 0 and negative at * = A and changes signs
once. From (S1), it follows that, for some 0 < b < A, w;,(z) is negative for x > b and
nonnegative for < b. Applying (S1) again, this also holds for w,, (z). Thus, if w,,(5)

were strictly positive for any § > 0, we would have to have w, ,(s) nonnegative for s € [0, §].



Since s, (0) = > | w(x;)z; = 0, we have

0 < W2, (0) — Wy, (5) = — /:Ow(x)(x — §)dv(x)

which implies that f (x)dv(z) < 0 for some 0 < s < 5 < §. Since w(x) is positive
for small enough x and changes signs only once, this means that, for some s* < §, we have
w(z) >0 for 0 <z < s* and f _o w(z)dv(r) > 0. But this is a contradiction, since it means
that wy,(s*) = —fO (x — s*)dv(x) < 0. Thus, wy,(s) is weakly negative for all s,
which implies that the bias is maximized at f(x) = —(M/2)z?
We now provide a proof for Theorem 3.1 by proving the result for a more general sequence

of estimators of the form

. 1 <. -
T=—> kp(x;/h)y,
nh; (zi/h)y

where k, satisfies - >"" kn(z;/h) =1 and L3 ke (zi/h)xl =0for j=1,...,p—1. We

further assume

Assumption B.1. The support and magnitude of k, are bounded uniformly over n, and,

for some k, sup,cp |kn(u) — k(u)] — 0.

Theorem B.2. Suppose Assumptions 3.1 and B.1 hold. Then for any bandwidth sequence

h,, such that liminf, h,n'/®*1) > 0, and limsup, h,n'/+D < co.

— A MRP ~.. ~ ST ~
biasz,. ) (T) = ) ”Bg(k:)(l +0(1)), Bg(k) = d/ |uPk(u)| du
- x

and

L ME
blas]:Hal,p(M)(T) = —,Bg l(k)(l + 0(1))7

D
B(k) = dp /

t=0

[e.9]

/ k(u)(|u] — t)P~t dul dt.
uEX |u|>t



If Assumption 3.2 holds as well, then

sd(T) = b /20~ 28 (R)(1 + o(1),
where S(k) = d2a(0)/ [ k(u)?du, and (8) holds for the RMSE, FLCI and OCI perfor-
mance criteria with v, = p and v, = —1/2.

Proof. Let K, denote the bound on the support of l;:n, and K, denote the bound on the
magnitude of k.

The first result for Taylor classes follows immediately since

_ M M .
Diasr, o) (T) = —hpnhz (/1) ||/ R = (Ehpd/x |k:(u)||u|pdu) (1+o(1))

where the first equality follows from Theorem B.1 and the second equality follows from the

fact that for any function g(u) that is bounded over u in compact sets,

L > Ralai/ Mgt/ )~ | kgt du

wif/h) = k(xi/h)g(x:/ )

kn(z:/R)g

< n—ﬂl;mi/h)gm/m—d | wgta ) +

<o(l) + %ZIO%/M < Ks) sup g(u)|- sup [kn(u) = k(u)| = o(1), (S2)

UE[—KS7K5] UE[_K.MKS}

where the second line follows by triangle inequality, the third line by Assumption 3.1 applied
to the first summand, and the last equality follows by Assumption 3.1 applied to the first
term, and Assumption B.1 applied to the last term.

For Holder classes,

blas]:Holp(M)( M/’wpl/ ‘dS

by Theorem B.1 where 1, is as defined in that theorem with w(z) = =k, (z/h). We have,

1
nh



1).

Thus, by Equation (S2), for ¢ > 0, A=Y, (¢ - h) — d - w,(t), where

_ k(u)(u —t)P!
wy(t) = /pt ( gp i du

(i.e. W,(t) denotes w@,,(t) when w = k and v is the Lebesgue measure). Furthermore,

=PV, (t-h)| < [nh Z 0<$/h<f1())($i/h)p1] Tt < K) < Ky -I(t <K,),

where the last inequality holds for some K by Assumption 3.1. Thus,

M/ |0y, (5)| ds = hpM/ \h=®" Y, ,(t - h)|dt = P M [d/ |wp(t)|dt] (1+0(1))
s>0 t>0 t>

>0

by the Dominated Convergence Theorem. Combining this with a symmetric argument for
t < 0 gives the result.

For the second part of the theorem, the variance of T doesn’t depend on f, and equals

. 1 <. - 1 < -
var(T) = — > kn(wi/h)?o?(x;) = —hsg, where 52 = — > kn(wi/h)*o? (x;).
=1 =1



By the triangle inequality,

S2 — do?(0) / ke(u)? du

X

n

< swp [kala/nPo(w) — Ge/m2o%©0)] - S I(lai/hl < K.

|z|<hKs i=1

1 s 2 700 \2
E;k(gci/h) —d/Xk:(u) du

+0°%(0) =o(1),

where the equality follows by Assumption 3.1 applied to the second summand and the second
term of the first summand, and Assumptions 3.2 and B.1 applied to the first term of the
first summand. This gives the second display in the theorem.

The last statement (verification of Equation (8)) follows immediately from continuity of

R for these performance criteria, since T is distributed normal with constant variance. [

The local polynomial estimator takes the form given above with

) = ¢ (nl—h Zk(w/h)mq(x@-/h)mq<xi/h>') my(wk(u).

If £ is bounded with bounded support, then, under Assumption 3.1 this sequence satisfies

Assumption B.1 with

Fu) =} (d /X k(u)mqw)mq(u)'du)_lmq<u>kz<u> = a7k (),

where k7 is the equivalent kernel defined in Equation (12). Theorem 3.1 and Equation (13)

then follow immediately by applying Theorem B.2 with this choice of k, and k.



Appendix C Regression discontinuity with different band-

widths on either side of the cutoff

This appendix calculates the efficiency gain from using different bandwidths on either side

of the cutoff. We state a result in a more general setup than that considered in Section 4.
Consider estimating a parameter T'(f), f € F, using a class of estimators T(h+, h_;k)

indexed by two bandwidths h_ and h,. Suppose that the worst-case (over F) performance

of T(h, h_; k) according to a given criterion satisfies
R(T(hy,ho; k) = R(B(R)(R™ + ), n 2 (Sy (k)R + S_(k)*h2) ) (1 + 0(1)), (S3)

where R(b, s) denotes the value of the criterion when T'(hy,h_; k) — T(f) ~ N(b, s?), and
S(k) > 0 and B(k) > 0. Assume that R scales linearly with its arguments.

In the RD application considered in Section C, if Assumptions 3.1 holds, u; is normally
distributed, and 0% (z) and o2 (0) are right- and left-continuous at 0, then Condition (S3)
holds with v, = —1/2, 3, = 2, S¢.(k) = 02.(0) [, ki (u)? du/d, S_( (0) fo~ ki (u)? du/d,
and B(k) = =M [;° w?k;(u)du/2.

Let p = hy/h_ denote the ratio of the bandwidths, and let ¢ denote the ratio of the

leading worst-case bias and standard deviation terms,

_ B(E)(A™ + ) e BRI

n‘l/Q(SJr(k)?hiﬂ’s + S,(k)2h2_75)1/2 - n‘1/2(5+(k)2p2% + 5_(@2)1/2'

Substituting hy = ph_ and h_ = (tn~Y2(S(k)?p*" + S_(k)*)V2B(k)~1 (1 + pr)=1)H/ =)

into (S3) and using linearity of R gives

R(T(hy,h_sk)) = R(B(k)R™ (14 p™), K V2 (S (k)20 + S_(K)?)2)(1 + (1))

=0 (L o(k)P07) 7 (L )T S (k) BOR)TR(E D)(L + o(1),

10



where 7 = /(75 — 7s) is the rate exponent, and ¢(k) = S, (k)/S_(k) is the ratio of the
variance constants. Therefore, the optimal bias-sd ratio is given by t% = argmin,., R(t, 1),

and depends only on the performance criterion. The optimal bandwidth ratio p is given by

; 2 2v5\7/2 1—r _2
p- = argmin(1 4 (k)*p*)"* (14 )" = < (k) w7,
P

and doesn’t depend on the performance criterion.
Consequently, inference that restricts the two bandwidths to be the same (i.e. restricting

p = 1) has asymptotic efficiency given by

iy T BT (e hosk)) ((1 +o(k)?p2e )2 (L4 pr) ) Tn
n—yo0 min, R(T(h; k)) (1 + o(k)2)m/22

(ERCE

(1 + §<k)2 r/2

— 27‘71

In the RD application in Section 4, (k) = 04(0)/0_(0), and r = 4/5. The display above
implies that the efficiency of restricting the bandwidths to be the same on either side of the
cutoff is at least 99.0% if 2/3 < o, /o_ < 3/2, and the efficiency is still 94.5% when the ratio
of standard deviations equals 3. There is therefore little gain from allowing the bandwidths

to be different.

Appendix D Optimal kernels for inference at a point

Here we give details of optimal kernel calculations discussed in Section 3.1 in the main text.
The optimal equivalent kernel under the Taylor class Fr (M) solves Equation 15 in the

main text. The solution is given by

ksvp(u) = (b S0 agwl = [ul?) = (b+ 02 g+ ul?)

11



the coefficients b and « solving

/ujkrgyvp(u)du:o, j=1,....,p—1,
X

/ ksyp(u)du = 1.
x

For p = 1, the triangular kernel kp;(u) = (1 —|u|)4 is optimal both in the interior and on the
boundary. In the interior for p = 2, a; = 0 solves the problem, yielding the Epanechnikov
kernel kgpa(u) = 3(1 —u?)4 after rescaling. For other cases, the solution can be easily found
numerically. Figure S1 plots the optimal equivalent kernels for p = 2, 3, and 4, rescaled to
be supported on [0, 1] and [—1, 1] in the boundary and interior case, respectively.

The optimal equivalent kernel under the Holder class Fygs 2 (M) has the form of a quadratic
spline with infinite number of knots on a compact interval. In particular, in the interior, the

optimal kernel is given by f%,(u)/ [ fis o(u) du, where
o

a1 2(1) = 1——$2+Z Y (|l = k)3

and the knots k; are given by k; = (1:‘;—)11/22(2 — ¢/ — qUtD/2) where q is a constant ¢ =

(3 ++/33 — /26 + 61/33)%/16.

At the boundary, the optimal kernel is given by f{,(u)/ [* fie2(u) du, where
Bd 2 2y ¢Ing 2
mol2(1) = (1= 2oz +27/2)1(0 < & < o) + (1 — a) frgi o (& — o) /(a5 — 1) 1(z > o),

with zy =~ 1.49969, so that for x > x(, the optimal boundary kernel is given by a rescaled

version of the optimal interior kernel. The optimal kernels are plotted in Figure S2.

12
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By, (k) = Jy luPky(w)| du By (k)

Kernel (k(u)) ¢ [lki(w?du p=1 p=2 p=3 p=1 p=2 p=3
0 1 3 1
Uniform % 5 2 )
Ll < 1 14 7 162 27 5
(lul <) 2 9 0.7055 0.4374 0.3294 02352 2 L
’ : : : 3125 20
0 4 1 1
Triangular S 5 5 2 )
(1= |u]) 15 8 i 128 10
" 2 22 0.4293 0.2147 0.1400 0.1699 22 L
o 0 % :
Epanechnikov "
31— ) 1 4.498 0.4382  0.2290 0.2369 &
1 " 2 9.816 0.5079 0.2662 0.1777 0.1913 0.0508 2%

Table S1: Kernel constants for standard deviation and maximum bias of local polynomial
regression estimators of order ¢ for selected kernels. Functional of interest is value of f at a
boundary point.

1 * o
B (k) = [ [Pk} (u)] du B (k)
Kernel ¢ [Lk(w?du p=1 p=2 p=3 p=1 p=2 p=3
o L 1 1
. 2 2 2

Uniform L1 i 1 b 1

1(|U|§1) 3 2 3 2 3 .
2 3 0.4875 0.2789 0.1975  0.2898 0.0859
0 2 1 1

Triangular ] g i 1 i 1

(1= ul)+ 2 156 83116 81399 0.0844 82103 80517 8
0 3 3 3

Epanechnikov ) g S 1 g 1

5(1_u2>+ 5 8 5 8 5

4 2 2 0.3603 0.1718 0.1067  0.2347 0.0604 ¢

Table S2: Kernel constants for standard deviation and maximum bias of local polynomial
regression estimators of order ¢ for selected kernels. Functional of interest is value of f at
an interior point.

14



61 0.6
47 5 0.4- 5
[N} [N}
2_
0.2-
O_
0.0-
20 -
15_ 15'
310- <~  310- ~
= I = I
% w X e
91 0.5
01 0.0+
1.5
40 -
30 1.0-
= =]
20+ I I
e~ 0.54 ~
10-
0- 0.0-
0.00 025 050 0.75 1.00 1.0 -05 00 05 1.0
u u

Figure S1: Optimal equivalent kernels for Taylor class Fr (M) on the boundary (left), and
in the interior (right), rescaled to be supported on [0, 1] on the boundary and [—1,1] in the
interior.
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Figure S2: Optimal equivalent kernels for Holder class Fug2(M) on the boundary (left),

and in the interior (right), rescaled to be supported on [0, 1] on the boundary and [—1,1] in
the interior.
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